JPS6273438A - Optical information recording member - Google Patents

Optical information recording member

Info

Publication number
JPS6273438A
JPS6273438A JP60211470A JP21147085A JPS6273438A JP S6273438 A JPS6273438 A JP S6273438A JP 60211470 A JP60211470 A JP 60211470A JP 21147085 A JP21147085 A JP 21147085A JP S6273438 A JPS6273438 A JP S6273438A
Authority
JP
Japan
Prior art keywords
film
recording
concentration
composition
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60211470A
Other languages
Japanese (ja)
Other versions
JPH0475835B2 (en
Inventor
Noboru Yamada
昇 山田
Kunio Kimura
邦夫 木村
Masatoshi Takao
高尾 正敏
Susumu Sanai
佐内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60211470A priority Critical patent/JPS6273438A/en
Priority to CN86107003A priority patent/CN1010519B/en
Priority to KR1019860007937A priority patent/KR900009187B1/en
Priority to DE3689815T priority patent/DE3689815T2/en
Priority to EP86113211A priority patent/EP0217293B1/en
Priority to DE3689886T priority patent/DE3689886T2/en
Priority to EP89118260A priority patent/EP0355865B1/en
Publication of JPS6273438A publication Critical patent/JPS6273438A/en
Publication of JPH0475835B2 publication Critical patent/JPH0475835B2/ja
Priority to US08/053,346 priority patent/US5278011A/en
Priority to US08/053,343 priority patent/US6268107B1/en
Priority to US09/765,677 priority patent/US20010019810A1/en
Priority to US10/389,615 priority patent/USRE42222E1/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled member having excellent resistance to heat and humidity and wherein a film is not broken even when recording and erasing are repeated by forming the thin film wherein the ratio in the number of atoms of the essential components, Te, Ge and Se, and the concn. of Sb are specified. CONSTITUTION:The recording layer is composed of a Te-Ge-Se-Sb composition, the ratio in the number of atoms of Te, Ge and Se are regulated within the region connecting points A1, B1, C1, D1 and E1 in the figure and the layer is composed of a material wherein the concn. of Sb is regulated to 15-40at%. Namely, Sb is added to the Te-Ge-Se system having a high crystallization transition temp. to fix an excess of Te. Sb forms a compd. (Sb2Te3) with Te. The m.p. of the (Sb2Te3) is at 622 deg.C at the highest in the Sb-Te system contg. >=50% Te. The m.p. is lower than those of Te-Ge and Te-Sn by about 150 deg.C. Accordingly, the addition of Sb enables the fixation of an excess of Te without raising the m.p. of the film with Te as the base material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光、熱などを用いて高速かつ、高密度に情報
を記録、消去、再生可能な光学情報記録部材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member capable of recording, erasing, and reproducing information at high speed and with high density using light, heat, or the like.

従来の技術 近年、情報量の増大化、記録、再生の高速化。Conventional technology In recent years, the amount of information has increased and recording and playback speeds have become faster.

高密度化に伴ない、レーザ光線を利用した光ディスクが
注目されている。元ディスクには、一度のみ記録可能な
追記型と、記録した信号を消去し何度も使用可能な書き
換え可能なものがある。追記型光ディスクには、記録信
号を穴あき状態として、再生するものや、凹凸を生成さ
せて再生するものがある。書き換え可能なものとしては
カルコゲン化物を用いる試みがあり、Te−Gef初め
として、これにムg、S、Si、Se、Sb、Bi な
ど全添加した例が知られている。
As density increases, optical discs that utilize laser beams are attracting attention. There are two types of original discs: write-once discs that can be recorded only once, and rewritable discs that can be used many times by erasing recorded signals. Some write-once optical discs reproduce recorded signals in a perforated state, and others reproduce them by generating unevenness. Attempts have been made to use chalcogenides as rewritable materials, and examples are known in which, starting with Te-Gef, Mug, S, Si, Se, Sb, and Bi are all added thereto.

これに対し、本発明者らは先に、To−TeO□のよう
な酸化物を含んだ系の相転移による反射率変化を信号と
する方式を提案した。さらに、相転移を利用した書き換
え可能な光ディスクとして、To−Tea□ に対し各
種添加物を添加(S n 、 G ’ rBi、In、
Pb、T、j、Seなど)した例があル。コレらの記録
部材の特徴は、C/Nが高く、耐湿性に対しても優れる
という特徴を有している。
In contrast, the present inventors previously proposed a method in which a change in reflectance due to a phase transition of a system containing an oxide such as To--TeO□ is used as a signal. Furthermore, various additives (S n , G' rBi, In,
Examples include Pb, T, j, Se, etc.). These recording members are characterized by a high C/N ratio and excellent moisture resistance.

発明が解決しようとする問題点 カルコゲン化物よりなる書き換え可能な情報記録部材は
、一般的に、記録、消去の繰り返しに対する安定性が悪
いといった特徴を有する。この理由は、Te、Geとそ
の他の添加成分が、数度のくり返しによって、膜が相分
離を生じてしまい、初期とくり返し後では膜の構成成分
が異なることに帰因すると思われる。消去可能な光ディ
スクで相転移を利用する場合、通常は、未記録、消去状
態を結晶質とし、記録状態を非晶質とする方法がとられ
る。この場合、記録はレーザ光で、一旦、膜を溶融させ
急冷によって非晶質にする訳であるが、現在の半導体レ
ーザにはパワーの限界があり、できるだけ融点の低い膜
が、記録感度が高いことになる1゜このために、上述し
たカルコゲン化物よりなる膜は、記録感度を向上させる
ために、できるだけ融点の低い組成、すなわち、Teが
多い膜組成となっている。Toが、他の添加成分より多
いということは、くり返し特性においてそれだけ相分離
が起こし易いことを意味する。したがって融点を下げる
ために添加した過剰のToをいかに固定して動きにくい
組成にするかが、くり返し特性や、ONR,消去率の経
時変動に大きな影響を及ぼすことになる。
Problems to be Solved by the Invention Rewritable information recording members made of chalcogenides are generally characterized by poor stability against repeated recording and erasing. The reason for this is thought to be that when Te, Ge and other additive components are repeated several times, phase separation occurs in the membrane, and the constituent components of the membrane are different at the initial stage and after the repetition. When utilizing phase transition in an erasable optical disc, a method is usually used in which the unrecorded and erased state is crystalline and the recorded state is amorphous. In this case, recording is done using a laser beam, which melts the film and then rapidly cools it to make it amorphous. However, current semiconductor lasers have power limitations, and a film with as low a melting point as possible has the highest recording sensitivity. Therefore, in order to improve the recording sensitivity, the film made of the chalcogenide mentioned above has a composition with a melting point as low as possible, that is, a film composition with a large amount of Te. The fact that To is greater than other additive components means that phase separation is more likely to occur in the repeatability. Therefore, how to fix the excess To added to lower the melting point and make it difficult to move will have a large effect on the cycling characteristics, ONR, and fluctuations over time in the erasure rate.

酸化物を含んだ記録部材にも、以下に記述する欠点があ
る。すなわち、消去率が録再消去のくり返しによって低
下することである。
Recording members containing oxides also have drawbacks as described below. That is, the erasure rate decreases due to repeated recording and re-erasing.

書き換え可能な光ディスクは、通常、初期状態を結晶状
態と己、記録状態を非晶質として記録を行なう。消去は
初期状態と同様に結晶質とする。
In a rewritable optical disc, recording is normally performed with the initial state being a crystalline state and the recording state being an amorphous state. The erasure is made crystalline like the initial state.

この記録部材の結晶質−非晶質間の相転移は、レーザの
徐冷−急冷の条件変化によって達成される。
This crystalline-amorphous phase transition of the recording member is achieved by changing the conditions of slow cooling and rapid cooling using a laser.

すなわち、レーザ光による加熱後、徐冷によって結晶質
となり急冷によって非晶質となる。したがって記録、消
去のくり返L7によって、膜は何度も結晶質、非晶質状
態を経ることになる。この場合、膜に酸化物が存在する
と、膜の粘性が高いので、カルコゲン化物の泳動性が少
なくなり、膜組成の偏析が生じやすくなる。さらに、酸
化物の存在は膜自身の熱伝導を悪くするので、レーザ光
の入射側と反対側の膜厚間で温度分布差を生じ、膜組成
の偏析はやはり生ずる。こうした理由により、酸化物を
含んだ膜は、記録、消去のくり返しによって次第に特性
が変化するなどの欠点を有していた。
That is, after heating with laser light, it becomes crystalline by slow cooling, and becomes amorphous by rapid cooling. Therefore, by repeating recording and erasing L7, the film passes through the crystalline and amorphous states many times. In this case, if an oxide is present in the film, the viscosity of the film is high, so the migration of chalcogenide is reduced, and segregation of the film composition is likely to occur. Furthermore, the presence of oxides impairs the thermal conductivity of the film itself, resulting in a difference in temperature distribution between the film thickness on the laser beam incident side and the opposite side, resulting in segregation of film composition. For these reasons, films containing oxides have the disadvantage that their characteristics gradually change due to repeated recording and erasing.

本発明は、上述した酸化物を含む膜のくり返し特性を向
上させることを目的とし、さらに、カルコゲン化物より
なる従来組成の欠点(C/Nが低い、消去率が充分では
ない1.耐湿性、耐熱性が悪い、くり返し特性が充分で
はない)を克服したものである。
The present invention aims to improve the repeatability of the film containing the above-mentioned oxide, and furthermore, the disadvantages of the conventional composition made of chalcogenide (low C/N, insufficient erasing rate, 1. moisture resistance, This overcomes the problems of poor heat resistance and insufficient repeatability.

問題点を解決するための手段 本発明における記録層は、Te−Go−8θ−sb系の
組成物であって、Te、Ge、Seの原子数比が第1図
の人+’ BT”+’ DI’ El の点を結んだ領
域内にあるとともに、Sbの濃度が15〜40at%で
ある材料により構成される。
Means for Solving the Problems The recording layer in the present invention is composed of a Te-Go-8θ-sb system, and the atomic ratio of Te, Ge, and Se is as shown in FIG. It is located within the region connecting the points 'DI' El and is made of a material having an Sb concentration of 15 to 40 at%.

作用 本発明の特徴は、結晶化転移温度が高い、Te−Ge−
8e系に5b−q添加して過剰のTeを固定することに
ある。SbはTeと化合物(Sb 2Te 3)を形成
し、Te濃度が60%以上の5b−Te系では、融点が
最も高い場合、(Sb2Te、)でも622°Cである
。この温度は他のTo−Ge、Te−3nなどと比較し
ても150°C近くも低い。したがって、 sbの添加
は、Teと母材とする膜の融点を上昇させることなしに
、過剰なTeを固定することが可能となる。
Function The present invention is characterized by a high crystallization transition temperature, Te-Ge-
The purpose is to fix excess Te by adding 5b-q to the 8e system. Sb forms a compound (Sb 2 Te 3) with Te, and in a 5b-Te system with a Te concentration of 60% or more, the highest melting point is 622°C even in (Sb 2 Te). This temperature is nearly 150°C lower than other To-Ge, Te-3n, etc. Therefore, the addition of sb makes it possible to fix excess Te without increasing the melting point of the film used as the base material.

実施例 本発明は、Te−Go−3e−3bより構成される。Example The present invention is composed of Te-Go-3e-3b.

本発明においてToはsbあるいはGo と結合した状
態で、記録前後によって光学的濃度変化を呈する母材で
あるoSeは単独でも、またTe との化合物状態でも
非晶質膜を作成することが容易であるという特徴を有す
るものの逆に結晶化速度が遅いこと、結晶転移温度が低
い(=100’C)ことなどの欠点を持つ。To−36
KG6f添加することにより、結晶転移温度は上昇する
が、結晶化速度は改善されず、元ディスクの実用上必要
な結晶化速度(数百ns  )は得られないQ本発明は
、To−Go−5s系における上述した特長、すなわち
、結晶転移温度が高いという長所を活かしながら、しか
もこの系の結晶化速度が遅いという欠点を、sb 2添
加することにより、大巾に改善し実用可能な書き換え可
能な記録膜全提供しようとするものである。
In the present invention, To is combined with sb or Go, and oSe, which is a base material that exhibits optical density changes before and after recording, can easily be used alone or in a compound state with Te to form an amorphous film. Although it has certain characteristics, it has drawbacks such as slow crystallization rate and low crystal transition temperature (=100'C). To-36
By adding KG6f, the crystal transition temperature increases, but the crystallization rate is not improved, and the crystallization rate (several hundred ns) required for practical use of the original disk cannot be obtained. While taking advantage of the above-mentioned features of the 5s system, namely its high crystal transition temperature, the addition of sb2 significantly improves the drawback of this system's slow crystallization rate, making it possible to rewrite for practical use. The aim is to provide a complete range of recording films.

本発明において、Te、Go、Se、sbは結晶状態に
おいて、GeTe 、Gage2.Sb 2To 、な
どの結晶状態をとるものと思われる。この中で、Ga5
52  は非晶質状態が安定で、結晶化温度は470℃
程度で、しかも結晶化速度は遅い。このため、膜中にあ
っては主に結晶化転移温度を高め、非晶質化を容易にす
る役割を担っているものと思われる。Ge−T。
In the present invention, Te, Go, Se, and sb are in a crystalline state, and GeTe, Gage2. It is thought that it takes a crystalline state such as Sb 2To. Among these, Ga5
52 is stable in the amorphous state, and the crystallization temperature is 470℃
Moreover, the crystallization rate is slow. Therefore, in the film, it seems to play a role mainly in increasing the crystallization transition temperature and facilitating amorphization. Ge-T.

はGo とTeO比によって、結晶化が容易な領域と、
困難な領域に別れる。すなわちGe−Te系で非晶質状
態が最も安定な領域は、Ta濃度が70%程度のee’
re2  が生成される領域である。この点を境にして
Geが増えると(量論に近いGo Ta濃度が増すと)
、結晶化速度は速くなる。本発明においてGeはGag
e、、  としての他GaTe f形成しており、Te
−Ge−3a系においてGeTaは結晶化速度を向上さ
せることに寄与しているものと思われる。しかしながら
、Te−Go−8sで構成される系では、実用可能な結
晶化速度の速い組成はSo量が少な(GeTeの量論に
近い領域となる。
Depending on the ratio of Go and TeO, there are regions where crystallization is easy, and
Separate into difficult areas. In other words, the region where the amorphous state is most stable in the Ge-Te system is ee' where the Ta concentration is about 70%.
This is the area where re2 is generated. As Ge increases beyond this point (as Go Ta concentration, which is close to stoichiometry, increases)
, the crystallization rate becomes faster. In the present invention, Ge is Gag
In addition to e, , GaTe f is formed, and Te
In the -Ge-3a system, GeTa seems to contribute to improving the crystallization rate. However, in a system composed of Te-Go-8s, a composition with a practically high crystallization rate has a small amount of So (in a region close to the stoichiometry of GeTe).

この領域の特徴は結晶化速度は速いものの、GeTl!
yの融点が725°Cと高いため、非晶質化が困難なこ
とである。したがって、実用可能な領域で結晶化、非晶
質化を可能にするのはGe濃度が低く、SO濃度が高い
領域である。
The feature of this region is that although the crystallization rate is fast, GeTl!
Since the melting point of y is as high as 725°C, it is difficult to make it amorphous. Therefore, it is the region where the Ge concentration is low and the SO concentration is high that allows crystallization and amorphization in a practical region.

この領域の特徴は、結晶化温度が高いが、結晶化速度が
遅いことである。sbの添加は膜中で過剰なToと31
) 2T63を形成し、結晶化を促進させることにある
oTθとの化合物で結晶化を促進する元素は上述したs
bに限らず、Sn、Pb、Pa。
This region is characterized by a high crystallization temperature but a slow crystallization rate. The addition of sb causes excess To and 31 in the film.
) The element that promotes crystallization in a compound with oTθ that forms 2T63 and promotes crystallization is the above-mentioned s.
Not limited to b, but also Sn, Pb, Pa.

Ni 、 Go 、Crなど種々の材料がある。こうし
た材料は確かに結晶化速度が速いという特徴を有し、添
加量を限定することにより、追記型材料(W10材料)
となり得るが、書き換え可能な元ディスク材料としては
適さない。その理由は、上述した元素とTe とで構成
される合金の融点が高いことによる。
There are various materials such as Ni, Go, and Cr. These materials certainly have the characteristic of high crystallization speed, and by limiting the amount added, write-once materials (W10 materials) can be created.
However, it is not suitable as a rewritable source disc material. The reason for this is that the alloy composed of the above-mentioned elements and Te has a high melting point.

しかし、こうした材料でもレーザパワーが強く、膜を充
分に溶融させることが可能であれば、消去可能なディス
クとして使用することは可能である。
However, even such materials can be used as erasable disks if the laser power is strong and the film can be sufficiently melted.

現在、我々が実用上入手できる半導体レーザは、波長が
830nmでパワーは30 mW程程度あり、τe、G
o、Seの量論に近い組成(TeGe、GaSe□)を
溶融させることは困難である。(融点が800℃程度)
To−Go−8eで記録、消去可能な領域は、Toが非
常に多い領域(goat%以上)にあるが、この領域の
組成は転移温度が低く、熱的に不安定であること、Ta
が過剰なため、くり返しによって、Te とTeGeあ
るいはGem52  に膜が相分離を起こしやすいこと
などの欠点を有している。
Currently, the semiconductor lasers that we can practically obtain have a wavelength of 830 nm and a power of about 30 mW.
It is difficult to melt a composition (TeGe, GaSe□) close to the stoichiometry of Se. (Melting point is around 800℃)
The area that can be recorded and erased with To-Go-8e is in an area where To is extremely high (more than goat%), but the composition of this area has a low transition temperature and is thermally unstable.
Due to the excessive amount of ions, the film tends to undergo phase separation between Te and TeGe or Gem52 due to repeated use.

本発明のsbは、この過剰のToをSb 2T e 3
として安定化させる働きを有する。sbはTo との合
金系ではToが50&t%以上では、融点が622°C
以下で、sbを添加してもToの融点が451°Cなの
で、融点をそれ程上昇させることはない。そのため、S
bを添加した膜は現行の半導体レーザパワーでも充分に
溶融させることが可能である。しかも熱的に不安定な過
剰ToをSb 2Te 3として結合させているため、
熱的に安定で、かつ、記録、消去のくり返しによっても
相分離を生ずることなぐ、長期に亘って安定な膜となる
The sb of the present invention converts this excess To into Sb 2T e 3
It has a stabilizing function. When sb is alloyed with To, the melting point is 622°C when To is 50&t% or more.
In the following, even if sb is added, since the melting point of To is 451°C, the melting point will not be increased that much. Therefore, S
A film doped with b can be sufficiently melted even with current semiconductor laser power. Moreover, because the thermally unstable excess To is combined as Sb 2Te 3,
The film is thermally stable, does not undergo phase separation even after repeated recording and erasing, and remains stable for a long period of time.

sbの添加量は、Ge、Seと結合した残りの過剰To
 f固定化するので、必要なSt)濃度はTo/(Ga
+Se)  の量に支配される。
The amount of sb added is determined by the remaining excess To combined with Ge and Se.
Since f is fixed, the required St) concentration is To/(Ga
+Se).

すなわち、5b(7)添加量はGo−To−3e系の組
成比により異なる。例えば、比較的Se成分の多い領域
(Se >2 ts at%)においては、非晶質とし
て安定なので結晶化を促進させるSbの添加量は多くな
る。(25〜402Lt%)逆にSe酸成分少ない領域
(Se≦1sat%)では、比較的結晶化速度が速いの
で、少ないSb量度(15〜3oILt%)で充分であ
る。同様にGo濃度の多い領域(Ge≧251Lt%)
は結晶化速度は速いので、Sb濃度は低く(16〜30
at%) Ge成分の少ない領域(GOく1o&t%)
では結晶化が困難なので、比較的多いsb量を必要とす
る。
That is, the amount of 5b(7) added varies depending on the composition ratio of the Go-To-3e system. For example, in a region where the Se content is relatively large (Se > 2 ts at %), the amount of Sb added to promote crystallization increases because it is stable as an amorphous state. (25 to 402Lt%) Conversely, in a region with a small amount of Se acid component (Se≦1sat%), the crystallization rate is relatively fast, so a small amount of Sb (15 to 3oILt%) is sufficient. Similarly, areas with high Go concentration (Ge≧251Lt%)
The crystallization rate is fast, so the Sb concentration is low (16-30
at%) Area with low Ge component (GOku1o&t%)
Since crystallization is difficult, a relatively large amount of sb is required.

第1図に、本発明のT e −G e −3n−8bよ
り構成される記録部材の適正範囲を示した。図はTe−
Ge−8eより構成されているが、Sb濃度は第1図に
示されたTe−Ge−3e組成に対し、15〜40at
%である。
FIG. 1 shows the appropriate range of the recording member made of T e -G e -3n-8b of the present invention. The figure is Te-
Although it is composed of Ge-8e, the Sb concentration is 15 to 40at compared to the Te-Ge-3e composition shown in FIG.
%.

(Sb濃度は(TexGeySnz)、。。−!11S
bm  で示した場合のmに相当、ただし、x十y+z
=10o)第1図において各点は以下の組成である。
(The Sb concentration is (TexGeySnz),...-!11S
Corresponds to m when expressed as bm, however, x + y + z
=10o) In FIG. 1, each point has the following composition.

ム4点: Te、。Go5Se5 84点: Te6oGe5Se。4 points: Te,. Go5Se5 84 points: Te6oGe5Se.

C4点: Te6oGe5Se、5 D4点:Te4oGe4oSe2゜ B1点” ”55”40S’5 本発明は上記、Te−Ge−3eの三元系の人、。C4 point: Te6oGe5Se, 5 D4 points: Te4oGe4oSe2゜ B1 point” “55” 40S’5 The present invention is directed to the above-mentioned Te-Ge-3e ternary system.

B、、C,、D、、に、点で囲まれた範囲内にあって、
かつ、Sb濃度が式(ToxGeySez)、。。−m
Sbm  で表わした場合、mの値として16〜40&
t%の範囲内にある。線ム+”+  よりGeが少ない
場合、膜はTo−3eが過剰となり、結晶化転移温度は
低く(<120’C)%実用上安定な記録膜を得ること
が困難である。線B、C1よりSOが多い場合はTea
s 、Gene 2の形成量が多くなり、安定な非晶質
膜となり、結晶化が困難となる。線C,D、 よりTe
が少ない場合、結晶化に必要な5b2T03の量も少な
くなるので、記録部と未記録部の信号のコントラスト比
が低く、充分な記録特性が得られない。
B, , C, , D, , within the range surrounded by points,
And the Sb concentration is expressed as (ToxGeySez). . -m
When expressed in Sbm, the value of m is 16 to 40&
It is within the range of t%. When the Ge content is less than the line B, To-3e is excessive in the film, and the crystallization transition temperature is low (<120'C), making it difficult to obtain a practically stable recording film.Line B, Tea if there is more SO than C1
The amount of Gene 2 formed increases, resulting in a stable amorphous film, making crystallization difficult. Lines C, D, Te
When the amount of 5b2T03 is small, the amount of 5b2T03 required for crystallization is also small, so the contrast ratio between the signals of the recorded area and the unrecorded area is low, and sufficient recording characteristics cannot be obtained.

線り、IC,よりGOが多い場合、この領域は量論的な
GeTeが生成する領域で、結晶化速度は上昇するが、
融点の高いGo Toが多量に存在するので、非晶質化
が困難となる。線ムlIC1よりSe量が少ない場合は
Gene2 量が少なくなるため、非晶化が困難となる
。しかし同じム1”i線上でもGeが少ない場合はGe
Te量が少ないため、非晶質化は比較的容易であるが結
晶化転移温度が低くなる。
When there is more GO than linear, IC, and IC, this region is the region where stoichiometric GeTe is produced, and the crystallization rate increases, but
Since a large amount of Go To having a high melting point exists, it is difficult to make it amorphous. When the amount of Se is smaller than the amount of line laminate IC1, the amount of Gene2 will be smaller, making it difficult to amorphize. However, if there is less Ge on the same 1” i-line, Ge
Since the amount of Te is small, it is relatively easy to become amorphous, but the crystallization transition temperature becomes low.

上述した傾向は当然ながら添加するsb量によって異な
ってくる。Te−Ge−8eからなる組成全限定しsb
量を変化させると、sb量が少ない場合は非晶質化が容
易でSb量が増えるに従って結晶化が容易となる。この
適正なsb量はTe、Ge。
The above-mentioned tendency naturally varies depending on the amount of sb added. Totally limited composition consisting of Te-Ge-8e sb
When the amount is changed, when the amount of Sb is small, it becomes easy to become amorphous, and as the amount of Sb increases, crystallization becomes easier. This appropriate amount of sb is Te, Ge.

SOによって構成される膜の特性によって異なるが、本
発明の範囲内では16〜40&t%で実用的な書き換え
可能な記録膜が得られる。
Although it varies depending on the characteristics of the film composed of SO, within the scope of the present invention, a practical rewritable recording film can be obtained at 16 to 40&t%.

以上述べた理由により、本発明は、第1図において、点
ムj  ”l−C1−”j  ”1  で囲まれた範囲
内に限定される。すなわち、この領域内のTe−Go−
8eにSb f 15〜40 at%添加した場合、実
用上、結晶質と非晶質の可逆性全利用して、情報の記録
、消去が可能、となる。
For the reasons stated above, the present invention is limited to the range surrounded by the point Mj ``l-C1-''j ''1 in FIG. 1. That is, the Te-Go-
When 15 to 40 at% of Sb f is added to 8e, information can be recorded and erased by fully utilizing the reversibility of crystalline and amorphous states.

次に第1図のム2  ”2−C2−B2−B2  ある
いはム5−B、−C5−D3−x5 によって囲まれた
領域について述べる。この領域は、第1図のム1−B+
−〇、−D、−IC,で囲まれた範囲より、より実用的
な組成範囲を示しである。
Next, we will discuss the area surrounded by M2"2-C2-B2-B2 or M5-B, -C5-D3-x5 in FIG. 1. This area is defined by M1-B+ in FIG.
The ranges surrounded by -〇, -D, and -IC indicate more practical composition ranges.

第1図においてA 2−B 2−C、、−D 2−E 
2  各点の組成を以下に示す。
In Figure 1, A 2-B 2-C, -D 2-E
2 The composition of each point is shown below.

ム2:To83Ge7Se1゜ B2:Te63Ge7Se3゜ C2: Te45Ge3oSe25 D2: Te45Go、5Se2゜ IC2: Te55Go、、、Se、。Mu2: To83Ge7Se1゜ B2: Te63Ge7Se3゜ C2: Te45Ge3oSe25 D2: Te45Go, 5Se2゜ IC2: Te55Go,,,Se,.

この各点で囲まれた領域におけるSb濃度は16〜30
1Lt%である。(ただし、(Te6Ge5Se2)、
。。−1nSbm  におけるno値で、X+7+Z=
100とする。 ) この領域の非晶質から結晶質への転移温度は150〜2
20°C以内である0転移温度はム2が最も低く、線C
2D2の方向にso、Ge濃度が増えるに従って温度は
上昇する。結晶化を促進する上で必要なりi濃度はム2
点に近い領域では少なく、線C2D2に近い領域では多
くなる0すなわち、ム。
The Sb concentration in the area surrounded by each point is 16 to 30
It is 1Lt%. (However, (Te6Ge5Se2),
. . -1nSbm with no value, X+7+Z=
Set it to 100. ) The transition temperature from amorphous to crystalline in this region is 150-2
The 0 transition temperature, which is within 20°C, is the lowest for Mu2, and the line C
As the so and Ge concentration increases in the 2D2 direction, the temperature increases. The i concentration necessary to promote crystallization is mu2
0, that is, it is less in the area near the point and more in the area near the line C2D2.

に近い領域では、過剰のTeが多く、結晶化速度は速い
ので多くのsb量を必要とせず、C2D2に近い領域は
結晶化が困難なため、多くのBi量を必要とする。
In the region close to C2D2, there is a large amount of excess Te and the crystallization rate is fast, so a large amount of sb is not required. In the region close to C2D2, crystallization is difficult, so a large amount of Bi is required.

その結果、点ム1ではGaTa 、G55a2の量が少
なく過剰Tθも残存しているので安定な非晶質状態が形
成されず結晶転移温度は低くなる。ム2点よりSo量が
多くなると(82点)転移温度は上昇するが、結晶化速
度は遅くなる。ム2点よりGOが多くなると、転移温度
は上昇し、結晶化温度も高くなるが、非晶質化が困難と
なる0すなわち、点ム2−B2−02−D2  ”2 
 で囲まれた点で、sb量が20〜35&t%である場
合は、用途、目的に応じて、結晶化転移温度、結晶化速
度の適正値を選択することが可能であるoしかし、この
人2−B2−C2−D2−に2点で囲まれた領域内であ
っても、現在、市販されている半導体レーザ出力(25
mW程度)で、全ての点で録再が可能とは限らない。
As a result, at point 1, the amounts of GaTa and G55a2 are small and excess Tθ remains, so a stable amorphous state is not formed and the crystal transition temperature becomes low. When the amount of So increases from the point 2 (82 points), the transition temperature increases, but the crystallization rate slows down. When the amount of GO increases from point M2 to point M2, the transition temperature increases and the crystallization temperature also increases, but it becomes difficult to make it amorphous.
As for the point surrounded by Even within the area surrounded by the two points 2-B2-C2-D2-, the current commercially available semiconductor laser output (25
mW), recording and playback may not be possible at all points.

点ム5  B 5−03−D 5  ICs  で囲ま
れた領域は、現行の半導体レーザパワーの範囲で録再が
可能で、結晶化速度が速く、かつ熱的安定性を示す結晶
化転移温度も高く(160〜216°C)よシ実用的な
領域である。この領域における必要なsb量は25〜3
5&t%である。Sbの添加はTe−Ga−8θだけよ
りなる系に比べ、結晶への転移温度を10〜30 ’C
高める働きを有する。しかもsbの添加によって膜の融
点は下がるため、非晶質化に対しては都合がよい。この
理由は、SbはTe濃度に対して40%以下である場合
、最大でも、融点が622°C以下であることに起因す
る。一方、Go、Snなどの場合は、Te濃度に対し、
s o at%以下の場合、各々、最大で725°C2
79o0となる。それ故、sbの添加は、熱的安定性を
示す転移温度を上昇させる効果と、膜の融点を下げ、以
上述べた理由により、本発明のTe−Go−8e−sb
  の最適組成は限定される。
The region surrounded by point 5 B 5-03-D 5 ICs can be recorded and played within the current semiconductor laser power range, has a fast crystallization rate, and has a crystallization transition temperature that indicates thermal stability. The temperature is high (160-216°C) and is in a more practical range. The required amount of sb in this area is 25-3
5&t%. The addition of Sb lowers the crystal transition temperature by 10 to 30'C compared to a system consisting only of Te-Ga-8θ.
It has the function of enhancing. Furthermore, the addition of sb lowers the melting point of the film, which is advantageous for making it amorphous. The reason for this is that when Sb is 40% or less of the Te concentration, the melting point is at most 622°C or less. On the other hand, in the case of Go, Sn, etc., with respect to the Te concentration,
If it is less than s o at%, each maximum 725°C2
It becomes 79o0. Therefore, the addition of sb has the effect of increasing the transition temperature indicating thermal stability and lowering the melting point of the film, and for the reasons stated above, the Te-Go-8e-sb of the present invention
The optimal composition of is limited.

次に本発明による光学情報記録部材の製法について述べ
る。
Next, a method for manufacturing an optical information recording member according to the present invention will be described.

第2図は、本発明の記録層を用いて構成した元ディスク
の断面の模式図である。図において、1゜6は基板を表
わしており、材質は、ポリカーボネート、アクリル樹脂
、ガラス、ポリエステル等の透明な基材音用いることが
可能である02,4は保護層で、種々の酸化物、硫化物
、炭化物を用いることができる。この保護層2.4は記
録膜3の記録、消去の繰り返しによる基材の熱劣化を防
ぐものであり、さらに、記録膜3を湿度より保護するも
のである。したがって、保護層の材質、膜厚は、上述し
た観点より決定される。記録膜3は、蒸着、スパッタリ
ング等によって形成される。蒸着で行なう場合は各組成
を単独に蒸着可能な4ソ一ス蒸着機を用いるのが、均一
膜を作成できるので望ましい。
FIG. 2 is a schematic cross-sectional view of an original disk constructed using the recording layer of the present invention. In the figure, 1°6 represents the substrate, and the material can be a transparent base material such as polycarbonate, acrylic resin, glass, polyester, etc. 02 and 4 are protective layers, which can be made of various oxides, Sulfides and carbides can be used. This protective layer 2.4 prevents thermal deterioration of the base material due to repeated recording and erasing of the recording film 3, and further protects the recording film 3 from humidity. Therefore, the material and thickness of the protective layer are determined from the above-mentioned viewpoints. The recording film 3 is formed by vapor deposition, sputtering, or the like. In the case of vapor deposition, it is preferable to use a four-source vapor deposition machine capable of individually vapor depositing each composition, since a uniform film can be formed.

本発明の記録膜3の膜厚は、保護層2,4の光学特性と
のマツチング、すなわち、記録部と未記録との反射率の
差が大きくとれる値とする。
The film thickness of the recording film 3 of the present invention is set to a value that matches the optical properties of the protective layers 2 and 4, that is, a value that allows a large difference in reflectance between recorded and unrecorded areas.

以下、具体的な例で1本発明を詳述する。Hereinafter, the present invention will be explained in detail using a specific example.

実施例1 4源蒸着が可能な電子ビーム蒸着機を用いてTe、G6
,8+5.Sb’izそれぞれのソースから基材上に同
時に蒸着した。用いた基材はφ81rmlのガラスで、
蒸着は真空度がlX10  Torr基材の回転速度、
150rpH1で行ない、膜厚は1000人とした。各
ソースからの蒸着速度は記録膜中のTe。
Example 1 Using an electron beam evaporator capable of four-source evaporation, Te, G6
,8+5. Sb'iz was simultaneously deposited onto the substrate from each source. The base material used was glass with a diameter of 81 rml.
For vapor deposition, the degree of vacuum was 1×10 Torr, the rotation speed of the substrate was
It was conducted at 150 rpm and the film thickness was 1000. The deposition rate from each source is the Te in the recording film.

Ge、Se、Sbの原子数の割合を調整するため、変化
させた。第1表の組成の割合は、この蒸着の速度より換
算した値であるが、代表的な組成6X線マイクロアナラ
イザー(XM人)で行なったところ、仕込値とほぼ同様
の定量結果が得られた。したがって、表中の仕込み組成
は、膜中でも同じと思われる。
The ratio of the number of atoms of Ge, Se, and Sb was changed to adjust the ratio. The composition ratios in Table 1 are values converted from the rate of vapor deposition, but when carried out using a typical composition 6 X-ray microanalyzer (XM Jin), quantitative results almost the same as the starting values were obtained. . Therefore, it seems that the feed composition in the table is the same in the film.

上記製法によって作成された試験片の評価方法を以下に
記す。
The evaluation method of the test piece produced by the above manufacturing method is described below.

〔転移温度〕[Transition temperature]

転移温度とは、蒸着直後の非晶質状態の膜が熱によって
結晶状態になる開始温度を意味する。測定は、膜の透過
率の測定が可能な装置を用い、ヒーターにより試験片の
温度を昇温速度1°C/seaで上昇させた場合の透過
率が減少を開始する温度とした。
The term "transition temperature" refers to the starting temperature at which a film in an amorphous state immediately after vapor deposition changes to a crystalline state due to heat. The measurement was carried out using a device capable of measuring the transmittance of the membrane, and the temperature at which the transmittance started to decrease when the temperature of the test piece was raised by a heater at a heating rate of 1° C./sea was set.

転移温度が高いことは、膜が熱的に安定であることを意
味する0 〔黒化、白化特性〕 黒化特性とは、非晶質から結晶質への変態に対しての転
移速度を示したもので、白化特性は結晶質から非晶質の
転移速度を示したものである。
A high transition temperature means that the film is thermally stable. [Blackening, whitening properties] Blackening properties indicate the rate of transformation from amorphous to crystalline. The whitening property indicates the transition speed from crystalline to amorphous.

測定は、φ8ffのガラス片上の記録膜に、レンズを用
いて、レーザth、全集元させ、サンプル片を上下、左
右移動可能とした装置を用いて行なった。
The measurement was carried out using a device that focused a laser th on a recording film on a glass piece of φ8ff using a lens, and was able to move the sample piece vertically and horizontally.

レーザ光のスポットは45X0.4μIII  、ハ/
l/ス巾200n!I  、パワー密度10.8mW/
pd波長は900n11とした。黒化特性は、試験片を
比較的、緩かに移動させた場合の変態(非晶質から結晶
質)の速度を観察し、速度が充分早く、かつ未記録部分
と記録部分のコントラスト比が充分大きいものを◎とし
た。×は緩やかに移動させても、黒化しないもの、ある
いは、コントラスト比が小さいものを示す。○、△は◎
と×の中間に位置する。この定性的な表現において、実
用可能な黒化特性は0以上である。
The laser beam spot is 45X0.4μIII, H/
L/S width 200n! I, power density 10.8mW/
The pd wavelength was 900n11. The blackening characteristics are determined by observing the speed of transformation (from amorphous to crystalline) when the specimen is moved relatively slowly. Those that are sufficiently large are marked as ◎. × indicates that the image does not turn black even when moved slowly, or that the contrast ratio is small. ○、△ is ◎
It is located between and ×. In this qualitative expression, the practical blackening characteristic is 0 or more.

次に白化特性について述べる。白化特性全観る場合は、
まず、一旦、黒化し、その上を試験片を速やかに移動さ
せ、急冷状態を作り、白化(結晶質から非晶質)させる
。白化状態が◎のものは、移動速度が比較的緩やかでも
、白化し、しかも非晶質部分と結晶質部分のコントラス
ト比が太きいものを示し、×は全く白化しないものを示
している。Oと△は、◎と×の中間に位置する。
Next, we will discuss the whitening properties. If you want to see all the whitening characteristics,
First, once it becomes black, the test piece is quickly moved over it to create a quenched state, causing it to turn white (from crystalline to amorphous). A whitening state ◎ indicates that whitening occurs even if the moving speed is relatively slow, and the contrast ratio between the amorphous portion and the crystalline portion is large, and × indicates that there is no whitening at all. O and △ are located between ◎ and ×.

上述した表現によれば、黒化、白化特性とも非常にすぐ
れている場合は、◎、◎となるが、実際問題としては同
じ移動速度で、どちらも◎となることはあり得す、望ま
しい材料としては、◎、○あるいは◎、Δと、多少黒化
特性が優れているものである。
According to the above expression, if both blackening and whitening properties are very good, it will be ◎ or ◎, but in reality, it is possible for both to be ◎ at the same moving speed, so it is a desirable material. The blackening properties are ◎, ◎, ◎, ∆, and the blackening properties are somewhat excellent.

第1表に、本発明の範囲でsb濃度を30at%として
作成した膜の転移温度と、黒化、白イヒ特性の結果を示
す0 (以下余白) 第   1   表 第1表の結果より明らかなように、本発明の範囲にある
Ta−Ga−3s−3b系記録薄膜は、黒化及び白化が
それぞれ可能である。i(]ちこの範囲内にある記録部
材は、加熱条件、例えば照射するレーザー光線の照射強
度、照射時間を適当に選ぶことで非晶質状態と結晶状態
のいずれの状態もとることが可能であり、光学的に慣報
金記録し、かつ消去することが可能である。
Table 1 shows the results of the transition temperature, blackening, and whitening characteristics of a film prepared within the scope of the present invention with an sb concentration of 30 at%. As such, the Ta-Ga-3s-3b recording thin film within the scope of the present invention can be blackened and whitened. A recording member within the range of i() can be in either an amorphous state or a crystalline state by appropriately selecting the heating conditions, such as the irradiation intensity and irradiation time of the laser beam. , it is possible to optically record and erase the amounts.

本実施例においてはsbの濃度を30at%としたが、
上述の黒化白化特性はSbの濃度に強く依存する。一方
、転移温度も又それほど強くはないがSb濃度に依存す
る。
In this example, the concentration of sb was 30 at%,
The above-mentioned blackening and whitening characteristics strongly depend on the concentration of Sb. On the other hand, the transition temperature also depends, although not so strongly, on the Sb concentration.

実施例2 実施例1と同様の作成法、評価法を用い、Te−Ge−
8e系にsbl添加した場合の濃度依存性について調べ
た結果を第2表に示す。−例としてTe 6oGθ20
Sθ2o  組成を選びSb濃度i10〜45&t%の
範囲で変化させる。
Example 2 Te-Ge-
Table 2 shows the results of investigating the concentration dependence when sbl was added to the 8e system. - For example Te 6oGθ20
The Sθ2o composition is selected and the Sb concentration i is varied within the range of 10 to 45&t%.

第2表の結果から明らかなように、 Te6oGe2o
Sθ2゜に、Sb f添加した場合Sb濃度が16〜4
Qat%にある場合、レーザー光線によって、結晶化、
非晶質化のいずれも可能であり、光学記録部材として有
効である。
As is clear from the results in Table 2, Te6oGe2o
When Sb f is added to Sθ2°, the Sb concentration is 16 to 4
Qat%, by laser beam, crystallization,
Any of these can be made amorphous and is effective as an optical recording member.

結晶−非晶質の相変態を記録原理として用いる場合、記
録(非晶質化)速度は、照射部が溶倣するまでの時間、
消去(結晶化)速度は原子配列の秩序が回復する時間に
依存し、一般に前者は後者に比べて充分速い。従って本
発明の組成領域を例えば元ディスクに適用する場合、主
としてその消去速度がデバイスとしてのスペックを決定
する。
When crystal-amorphous phase transformation is used as the recording principle, the recording (amorphization) speed is determined by the time it takes for the irradiated area to melt,
The erasure (crystallization) rate depends on the time it takes for the order of the atomic arrangement to be restored, and the former is generally much faster than the latter. Therefore, when the composition region of the present invention is applied to, for example, an original disk, the erase speed mainly determines the specifications of the device.

即ち、デバイスとしての使用条件、例えば元ディスクの
場合には、その回転速度記録半径(線速度)に応じて組
成を選べば良い。即ち、Sb濃度の低い組成の場合には
記録感度(白化感度)は高いが、消去感度(黒化速度)
が低い、従って、回転速度が比較的遅い場合に有効であ
る。逆にSb濃度の高い組成の場合には消去感度(黒化
速度)は十分であるので高速回転に適用可能である。た
  ゛だし、この場合は、やや大きい記録パワーを必要
とする。
That is, the composition may be selected depending on the conditions of use as a device, for example, in the case of an original disk, its rotational speed recording radius (linear velocity). That is, in the case of a composition with a low Sb concentration, the recording sensitivity (whitening sensitivity) is high, but the erasing sensitivity (blackening speed) is high.
is low, so it is effective when the rotation speed is relatively slow. On the other hand, in the case of a composition with a high Sb concentration, the erasing sensitivity (blacking speed) is sufficient, so that it can be applied to high-speed rotation. However, in this case, a slightly higher recording power is required.

sbの添加効果はGe−Te−3s系の組成比によりや
や異なっている。例えば、比較的Se成分の多い領域(
Se〉25at%)においては比較的Sb濃度の高い領
域(26〜40at%)が良好な特性を示し、比較的S
e成分の少ない領域(Se く1sat%)においては
比較的Sb濃度の低い領域15〜30at%が良好な特
性と示した。同様に、比較的Go酸成分多い領域(Ge
、2252Lt%)においては比較的Sb濃度の低い領
域16〜30at%、 Cte成分の少ない領域(Ga
/1oat%)においては比較的Sb濃度の高い領域2
5〜40at%が良好な特性を示した0 実施例3 基材として光ガイド用のトラックを備えた1、2t×φ
200Hのポリカーボネイト樹脂基材を用δ、記録膜ト
シテ、(Te  GeSe  )  Sb  (7)導
膜を用いて元ディスクを試作シタ。
The effect of adding sb differs slightly depending on the composition ratio of the Ge-Te-3s system. For example, a region with a relatively large amount of Se (
Se〉25 at%), the region with relatively high Sb concentration (26 to 40 at%) shows good characteristics;
In a region with a small e component (Se less than 1 sat%), a region with a relatively low Sb concentration of 15 to 30 at% showed good characteristics. Similarly, a region with a relatively large amount of Go acid components (Ge
, 2252Lt%), the region with relatively low Sb concentration is 16 to 30at%, and the region with low Cte component (Ga
/1oat%), region 2 with relatively high Sb concentration
5 to 40 at% showed good properties.Example 3 1, 2t×φ with a track for light guide as a base material
A prototype original disk was produced using a 200H polycarbonate resin base material, a recording film, and a (Te GeSe ) Sb (7) conductive film.

まず、基材上に耐熱層としてZnSnS薄膜19入0 に蒸着し、更にその上に同じく耐熱層としてZnS薄膜
を1800八蒸着した。
First, a ZnSnS thin film of 19 times the thickness was deposited as a heat-resistant layer on the base material, and a ZnS thin film of 1,800 times the same as the heat-resistant layer was further deposited thereon.

この元ディスクの基板側から、光学系を用いて絞り込ん
だレーザー光線を照射して信号を記録し、直ちに消去を
行なった。記録に先立って、スポット形状が1メ1m×
1oIl!11の長楕円形のレーザー光線i14mWの
強さでトラックにそって照射し、トラック内の記録膜を
結晶化し、次に0.9μmφに絞り込んだレーザー光線
i8mWの強さで照射した。記録周波数は2MH2,デ
ィスクの回転速度はts m / sである。このとき
照射部は非晶質化され、トラックに沿って信号が記録さ
れた。スペクトラムアナライザーで、c/Nw測定した
ところ55dBが得られた0,このトラック上に、前述
の長楕円スポットを照射したところ、信号は完全にご肖
去された。
A laser beam focused using an optical system was irradiated from the substrate side of the original disk to record a signal, and the signal was immediately erased. Prior to recording, the spot shape was 1 meter x 1 meter.
1oIl! The recording film in the track was irradiated along the track with an elongated laser beam i having an intensity of 14 mW, and the recording film in the track was crystallized, and then a laser beam i narrowed to 0.9 μmφ was irradiated with an intensity of 8 mW. The recording frequency was 2MH2, and the rotational speed of the disk was ts m/s. At this time, the irradiated area was made amorphous and a signal was recorded along the track. When c/Nw was measured with a spectrum analyzer, a value of 55 dB was obtained.When the above-mentioned long elliptical spot was irradiated onto this track, the signal disappeared completely.

実施例4 実施例3における元ディスクを用いて、寿命試験を80
°C,60%RHの条件下で行なった。
Example 4 Using the original disk in Example 3, a life test was conducted for 80
The test was carried out under the conditions of °C and 60% RH.

試験方法は、予じめ情報を記録しておき、上記条件で保
持後のC/Nの劣化をみた。1ケ月経過後のC/Hの低
下は−0.5dBと無視できる程度であった。
The test method was to record information in advance and observe the deterioration of C/N after holding under the above conditions. The decrease in C/H after one month was -0.5 dB, which was negligible.

実施例6 実施例3における元ディスクの記録,消去の繰り返し特
性を評価した。
Example 6 The recording and erasing repetition characteristics of the original disk in Example 3 were evaluated.

10万回記録,消去を繰り返した後のc7N−の低下は
、約1 dB程度であった。
After repeating recording and erasing 100,000 times, the decrease in c7N- was about 1 dB.

発明の効果 本発明KjるTa−Go−8s−3b  記録薄膜は、
耐熱性及び耐湿性に極めて優れ、記録,消去を繰り返し
ても膜が破壊されることが無い。即ち、本発明によって
実用上、極めて優れた光学情報記録部材が提供された。
Effects of the Invention The Ta-Go-8s-3b recording thin film of the present invention is as follows:
It has excellent heat resistance and moisture resistance, and the film will not be destroyed even after repeated recording and erasing. That is, the present invention provides an optical information recording member that is excellent in practical terms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光学情報記録部材の組成の範囲を
示す組成図、第2図は本発明の一実施例である。 代理人の氏名 弁理士 中 尾 敏 男 e丘か」名第
1図 Oこ (f00Lt%ジ
FIG. 1 is a composition diagram showing the composition range of an optical information recording member according to the present invention, and FIG. 2 is an example of the present invention. Name of agent: Patent attorney Toshi Nakao

Claims (4)

【特許請求の範囲】[Claims] (1)Te、Ge、Se、Sbを主成分とし、Te、G
e、Sの原子数比が第1図における、A_1(Te_9
_0、Ge_5、Se_5)、B_1(Te_6_0、
Ge_5、Se_3_5)、C_1(Te_4_0、G
e_2_5、Se_3_5)、D_1(Te_4_0、
Ge_4_0、Se_2_0)、E_1(Te_5_5
、Ge_4_0、Se_5)の各点で囲まれる領域内に
有って、Sbの濃度(at%)が全体の組成を(Te_
x、Ge_y、Se_z)_1_0_0_−_mSb_
mと表したとき、15≦m≦40at%である薄膜を備
えた光学情報記録部材。
(1) The main components are Te, Ge, Se, and Sb, and Te, G
The atomic ratio of e and S is A_1(Te_9
_0, Ge_5, Se_5), B_1(Te_6_0,
Ge_5, Se_3_5), C_1(Te_4_0, G
e_2_5, Se_3_5), D_1(Te_4_0,
Ge_4_0, Se_2_0), E_1(Te_5_5
, Ge_4_0, Se_5), the concentration of Sb (at%) changes the overall composition to (Te_
x, Ge_y, Se_z)_1_0_0_-_mSb_
An optical information recording member comprising a thin film in which, when expressed as m, 15≦m≦40 at%.
(2)Te、Ge、Seの原子数比が、第1図における
、A_2(Te_8_3、Ge_7、Se_1_0)、
B_2(Te_6_3、Ge_7、Se_3_0)、C
_2(Te_4_5、Ge_3_0、Se_2_5)、
D_2(Te_4_5、Ge_3_5、Se_2_0)
E_2(Te_5_5、Ge_3_5、Se_1_0)
の各点で囲まれる領域内に有って、Sbの濃度(at%
)が、20≦m≦35at%であることを特徴とする特
許請求の範囲第1項記載の光学情報記録部材。
(2) The atomic ratio of Te, Ge, and Se is A_2 (Te_8_3, Ge_7, Se_1_0),
B_2 (Te_6_3, Ge_7, Se_3_0), C
_2 (Te_4_5, Ge_3_0, Se_2_5),
D_2 (Te_4_5, Ge_3_5, Se_2_0)
E_2 (Te_5_5, Ge_3_5, Se_1_0)
The concentration of Sb (at%
) is 20≦m≦35 at%, the optical information recording member according to claim 1.
(3)Te、Ge、Seの原子数比が、第1図における
、A_3(Te_7_5、Ge_1_0、Se_1_5
)、B_3(Te_6_5、Ge_1_0、Se_2_
5)、C_3(Te_5_0、Ge_2_5、Se_2
_5)、D_5(Te_5_0、Ge_3_0、Se_
2_0)、E_3(Te_5_5、Ge_3_0、Se
_1_5)の各点で囲まれる領域内に有って、Sbの濃
度(at%)が25≦m≦35at%であることを特徴
とする特許請求の範囲第1項記載の光学情報記録部材。
(3) The atomic ratio of Te, Ge, and Se is A_3(Te_7_5, Ge_1_0, Se_1_5 in Fig. 1).
), B_3(Te_6_5, Ge_1_0, Se_2_
5), C_3(Te_5_0, Ge_2_5, Se_2
_5), D_5(Te_5_0, Ge_3_0, Se_
2_0), E_3(Te_5_5, Ge_3_0, Se
_1_5) The optical information recording member according to claim 1, wherein the concentration (at%) of Sb is 25≦m≦35at% in the area surrounded by each point.
(4)組成を(Te_1_0_0_−_p、Ge_p、
Se_2_0)_1_0_0_−_mSb_mと表した
とき、10≦p≦25、25≦m≦35at%であるこ
とを特徴とする特許請求の範囲第1項記載の光学情報記
録部材。
(4) The composition is (Te_1_0_0_-_p, Ge_p,
The optical information recording member according to claim 1, wherein when expressed as Se_2_0)_1_0_0_-_mSb_m, 10≦p≦25 and 25≦m≦35at%.
JP60211470A 1985-09-25 1985-09-25 Optical information recording member Granted JPS6273438A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP60211470A JPS6273438A (en) 1985-09-25 1985-09-25 Optical information recording member
CN86107003A CN1010519B (en) 1985-09-25 1986-09-22 Invertible optical recording information dielectrical
KR1019860007937A KR900009187B1 (en) 1985-09-25 1986-09-23 Optical information recording carrier
DE3689886T DE3689886T2 (en) 1985-09-25 1986-09-25 Reversible optical information recording medium.
EP86113211A EP0217293B1 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical information media
DE3689815T DE3689815T2 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical recording materials.
EP89118260A EP0355865B1 (en) 1985-09-25 1986-09-25 Reversible optical information-recording medium
US08/053,346 US5278011A (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US08/053,343 US6268107B1 (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US09/765,677 US20010019810A1 (en) 1985-09-25 2001-01-22 Reversible optical information-recording medium
US10/389,615 USRE42222E1 (en) 1985-09-25 2003-03-14 Reversible optival information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211470A JPS6273438A (en) 1985-09-25 1985-09-25 Optical information recording member

Publications (2)

Publication Number Publication Date
JPS6273438A true JPS6273438A (en) 1987-04-04
JPH0475835B2 JPH0475835B2 (en) 1992-12-01

Family

ID=16606472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211470A Granted JPS6273438A (en) 1985-09-25 1985-09-25 Optical information recording member

Country Status (1)

Country Link
JP (1) JPS6273438A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
JPS6451989A (en) * 1987-05-27 1989-02-28 Toray Industries Optical information recording medium
JPH01225022A (en) * 1988-03-01 1989-09-07 Fujikura Ltd Membrane switch
US5095479A (en) * 1990-08-13 1992-03-10 Ricoh Company, Ltd. Optical information recording medium
US5418030A (en) * 1992-06-12 1995-05-23 Tdk Corporation Optical recording medium and method for making
EP0717404A1 (en) 1994-12-13 1996-06-19 Ricoh Company, Ltd Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of fabricating the optical recording medium
US6022605A (en) * 1997-02-28 2000-02-08 Kao Corporation Optical recording medium and recording/erasing method therefor
US6388978B1 (en) 1998-04-16 2002-05-14 Ricoh Company, Ltd. Optical recording method for a rewritable phase-change optical recording medium
US7422838B1 (en) 1999-06-01 2008-09-09 Ricoh Company, Ltd. Phase-change optical recording medium
US7507523B2 (en) 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS6034897A (en) * 1983-08-08 1985-02-22 Nippon Telegr & Teleph Corp <Ntt> Rewritable optical recording medium
JPS6048397A (en) * 1983-08-29 1985-03-16 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS6034897A (en) * 1983-08-08 1985-02-22 Nippon Telegr & Teleph Corp <Ntt> Rewritable optical recording medium
JPS6048397A (en) * 1983-08-29 1985-03-16 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium and preparation thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JPS6451989A (en) * 1987-05-27 1989-02-28 Toray Industries Optical information recording medium
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
JPH01225022A (en) * 1988-03-01 1989-09-07 Fujikura Ltd Membrane switch
US5095479A (en) * 1990-08-13 1992-03-10 Ricoh Company, Ltd. Optical information recording medium
US5418030A (en) * 1992-06-12 1995-05-23 Tdk Corporation Optical recording medium and method for making
EP0717404A1 (en) 1994-12-13 1996-06-19 Ricoh Company, Ltd Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of fabricating the optical recording medium
US6022605A (en) * 1997-02-28 2000-02-08 Kao Corporation Optical recording medium and recording/erasing method therefor
US6388978B1 (en) 1998-04-16 2002-05-14 Ricoh Company, Ltd. Optical recording method for a rewritable phase-change optical recording medium
US7422838B1 (en) 1999-06-01 2008-09-09 Ricoh Company, Ltd. Phase-change optical recording medium
US7507523B2 (en) 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information

Also Published As

Publication number Publication date
JPH0475835B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
US5194363A (en) Optical recording medium and production process for the medium
JP2584741B2 (en) Rewritable optical information recording member
US4939013A (en) Optical information storing medium
JPS6273438A (en) Optical information recording member
JPH01116937A (en) Optical recording, reproducing and erasing material of information
JPH08127176A (en) Information recording thin film, manufacture thereof information recording medium and using method therefor
JP2592800B2 (en) Optical information recording member
JPS6358636A (en) Optical information recording medium
JPH0371035B2 (en)
JPH02147289A (en) Optical data recording member
JPH0673991B2 (en) Optical information recording element
JPS62161590A (en) Optical information recording member
JPS62161587A (en) Optical information recording member
JPH0526668B2 (en)
JPS6273439A (en) Optical information recording member
JPS6391837A (en) Optical information recording member
JPS63173241A (en) Optical information recording medium
JPH0714657B2 (en) Optical information recording member
JPS62161589A (en) Optical information recording member
JP2650868B2 (en) Rewritable optical information recording method
JPH02147288A (en) Optical data recording member
JPS62161588A (en) Optical information recording member
JPS62202345A (en) Rewriting type optical recording medium
JP2766276B2 (en) Rewritable phase-change optical memory medium
JPS6391836A (en) Optical information recording member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term