JPH0673991B2 - Optical information recording element - Google Patents

Optical information recording element

Info

Publication number
JPH0673991B2
JPH0673991B2 JP60159663A JP15966385A JPH0673991B2 JP H0673991 B2 JPH0673991 B2 JP H0673991B2 JP 60159663 A JP60159663 A JP 60159663A JP 15966385 A JP15966385 A JP 15966385A JP H0673991 B2 JPH0673991 B2 JP H0673991B2
Authority
JP
Japan
Prior art keywords
thin film
recording
irradiation
ratio
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60159663A
Other languages
Japanese (ja)
Other versions
JPS6219490A (en
Inventor
鋭二 大野
邦夫 木村
進 佐内
昇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60159663A priority Critical patent/JPH0673991B2/en
Publication of JPS6219490A publication Critical patent/JPS6219490A/en
Publication of JPH0673991B2 publication Critical patent/JPH0673991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光線等を用いて情報信号を高密度かつ高
速度で光学的に記録再生し、かつ情報の書き換えが可能
な光学情報記録素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording element capable of optically recording / reproducing an information signal at high density and high speed using a laser beam or the like and rewriting information. Is.

従来の技術 レーザ光線を利用して高密度な情報の記録再生を行なう
技術は既に公知であり、現在、文書フアイルシステム
や、静止画フアイルシステム等への広用がさかんに行な
われている。また書き換え可能なタイプの記録システム
についても研究開発の事例が報告されつつある。これら
は主にTeのアモルフアスと結晶との間の状態変化を利用
しており、例えば、比較的強くて短いパルス光を照射し
て照射部を昇温状態から急冷してアモルフアス状態に
し、その光学定数を減少させ(白化する)、また、比較
的弱くて長いパルス光を照射して結晶状態にし光学定数
を増大させる(黒化する)ことにより記録消去を行なう
ものであり、記録は一般に光学定数を減少させる方向、
消去は増大する方向を利用しようというものである。
2. Description of the Related Art A technique for recording and reproducing high-density information using a laser beam is already known, and at present, it is widely used for a document file system, a still image file system and the like. In addition, cases of research and development are being reported for rewritable type recording systems. These mainly utilize the state change between amorphous and crystalline of Te.For example, by irradiating relatively intense and short pulsed light, the irradiated part is rapidly cooled from the heated state to the amorphous state, and its optical Recording is erased by decreasing the constant (whitening) and by irradiating a relatively weak and long pulsed light into a crystalline state to increase the optical constant (blackening). Direction to decrease,
Erasing is to utilize the increasing direction.

Teは室温では結晶として安定であり、アモルフアス状態
としては存在しない。したがつて室温でアモルフアス状
態で安定に存在させるために様々な添加物が提案されて
おり、代表的な添加物の一つとしてGeが広く知られてい
る。
Te is stable as a crystal at room temperature and does not exist in the amorphous state. Therefore, various additives have been proposed in order to stably exist in an amorphous state at room temperature, and Ge is widely known as one of the typical additives.

GeはTe-Ge薄膜中においてネツトワーク構造を形成する
働きがあり、したがつて室温でもTe-Ge薄膜はアモルフ
アス状態で安定に存在することができる。
Ge has a function of forming a network structure in the Te-Ge thin film, and therefore, the Te-Ge thin film can exist stably in an amorphous state even at room temperature.

しかし、このTe-Ge薄膜も光学記録薄膜の観点から大き
く二つに分類することができる。すなわちTe-Ge薄膜は
蒸着法、スパツタリング法等で形成されたときには、ほ
とんどの組成範囲においてアモルフアスとして安定であ
る。しかしながら一旦結晶化した後は、比較的強くて短
いパルス光を照射して照射部を昇温状態から急冷した場
合、Geの濃度(原子数の百分率、以下同じ)が約40%以
下では再びアモルフアスになるが、約40%以上ではアモ
ルフアスにはもどらず結晶となる。このうち、信号の記
録、消去が可能であるのは結晶化部分がレーザ照射によ
り、再びアモルフアスとなるGe濃度が40%以下のTe-Ge
薄膜であるが、この記録薄膜は、アモルフアスとして非
常に安定であるため、比較的弱くて長いパルス光を照射
して照射部を徐熱・徐冷しても結晶化速度が遅すぎて実
用には向いていない。
However, this Te-Ge thin film can also be roughly classified into two from the viewpoint of an optical recording thin film. That is, when the Te-Ge thin film is formed by the vapor deposition method, the sputtering method or the like, it is stable as amorphous in most composition ranges. However, once crystallized once, when the irradiated part is rapidly cooled by irradiating it with relatively strong and short pulsed light, when the concentration of Ge (percentage of atoms, the same applies below) is about 40% or less, amorphous However, at about 40% or more, it does not return to amorphous and becomes a crystal. Of these, it is possible to record and erase signals because Te-Ge with a Ge concentration of 40% or less, where the crystallized part becomes amorphous again by laser irradiation.
Although it is a thin film, this recording thin film is very stable as amorphous, so even if the irradiation part is irradiated with a relatively weak and long pulse light and the irradiated part is gradually heated / cooled, the crystallization speed is too slow for practical use. Is not suitable.

Te-Geを主成分とした記録薄膜としては例えばGe15 Te81
Sb2 S2等があるが(特公昭47-26897号公報)、これは
消去感度がまだ不十分であり、かつ、書き込みコントラ
スト比が不十分である。
As a recording thin film containing Te-Ge as a main component, for example, Ge 15 Te 81
There are Sb 2 S 2 and the like (Japanese Patent Publication No. 47-26897), but these have insufficient erasing sensitivity and insufficient writing contrast ratio.

一方、TeとTeO2の混合物であるTeOx薄膜にPdを添加する
ことにより、結晶化速度を大巾に改善できるということ
が明らかにされている(特願昭59-192003号)。
On the other hand, it has been clarified that the crystallization rate can be greatly improved by adding Pd to a TeOx thin film which is a mixture of Te and TeO 2 (Japanese Patent Application No. 59-192003).

しかし、このTeOx-Pd記録薄膜においては一度黒化させ
ると再び白化させることは困難であり、したがつて書き
換え可能な記録薄膜としては使用し難い。
However, it is difficult to blacken the TeOx-Pd recording thin film once and then whiten it again, and thus it is difficult to use it as a rewritable recording thin film.

発明が解決しようとする問題点 結局、従来のTe-Geを主成分とする記録薄膜を有する書
き換え可能な光デイスクでは、消去速度が遅くかつ消去
感度が不十分であり、加えて、黒化部と白化部の光学定
数の差が小さいために書き込みコントラスト比が不十分
であるという欠点を有していた。
Problems to be Solved by the Invention After all, in the conventional rewritable optical disk having the recording thin film containing Te-Ge as the main component, the erasing speed is slow and the erasing sensitivity is insufficient. Since the difference in the optical constants of the whitened portion is small, the writing contrast ratio is insufficient.

他方、従来のTeOx-Pd記録薄膜は黒化速度は十分に速い
ものの再び白化することは困難であるため、書き換え可
能な光デイスクとしては使用できなかつた。
On the other hand, the conventional TeOx-Pd recording thin film cannot be used as a rewritable optical disk because the blackening speed is sufficiently high but it is difficult to whiten again.

本発明はかかる点に鑑み、従来のTe-Ge薄膜のアモルフ
アスとして非常に安定であるという特徴と、TeOx-Pd薄
膜に見られるような高速に黒化(結晶化)するという特
徴を同時に有する書き換え可能な光学情報記録部材を提
供しようとするものであり、したがつて、これら2つの
問題点を解明しなければならない。
In view of such a point, the present invention is a rewrite that has a feature that it is very stable as an amorphous of a conventional Te-Ge thin film and a feature that it is blackened (crystallized) at high speed as seen in a TeOx-Pd thin film. It is intended to provide a possible optical information recording member, and therefore these two problems must be clarified.

まず、Te-Ge薄膜に比較的強くて短いパルス光を照射し
て照射部を昇温状態から急冷した場合における、Ge濃度
の違いによる照射部の状態変化の違いは以下のように考
えられる。
First, when the Te-Ge thin film is irradiated with relatively strong and short pulsed light to rapidly cool the irradiated part from a heated state, the difference in the state change of the irradiated part due to the difference in Ge concentration is considered as follows.

つまり、強力短パルスレーザ光の照射後再びアモルフア
スとなるGe濃度が原子数百分率で約40%以下の範囲で
は、レーザ光照射後の冷却時において、Teが六方晶の針
状結晶を形成しようとする中へGeがはいりこんでネツト
ワーク構造を形成するため、Teの結晶成長がさまたげら
れると考えられる。
In other words, if the Ge concentration that becomes amorphous again after irradiation with intense short-pulse laser light is within the range of about 40% in terms of atomic percentage, Te will form hexagonal needle crystals during cooling after laser light irradiation. It is considered that the crystal growth of Te can be hindered because Ge is incorporated into the substrate to form a network structure.

これに反し、レーザ光を照射後アモルフアスにもどらず
結晶となるGe濃度(同上)約40%以上の範囲では、レー
ザ光照射後の冷却時に多大なGeによるTeGeの結晶が折出
し、このTeGeの結晶が立方晶であるため容易に粒成長す
るため、レーザ光照射時程度の冷却速度ではアモルフア
スにはならないで結晶となつてしまうものと考えられ
る。
Contrary to this, in the range of Ge concentration of about 40% or more, which becomes a crystal after returning to laser light after irradiation with laser light (same as above), a large amount of TeGe crystals were broken out by Ge during cooling after laser light irradiation, and this TeGe Since the crystal is a cubic crystal, grain growth easily occurs. Therefore, it is considered that the crystal does not become amorphous at the cooling rate at the time of laser light irradiation but becomes a crystal.

しかしながら、アモルフアス化(情報記録)にとつては
望ましいGe濃度約40%以下のTe-Ge薄膜は、結晶化を目
的として比較的弱くかつ十分に長いパルス光を照射して
照射部を徐熱、徐冷しても、アモルフアスとして非常に
安定であるため結晶化速度が遅く、かつ、結晶成長が不
十分であるためアモルフアス状態と結晶状態間の光学定
数変化が小さくなつて書き込みコントラスト比が不十分
であり、実用には向いていない。
However, for amorphous conversion (information recording), a Te-Ge thin film with a Ge concentration of about 40% or less, which is desirable, is irradiated with a relatively weak and sufficiently long pulse light for crystallization to gradually heat the irradiation portion, Even with slow cooling, the crystallization speed is slow because it is very stable as amorphous, and the optical constant change between amorphous and crystalline states is small due to insufficient crystal growth, and the writing contrast ratio is insufficient. Therefore, it is not suitable for practical use.

また、TeとTeO2の混合物であるTeOx薄膜にPdを添加する
構成は、前述のとおり、黒化、すなわち結晶化の速度が
大巾に改善されることが明らかにされているが、これは
TeOx-Pd薄膜にレーザ光を照射した場合の徐冷却時にPd
がTe-Pd系の何らかの化合物を形成し、この化合物はTe
の結晶化を促進する一種の結晶核のような働きをするも
のと考えられる。しかしながら、このTeOx-Pd記録薄膜
は一度黒化させると再び白化させることは困難であるた
め、書き換え可能な記録薄膜としては使用できない。
In addition, as described above, the structure in which Pd is added to the TeOx thin film, which is a mixture of Te and TeO 2 , has been shown to significantly improve the rate of blackening, that is, crystallization.
When TeOx-Pd thin film is irradiated with laser light
Form some compound of the Te-Pd system, which is Te
It is considered to act like a kind of crystal nucleus that promotes the crystallization of. However, this TeOx-Pd recording thin film cannot be used as a rewritable recording thin film because it is difficult to whiten it once it is blackened.

問題点を解決するための手段 本発明による記録薄膜は上記事実に基づいて構成された
もので、Ge原子濃度が約40%以下のアモルフアスとして
安定なTe-Ge薄膜に、結晶化速度を向上させるためのPd
を添加した記録薄膜であり、かつ各元素の原子数の割合
を制限することによつて、アモルフアスとして非常に安
定でありながら、結晶化時には結晶化速度が十分に大き
い、すなわち、信号の記録、消去がレーザ光により十分
実用可能な光学情報記録薄膜を提供するものである。す
なわち、基板上に形成された薄膜が、必須元素としてT
e、Ge及びPdを含み、各元素Te、Ge及びPdの原子数の割
合(%)をそれぞれx=50〜90、y=5〜25及びz=5
〜30としてx+y+z=100により規制し、 a)Teの割合x=50〜65の範囲では、Geの割合yが凡そ
70−x≦y≦1/3(x+10)の範囲から選択され、 b)Teの割合x=65〜70の範囲では、Geの割合yがy=
5〜25の全範囲から凡そ選択され、 c)Teの割合x=70〜90の範囲では、Geの割合が凡そ5
≦y≦95−xの範囲から選択された ことを特徴とするものである。
Means for Solving the Problems The recording thin film according to the present invention is formed on the basis of the above facts, and improves the crystallization rate to a Te-Ge thin film which is stable as amorphous and has a Ge atom concentration of about 40% or less. For Pd
Is a recording thin film added with, and by limiting the ratio of the number of atoms of each element, while being very stable as amorphous, crystallization rate is sufficiently high during crystallization, that is, signal recording, The purpose of the present invention is to provide an optical information recording thin film which can be erased sufficiently by laser light. That is, the thin film formed on the substrate is
Including e, Ge and Pd, the atomic ratios (%) of the elements Te, Ge and Pd are respectively x = 50 to 90, y = 5 to 25 and z = 5.
To 30 and regulated by x + y + z = 100, a) In the range of Te ratio x = 50 to 65, Ge ratio y is approximately
70−x ≦ y ≦ 1/3 (x + 10), b) Te ratio x = 65 to 70, Ge ratio y = y =
5) to 25), c) Te ratio x = 70 to 90, Ge ratio is about 5
It is characterized in that it is selected from the range of ≤y≤95-x.

作用 上記した本発明の構成は、発明者による種々の実験研究
の成果として得られた発見にもとづくものである。すな
わち発明者らはアモルフアスとして非常に安定なGe原子
の含有量が40%以下(危険率を見込んで25%以下)のTe
-Ge薄膜の特定組成範囲に適量(30%以下)のPdを添加
すると、アモルフアスとして非常に安定でありながら、
かつ、黒化速度・黒化感度とも非常にすぐれた、光学的
に信号の書き換えが可能な記録薄膜となるということを
見い出した。
Action The above-described configuration of the present invention is based on the findings obtained as a result of various experimental studies by the inventor. That is, the inventors of the present invention have a very stable Ge atom content of 40% or less (25% or less in anticipation of a risk factor) as amorphous.
-When an appropriate amount (30% or less) of Pd is added to the specific composition range of the -Ge thin film, while it is very stable as amorphous,
Moreover, they have found that the recording thin film has an extremely high blackening speed and blackening sensitivity and is capable of optically rewriting signals.

このTe-Ge-Pd記録薄膜中におけるGeの働きは、アモルフ
アス状態においてTeあるいはTe-Pd化合物が結晶化しよ
うとする中へはいりこんでネツトワーク構造を形成し、
アモルフアス状態を安定に保つものであると考えられ
る。
The function of Ge in the Te-Ge-Pd recording thin film is that when Te or Te-Pd compound is about to crystallize in the amorphous state, it forms a network structure.
It is considered to keep the amorphous state stable.

またPdの働きは、消去時にTe-PdあるいはGe-Pdというよ
うな何らかの化合物を形成することにより、結晶成長を
促進する結晶核のようなものになると考えられ、したが
つてGeを含む記録薄膜でありながら十分な消去速度、消
去感度が得られる。また、Pdの存在によつて記録薄膜の
透過率が低下し、逆に光の吸収率が上昇して高感度とな
る。
The function of Pd is considered to be like a crystal nucleus that promotes crystal growth by forming a compound such as Te-Pd or Ge-Pd at the time of erasing, and thus a recording thin film containing Ge. However, sufficient erasing speed and erasing sensitivity can be obtained. In addition, the presence of Pd lowers the transmittance of the recording thin film, and conversely increases the light absorptivity, resulting in high sensitivity.

実施例の説明 次に、本発明において記録薄膜中の各元素の原子数の割
合を限定した理由につき、実施例に従つて説明する。
Description of Examples Next, the reason why the ratio of the number of atoms of each element in the recording thin film is limited in the present invention will be described according to Examples.

第1図はTe原子x=50〜65(%)においてGe原子yに
つき、70−x≦y≦1/3(x+10)、同x=65〜70に
おいて同y=5〜25、同x=70〜90において同y=つ
き、5≦y≦95−xの割合を与える三角座標(各頂点を
Te,Ge及びPdのいずれか一つの100%濃度位置とし、対応
する辺を0%としてその間を等間隔目盛としたもの)内
の四辺形ABCDを示すものであり、上記の範囲は下部三
角形部分ECD内に対応し、の範囲は中央の四辺形部分B
EDF内に、そしての範囲は上部三角形部分ABF内に対応
するものである。
Fig. 1 shows that for Te atom x = 50 to 65 (%), for Ge atom y, 70-x ≤ y ≤ 1/3 (x + 10), at x = 65 to 70, y = 5 to 25, and x = In the case of 70 to 90, the same y = is attached, and triangular coordinates giving a ratio of 5 ≦ y ≦ 95−x (each vertex is
It shows a quadrilateral ABCD within 100% concentration position of any one of Te, Ge and Pd, with corresponding side 0% and equally spaced scale between them), and the above range is the lower triangle part. Corresponds to within ECD, the range of is the central quadrilateral part B
Within EDF, and the range of corresponds to within the upper triangular portion ABF.

第1図の直線ABよりPdの少ない領域では、Pdの効果が十
分でない、すなわち結晶化速度があまり改善されない領
域であり、信号の消去速度の大巾な向上は期待できな
い。
In the region where Pd is less than the straight line AB in FIG. 1, the effect of Pd is not sufficient, that is, the crystallization speed is not improved so much, and a significant improvement in the signal erasing speed cannot be expected.

また、直線CDよりPdの多い領域と、直線DAよりGeの少な
い領域は、アモルフアスとして不安定であるか、あるい
はアモルフアスにするために大きなレーザ照射パワーを
必要とする領域である。すなわち、直線CDよりPdの多い
領域ではPdの添加効果が大きすぎるために、また、直線
DAよりGeの少ない領域ではGeの添加効果が小さすぎるた
めに、記録薄膜が室温中で容易に結晶化するか、あるい
は加熱・急冷用レーザ光(白化用レーザ光)を照射して
もアモルフアスとなりにくく結晶化してしまうために、
より大きな急冷条件、したがつてより大きな白化用レー
ザパワーを必要とし、実用的でない領域である。
Further, a region having more Pd than the straight line CD and a region having less Ge than the straight line DA are regions that are unstable as amorphous or require a large laser irradiation power in order to make them amorphous. That is, since the addition effect of Pd is too large in the region where Pd is larger than that of the straight line CD,
In a region with less Ge than DA, the effect of adding Ge is too small, so the recording thin film easily crystallizes at room temperature, or becomes amorphous even when irradiated with heating / quenching laser light (whitening laser light). Because it is difficult to crystallize,
This is a non-practical region, which requires a larger quenching condition and thus a larger whitening laser power.

また、直線BCよりGeの多い領域はいわば、GeTe2に近い
組成にPdを添加した領域であり、この場合GeTe2はアモ
ルフアスとして非常に安定であるためいかなる量のPdを
添加しても結晶化速度の改善度合が小さく実用的でな
い。
Also, rich regions Ge the straight line BC so to speak, an area with the addition of Pd to the composition close to GeTe 2, in this case GeTe 2 Crystallization be added to Pd in any amount for a very stable as Amorufuasu The degree of speed improvement is small and not practical.

以上がTe、Ge、及びPdについてその組成比を第1図の四
辺形A、B、C、Dで囲まれた領域に限定した理由であ
る。この領域にある記録薄膜を有する光デイスクは、実
用上十分な信号の記録、消去感度と高いC/Nを有してい
る。
The above is the reason why the composition ratio of Te, Ge, and Pd is limited to the region surrounded by the quadrangle A, B, C, and D in FIG. The optical disk having the recording thin film in this region has practically sufficient signal recording / erasing sensitivity and high C / N.

念のため、第1図におけるA、B、C、Dの各点の座標
(x、y、z)を示す。
As a precaution, the coordinates (x, y, z) of each point A, B, C, D in FIG. 1 are shown.

次に、好ましい実施例においては、第1図のA、B、
C、Dで囲まれた領域にある記録薄膜に酸素0を添加す
ることによつて、耐湿性が向上することが認められる。
Next, in the preferred embodiment, A, B, and B of FIG.
It is recognized that the moisture resistance is improved by adding oxygen 0 to the recording thin film in the region surrounded by C and D.

すなわち、前記記録薄膜の劣化機構の1つとして、水蒸
気の存在下でTe、Geが酸化されるということがあげられ
るが、OをTeO2として添加することにより、記録薄膜中
のTe、Geの酸化促進を防ぐバリアとしての働きをするも
のと考えられる。この場合、Oの添加効果は少量でも認
められるが、逆に添加しすぎると信号の記録・消去特性
の劣化を起こすため、Oの添加量は30%以下が良い。
That is, one of the deterioration mechanisms of the recording thin film is that Te and Ge are oxidized in the presence of water vapor. However, when O is added as TeO 2 , Te and Ge in the recording thin film are It is considered to act as a barrier to prevent the promotion of oxidation. In this case, the effect of adding O can be recognized even in a small amount, but on the contrary, if added too much, the recording / erasing characteristics of the signal will be deteriorated, so the amount of O added is preferably 30% or less.

次に図面を参照しながら本発明の実施例をさらに詳しく
説明する。
Next, embodiments of the present invention will be described in more detail with reference to the drawings.

第2図は本発明による光学情報記録素子の断面図であ
る。
FIG. 2 is a sectional view of the optical information recording element according to the present invention.

(1)は基板で、PMMA、ポリカーボネート、塩化ビニー
ル、ポリエステル等の透明な樹脂やガラス等を用いるこ
とができる。
(1) is a substrate, and transparent resin such as PMMA, polycarbonate, vinyl chloride, polyester, or glass can be used.

(2)は記録薄膜であり、基板(1)上に蒸着、スパツ
タリング等によつて形成され、膜組成はオージエ電子分
光法、誘導結合高周波プラズマ発光分析法、X線マイク
ロアナリシス法等を用いて決定することができる。
(2) is a recording thin film, which is formed on the substrate (1) by vapor deposition, sputtering, etc., and the film composition is obtained by using Auger electron spectroscopy, inductively coupled high frequency plasma emission spectrometry, X-ray microanalysis, etc. You can decide.

記録薄膜の組成制御を容易かつ精度よく行なうために以
下の実施例1〜4では3源蒸着が可能な電子ビーム蒸着
機を用いて、Te、Ge、Pdをそれぞれのソースから基材
(アクリル樹脂基板10×20×1.2mm)上に蒸着し、試験
片とした。蒸着は真空度1×10-5Torr以下で行ない、薄
膜の厚さは約1200Åとした。各ソースからの蒸着速度は
記録薄膜中のTe、Ge、Pdの原子数の割合を調整するため
にいろいろ変化させた。また薄膜形成は、基材を150rpm
で回転しながら行なつた。
In order to easily and accurately control the composition of the recording thin film, in the following Examples 1 to 4, an electron beam vapor deposition machine capable of three-source vapor deposition was used to add Te, Ge, and Pd from each source to a substrate (acrylic resin). It was vapor-deposited on a substrate 10 × 20 × 1.2 mm) to obtain a test piece. Deposition was performed at a vacuum degree of 1 × 10 -5 Torr or less, and the thickness of the thin film was set to about 1200Å. The deposition rate from each source was changed variously to adjust the ratio of the number of Te, Ge, and Pd atoms in the recording thin film. Also, for thin film formation, the substrate is 150 rpm
I rotated while rotating.

次に上記方法により作成した試験片の黒化特性(消去特
性)、白化特性(記録特性)を評価する方法について第
3図を参照しながら説明する。
Next, a method for evaluating the blackening characteristic (erasing characteristic) and whitening characteristic (recording characteristic) of the test piece prepared by the above method will be described with reference to FIG.

同図において半導体レーザー(3)を出た波長830nmの
光は第1のレンズ(4)によつて疑似平行光(5)とな
り第2のレンズ(6)で丸く整形された後、第3のレン
ズ(7)で再び平行光になり、ハーフミラー(8)を透
過して第4のレンズ(9)で試験片(10)上に波長限界
約0.8μmの大きさのスポツト(11)となるように集光
され記録が行なわれる。
In the figure, the light having a wavelength of 830 nm emitted from the semiconductor laser (3) becomes pseudo parallel light (5) by the first lens (4), is rounded by the second lens (6), and then is converted into the third light. It becomes parallel light again by the lens (7), passes through the half mirror (8), and becomes a spot (11) with a wavelength limit of about 0.8 μm on the test piece (10) by the fourth lens (9). Thus, the light is collected and recording is performed.

信号の検出は、試験片(10)からの反射光をハーフミラ
ー(8)を介して受け、レンズ(12)を通して光感応ダ
イオード(13)に入射させて行なつた。
The signal was detected by receiving the reflected light from the test piece (10) through the half mirror (8) and making it enter the photosensitive diode (13) through the lens (12).

このようにして半導体レーザーを変調して、試験片上に
照射パワーと照射時間のちがう種々のパルスレーザー光
を照射することにより黒化特性、色化特性を知ることが
できる。
By thus modulating the semiconductor laser and irradiating the test piece with various pulsed laser beams having different irradiation power and irradiation time, it is possible to know the blackening characteristic and the coloring characteristic.

黒化特性の評価には、照射パワーを比較的小さく例えば
1mw/μm2程度のパワー密度に固定し、その照射時間を変
えて黒化開始の照射時間を測定する方法を適用し、白化
特性の評価には、記録部材をあらかじめ黒化しておき、
照射時間を例えば50n秒程度に固定し白化に必要な照射
光パワーを測定する方法を適用した。
To evaluate the blackening characteristics, the irradiation power is relatively small, for example
Applying a method of fixing the power density to about 1 mw / μm 2 and measuring the irradiation time of the blackening start by changing the irradiation time, blackening the recording member in advance to evaluate the whitening characteristics,
A method of fixing the irradiation time to, for example, about 50 nsec and measuring the irradiation light power required for whitening was applied.

作成した試験片を上記評価方法を用いて評価した結果を
以下に示す。
The results of evaluating the prepared test pieces using the above evaluation method are shown below.

実施例1 評価材料組成としてTeとGeの原子数比が85:15となるよ
うに組成制御を行ない、同時にこのTe85Ge15とPdの比を
様々に変化させて複数の試験用記録部材を作成した。
Example 1 As an evaluation material composition, composition control was performed so that the atomic ratio of Te and Ge was 85:15, and at the same time, the ratio of Te 85 Ge 15 and Pd was variously changed to obtain a plurality of test recording members. Created.

第4図(a)はTe85Ge15の組成を保ちながらPdの添加量
をパラメータとして増加させてゆき、1mw/μm2のパワー
で照射したときの黒化開始に要する照射時間の変化を示
したものである。この図よりPdを添加することによつて
黒化開始の照射時間は大巾に短縮され、かつ反射率変化
R/Roも大きくなることがわかる。Pdを添加しない場合、
Te85Ge15は1mw/μm2、10μ秒の照射では全く黒化しなか
つたが、Pdの添加量(原子百分率)が5%程度で既に十
分な効果が得られた。
Fig. 4 (a) shows the change in irradiation time required to start blackening when the amount of Pd added was increased as a parameter while maintaining the composition of Te 85 Ge 15 and irradiation was performed with a power of 1 mw / μm 2. It is a thing. From this figure, by adding Pd, the irradiation time at the start of blackening was greatly shortened and the reflectance change
It can be seen that R / Ro also increases. If Pd is not added,
Te 85 Ge 15 was not blackened at all when irradiated with 1 mw / μm 2 for 10 μsec, but a sufficient effect was already obtained when the amount of Pd added (atomic percentage) was about 5%.

第4図(b)は、例えば1mw/μm2のパワーで15μ秒照射
して十分に黒化した部分に、一定の照射時間50μ秒にお
いて照射パワーを種々に変化して照射したときの白化開
始に要する照射パワーの違いを示している。これから、
Te85Ge15にPdを添加することで白化開始に要する照射パ
ワーは増大するものの、Pdの添加量が30%以下であれば
白化に必要な照射パワーは実用上問題にならないことが
わかる。
Fig. 4 (b) shows the start of whitening when, for example, irradiation is performed with a power of 1 mw / μm 2 for 15 μs and the surface is sufficiently blackened, and the irradiation power is variously changed for a fixed irradiation time of 50 μs. Shows the difference in irradiation power required for. from now on,
Although the irradiation power required for the start of whitening is increased by adding Pd to Te 85 Ge 15 , it is clear that the irradiation power required for whitening does not pose a practical problem if the amount of Pd added is 30% or less.

この2つの図からTe85Ge15にPdを5〜30%添加すること
によつて記録特性をそこなうことなく、消去速度を大巾
に改善できることがわかる。
From these two figures, it is understood that the addition of 5% to 30% of Pd to Te 85 Ge 15 can significantly improve the erasing speed without impairing the recording characteristics.

実施例2 評価材料組成としてTeとGeの原子数比が67:33となるよ
うに組成制御を行ない、同時にこのTe67Ge33とPdの比を
様々に変化させて複数の試験用記録部材を作成した。第
5図はTe67Ge33に保ちながらPdの添加物を増加させてゆ
き、1mw/μm2のパワーで照射したときの黒化開始に要す
る照射時間の変化を示したものである。この図よりPdを
添加することによつて10μ秒の照射では全く黒化しない
Te67Ge33が黒化するようになるのが認められ黒化開始に
要する照射時間は短縮されるのがわかるが、その程度は
小さく実用的でない。
Example 2 As an evaluation material composition, composition control was performed so that the atomic ratio of Te and Ge was 67:33, and at the same time, the ratio of Te 67 Ge 33 and Pd was variously changed to obtain a plurality of test recording members. Created. FIG. 5 shows the change in irradiation time required to start blackening when the Pd additive was increased while maintaining Te 67 Ge 33 and irradiation was performed with a power of 1 mw / μm 2 . From this figure, by adding Pd, no blackening occurs at 10 μs irradiation.
It can be seen that Te 67 Ge 33 becomes blackened and that the irradiation time required to start blackening is shortened, but the extent is small and not practical.

これはTe67Ge33はアモルフアスとして非常に安定なTe2G
eとなる組成であり、アモルフアスとして安定でありす
ぎるためPdを添加してもその添加効果が十分に得られな
いためと考えられる。
This means Te 67 Ge 33 is very stable Te 2 G as amorphous
It is considered that the composition is e, and since it is too stable as amorphous, the addition effect of Pd cannot be sufficiently obtained even if Pd is added.

実施例3 評価材料組成としてTeとPdの原子数比が90:10となるよ
うに組成制御を行ない、同時にこのTe10Pd10とGeの比を
様々に変化させて複数の試験用記録部材を作成した。Te
90Ge10は作成時には室温では結晶であるのに対し、Geを
3%添加すると、室温で安定なアモルフアスとなつた。
Example 3 As a material composition to be evaluated, composition control was performed so that the atomic ratio of Te and Pd was 90:10, and at the same time, the ratio of Te 10 Pd 10 and Ge was variously changed to obtain a plurality of test recording members. Created. Te
90 Ge 10 was crystalline at room temperature at the time of preparation, but when Ge was added at 3%, it became stable amorphous at room temperature.

第6図(a)はTe90Pd10に保ちながらGeの添加量を増加
させてゆき、1mw/μm2のパワーで照射したときの黒化開
始に要する照射時間の変化を示したものである。この図
よりTe90Pd10へのGeの添加量を増加していくことによつ
て黒化開始の照射時間は徐々に長くなり、Geの原子の添
加量が23%をこえるあたりから急激に黒化速度が遅くな
る、すなわち消去速度が実用的でなくなる。
Figure 6 (a) shows the change in irradiation time required to start blackening when the amount of Ge added was increased while maintaining Te 90 Pd 10 and irradiation was performed with a power of 1 mw / μm 2. . From this figure, the irradiation time at the start of blackening gradually increased as the amount of Ge added to Te 90 Pd 10 was increased, and the amount of Ge atoms added exceeded 23%. The erasing speed becomes slow, that is, the erasing speed becomes impractical.

第6図(b)は、例えば1mw/μm2のパワーで15n秒照射
して十分に黒化した部分に、一定の照射時間を50n秒に
おいてて照射パワーを変化することにより照射したとき
の白化開始に要するパワーの変化を示している。これか
ら、Te90Pd10にGeを添加することで白化開始に要する照
射パワーは減少することがわかり、Geの添加量が5%以
上であれば十分な記録感度が得られることがわかる。結
局、これら2つの図からTe90Pd10に対してはGe原子を5
〜23%添加することによつて記録特性、消去特性ともに
良好な記録薄膜を得ることができることがわかる。
FIG. 6 (b) shows, for example, whitening when a portion that has been sufficiently blackened by irradiating with a power of 1 mw / μm 2 for 15 ns is irradiated by changing the irradiating power for a fixed irradiation time of 50 ns. It shows the change in power required to start. From this, it is found that the irradiation power required for the initiation of whitening is reduced by adding Ge to Te 90 Pd 10 , and it is understood that sufficient recording sensitivity can be obtained if the addition amount of Ge is 5% or more. After all, from these two figures, for Te 90 Pd 10, there are 5 Ge atoms.
It is understood that by adding up to 23%, a recording thin film having good recording characteristics and erasing characteristics can be obtained.

実施例4 評価材料組成としてTeとPdの原子数比が70:30となるよ
うに組成制御を行ない、同時にこのTe70Pd30とGeの比を
様々に変化させて複数の試験用記録部材を作成した。
Example 4 As an evaluation material composition, composition control was performed so that the atomic ratio of Te and Pd was 70:30, and at the same time, the ratio of Te 70 Pd 30 and Ge was variously changed to obtain a plurality of test recording members. Created.

Te70Pd30は作成時には室温では結晶であるのに対し、Ge
原子を3%添加するだけで室温においても安定なモルフ
アスとなつた。
Te 70 Pd 30 is crystalline at room temperature at the time of preparation, while Ge 70
Only by adding 3% of atoms, a stable morphus was obtained even at room temperature.

第7図(a)はTe70Pd30に保ちながらGeの添加量を増加
させてゆき、1mw/μm2のパワーで照射したときの黒化開
始に要する照射時間の変化を示したものである。
FIG. 7 (a) shows the change in irradiation time required to start blackening when the amount of Ge added was increased while maintaining Te 70 Pd 30 and irradiation was performed with a power of 1 mw / μm 2. .

この図よりTe70Pd30へのGeの添加量を増加していくこと
によつて黒化開始の照射時間は徐々に長くなり、Ge原子
の添加量が20%をこえるあたりから急激に黒化速度が遅
くなる、すなわち消去速度が実用的でなくなる。
From this figure, by increasing the Ge addition amount to Te 70 Pd 30 , the irradiation time at the start of blackening gradually becomes longer, and when the addition amount of Ge atoms exceeds 20%, the blackening rapidly occurs. The speed becomes slow, that is, the erase speed becomes impractical.

第7図(b)は、例えば1mw/μm2のパワーで15μ秒照射
して十分に黒化した部分に、一定の照射時間50n秒にお
いて照射パワーを変化して照射したときの白化開始に要
する照射パワーの変化を示している。これからTe70Pd30
にGeを添加することで白化開始に要する照射パワーは減
少するのがわかり、Ge原子の添加量が5%以上であれば
十分な記録感度が得られることがわかる。
FIG. 7 (b) shows that it is necessary to start whitening when irradiation is performed for 15 μsec with a power of 1 mw / μm 2 for a sufficient blackening, and the irradiation power is changed for a constant irradiation time of 50 nsec. The change in irradiation power is shown. From now on Te 70 Pd 30
It can be seen that the irradiation power required for the initiation of whitening is reduced by adding Ge to the alloy, and sufficient recording sensitivity can be obtained if the amount of Ge atoms added is 5% or more.

この2つの図からTe70Pd30にGe原子を5〜20%添加する
ことによつて記録特性、消去特性ともに良好な記録薄膜
を得られることがわかる。
From these two figures, it is understood that by adding 5 to 20% of Ge atoms to Te 70 Pd 30 , a recording thin film having good recording characteristics and erasing characteristics can be obtained.

以上の実施例1〜4によつて、Te、Ge、Pdを必須元素と
し、かつ各元素の原子数の割合が第1図のA、B、C、
Dで囲まれた範囲内を満たす記録薄膜は、記録特性、消
去特性ともに良好な光学情報記録部材を提供することが
できることがわかる。
According to the above Examples 1 to 4, Te, Ge, and Pd are essential elements, and the ratio of the number of atoms of each element is A, B, C in FIG.
It can be seen that the recording thin film satisfying the range surrounded by D can provide an optical information recording member having excellent recording characteristics and erasing characteristics.

実施例5 評価材料組成としてTeとGeとPdの原子数比が75:15:10と
なるように組成制御を行ない、同時にこのTe75Ge15Pd10
とOの比を様々に変化させて複数個の試験用記録部材を
作成した。この場合の記録薄膜の作成方法は4源蒸着が
可能な電子ビーム蒸着機を使用し、それぞれのソースか
らTe、TeO2、Ge、Pdを蒸着するものであり、OはTeO2
して薄膜中に添加した。他の蒸着条件は実施例1と同様
である。
Example 5 As an evaluation material composition, composition control was performed so that the atomic ratio of Te, Ge, and Pd was 75:15:10, and at the same time, Te 75 Ge 15 Pd 10
A plurality of test recording members were prepared by variously changing the ratio of O and O. In this case, the method of forming the recording thin film is to use an electron beam evaporation machine capable of four-source evaporation and evaporate Te, TeO 2 , Ge, and Pd from each source, and O is TeO 2 in the thin film. Was added. Other vapor deposition conditions are the same as in Example 1.

このようにして得られた記録部材を50℃、90%RHの恆温
恆湿槽内に放置し、830nmの光での透過率変化により耐
湿特性を求めた。その結果を第8図(a)に示す。この
図より、Te75Ge15Pd10中へOを添加することにより透過
率の変化量が小さくなり、耐湿性が向上することがわか
る。これはTeO2が水蒸気の存在下でTeやGeが酸化される
のを防ぐ、いわばバリアの働きをしていると考えられる
からである。この効果はO原子の添加量が3%足らずで
も観察され、添加量が多ければ多いほど耐湿性が向上す
るのがわかる。
The recording member thus obtained was allowed to stand in a warm and humid bath at 50 ° C. and 90% RH, and the humidity resistance was determined by the change in transmittance with 830 nm light. The results are shown in Fig. 8 (a). From this figure, it can be seen that the addition of O into Te 75 Ge 15 Pd 10 reduces the amount of change in transmittance and improves the moisture resistance. This is because TeO 2 is considered to act as a barrier that prevents Te and Ge from being oxidized in the presence of water vapor. This effect is observed even if the amount of O atom added is less than 3%, and it can be seen that the greater the amount added, the more the moisture resistance improves.

次に上記記録部材における黒化特性および白化特性をそ
れぞれ第8図(b)および第8図(c)に示す。
Next, the blackening characteristics and the whitening characteristics of the recording member are shown in FIGS. 8 (b) and 8 (c), respectively.

第8図(b)はTe75Ge15Pd10に保ちながらOの添加量を
増化させてゆき、1mw/μm2で照射したときの黒化開始に
要する時間の変化を示したものである。この図よりOの
添加量を増大していくことにより黒化開始の照射時間は
徐々に長くなり、かつ、反射率変化R/Roも若干減少する
ことがわかる。これはTeO2のバリアによつてTeが結晶化
しにくくなるとともに、TeO2の増加によつてTeの相対量
が減少していることに起因するものと考えられる。しか
し、O原子の添加量が30%以下ならば十分な黒化速度が
得られ実用上問題とならないと考えられる。
FIG. 8 (b) shows the change in the time required to start blackening when the amount of O added was increased while maintaining Te 75 Ge 15 Pd 10 and irradiation was performed at 1 mw / μm 2. . From this figure, it can be seen that by increasing the amount of O added, the irradiation time at the start of blackening is gradually lengthened and the reflectance change R / Ro is also slightly reduced. It is considered that this is because the TeO 2 barrier makes it difficult to crystallize Te, and the increase in TeO 2 reduces the relative amount of Te. However, if the amount of addition of O atoms is 30% or less, it is considered that a sufficient blackening rate can be obtained, which is not a practical problem.

第8図(c)は、例えば1mw/μm2のパワーで15μ秒照射
することにより十分に黒化した部分に一定の照射時間50
n秒において照射パワーを変化して照射したときの、白
化開始に要する照射パワーの変化を示している。これか
らTe75Ge15Pd10にOを添加しても、白化開始に要する照
射パワーはほとんど変化せず、白化特性にはほとんど影
響しないことがわかる。
FIG. 8 (c) shows a constant irradiation time of 50 for a sufficiently blackened portion by irradiation with a power of 1 mw / μm 2 for 15 μsec.
It shows the change in the irradiation power required for the start of whitening when the irradiation power is changed in n seconds for irradiation. From this, it is understood that even if O is added to Te 75 Ge 15 Pd 10 , the irradiation power required for the initiation of whitening hardly changes and the whitening characteristics are hardly affected.

以上より、Te-Ge-Pd記録薄膜の耐湿性向上にはOの添加
が有効であり、特にOの添加量が30%以下であれば、黒
化特性、白化特性ともに良好に保ちながら耐湿性を向上
させうることがわかる。
From the above, the addition of O is effective for improving the moisture resistance of the Te-Ge-Pd recording thin film, and particularly when the amount of O added is 30% or less, the moisture resistance is improved while maintaining good blackening characteristics and whitening characteristics. It can be seen that

実施例6 基材として1.2t×200φのアクリル樹脂基材を用い、記
録薄膜としてTe80Ge20薄膜およびTe80Ge20にPdを10%添
加した薄膜すなわちTe72Ge18Pd10薄膜を形成して2種類
の光デイスクを試作し、特願昭58-58158号記載の方法に
より信号の記録、消去を行なつた。
Example 6 A 1.2 t × 200 φ acrylic resin base material was used as a base material, and a Te 80 Ge 20 thin film and a Te 80 Ge 20 thin film, ie, a Te 72 Ge 18 Pd 10 thin film, were formed as a recording thin film and 10% Pd. Two types of optical disks were prototyped, and signals were recorded and erased by the method described in Japanese Patent Application No. 58-58158.

各記録薄膜の形成方法は実施例1と同様である。The method of forming each recording thin film is the same as in the first embodiment.

これら2種類の光デイスクを用いて、記録パワー、消去
パワーをそれぞれ8mw、15mwとし、消去レーザビーム長
は半値巾で約1×15μmとして白化記録、黒化消去を行
なつたところ、Te72Ge18Pd10薄膜を有するデイスクでは
単一周波数2MHz、デイスクの周速7m/sでC/N55dBを得、
しかも10万回記録、消去を繰り返した後にもC/Nの劣化
はほとんどみられなかつた。
Using these two types of optical disc, 8 mW recording power, the erasing power, respectively, and 15 mw, where erasing laser beam length whitening recorded as approximately 1 × 15 [mu] m in the half width was rows summer blackening erase, Te 72 Ge With a disk with 18 Pd 10 thin film, C / N 55 dB was obtained at a single frequency of 2 MHz and disk peripheral speed of 7 m / s.
Moreover, even after recording and erasing 100,000 times, almost no deterioration of C / N was observed.

一方、Te80Ge20薄膜を有するデイスクでは、消去ビーム
を照射しても全く黒化せず、したがつて信号の記録は全
く不可能であつた。
On the other hand, in the disk having the Te 80 Ge 20 thin film, even when the erase beam was irradiated, it was not blackened at all, and it was impossible to record the signal at all.

発明の効果 以上述べてきたように、本発明によるTe-Ge-Pd記録薄膜
を有する光学情報記録部材は、信号の記録部分はアモル
フアスとして非常に安定でありながら、消去時には高速
に結晶化するために消去感度が非常に良好であるため
に、きわめて実用的な、信号の記録・消去が可能な光デ
イスクを提供することができるものである。
EFFECTS OF THE INVENTION As described above, the optical information recording member having the Te-Ge-Pd recording thin film according to the present invention has a signal recording portion which is very stable as amorphous, but is crystallized at high speed during erasing. Moreover, since the erasing sensitivity is very good, it is possible to provide an extremely practical optical disk capable of recording and erasing signals.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による光学情報記録部材が有する記録薄
膜の組成を限定した組成図、第2図は本発明による光学
情報記録部材の一実施例の断面図、第3図は本発明によ
る光学情報記録部材の評価装置の光学系の概略図、第4
図(a)、(b)、第5図、第6図(a)、(b)、第
7図(a)、(b)、第8図(b)、(c)は光学情報
記録部材の黒化特性もしくは白化特性の評価結果を示す
グラフ、第8図(a)は光学情報記録部材の透過率の経
時変化を示すグラフである。 (1)……基板 (2)……記録薄膜
FIG. 1 is a composition diagram in which the composition of a recording thin film included in the optical information recording member according to the present invention is limited, FIG. 2 is a sectional view of an embodiment of the optical information recording member according to the present invention, and FIG. Schematic diagram of the optical system of the information recording member evaluation device,
Figures (a), (b), Figure 5, Figure 6 (a), (b), Figure 7 (a), (b), Figure 8 (b) and (c) are optical information recording members. 8 is a graph showing the evaluation result of the blackening characteristic or whitening characteristic, and FIG. 8 (a) is a graph showing the change with time of the transmittance of the optical information recording member. (1) …… Substrate (2) …… Recording thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された薄膜が、必須元素とし
てTe、Ge及びPdを含み、各元素Te、Ge及びPdの原子数の
割合(%)をそれぞれx=50〜90、y=5〜25及びz=
5〜30としてx+y+z=100により規制し、 a)Teの割合x=50〜65の範囲では、Geの割合yが凡そ
70−x≦y≦1/3(x+10)の範囲から選択され、 b)Teの割合x=65〜70の範囲では、Geの割合yがy=
5〜25の全範囲から凡そ選択され、 c)Teの割合x=70〜90の範囲では、Geの割合が凡そ5
≦y≦95−xの範囲から選択された ことを特徴とするアモルフアス化及び結晶化可能な薄膜
を含む光学情報記録素子。
1. A thin film formed on a substrate contains Te, Ge and Pd as essential elements, and the atomic ratios (%) of the elements Te, Ge and Pd are x = 50 to 90 and y =, respectively. 5-25 and z =
5 to 30 is regulated by x + y + z = 100, and a) In the range of Te ratio x = 50 to 65, the Ge ratio y is approximately
70−x ≦ y ≦ 1/3 (x + 10), b) Te ratio x = 65 to 70, Ge ratio y = y =
5) to 25), c) Te ratio x = 70 to 90, Ge ratio is about 5
An optical information recording element comprising an amorphous and crystallizable thin film selected from the range of ≤y≤95-x.
【請求項2】添加物質として酸素Oを含むことを特徴と
する特許請求の範囲第(1)項記載の光学情報記録素
子。
2. The optical information recording element according to claim 1, further comprising oxygen O as an additive substance.
【請求項3】酸素の添加量(原子数百分率)が30%以下
であることを特徴とする特許請求の範囲第(2)項記載
の光学情報記録素子。
3. The optical information recording element according to claim 2, wherein the amount of added oxygen (percentage of atoms) is 30% or less.
JP60159663A 1985-07-18 1985-07-18 Optical information recording element Expired - Lifetime JPH0673991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159663A JPH0673991B2 (en) 1985-07-18 1985-07-18 Optical information recording element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159663A JPH0673991B2 (en) 1985-07-18 1985-07-18 Optical information recording element

Publications (2)

Publication Number Publication Date
JPS6219490A JPS6219490A (en) 1987-01-28
JPH0673991B2 true JPH0673991B2 (en) 1994-09-21

Family

ID=15698619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159663A Expired - Lifetime JPH0673991B2 (en) 1985-07-18 1985-07-18 Optical information recording element

Country Status (1)

Country Link
JP (1) JPH0673991B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583221B2 (en) * 1986-12-19 1997-02-19 三菱化学株式会社 Optical recording medium
JPH0494965A (en) * 1990-08-13 1992-03-27 Ricoh Co Ltd Optical information recording medium
JP2709887B2 (en) * 1992-06-12 1998-02-04 ティーディーケイ株式会社 Optical recording medium and manufacturing method thereof
US6022605A (en) * 1997-02-28 2000-02-08 Kao Corporation Optical recording medium and recording/erasing method therefor
GB2336463B (en) 1998-04-16 2000-07-05 Ricoh Kk Optical recording method for a rewritable phase-change optical recording medium
JP2000339751A (en) 1999-06-01 2000-12-08 Ricoh Co Ltd Phase-change type optical recording medium
EP1467352B1 (en) 2000-09-28 2008-01-09 Ricoh Company, Ltd. Phase change optical information recording medium and method for manufacturing same

Also Published As

Publication number Publication date
JPS6219490A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
JP3566743B2 (en) Optical recording medium
EP0574025A2 (en) Optical recording medium and method for making same
US5523140A (en) Optical recording method and medium
JPH08224961A (en) Optical recording medium and method for measuring activating energy
US4939013A (en) Optical information storing medium
JPS62209742A (en) Optical information recording member
JPH01116937A (en) Optical recording, reproducing and erasing material of information
JPH0673991B2 (en) Optical information recording element
JPH0475835B2 (en)
JPH0371035B2 (en)
JP3819193B2 (en) Optical recording method
JPH0526668B2 (en)
JPH0675995B2 (en) Optical information recording member
JPH0675994B2 (en) Optical information recording member
JPH0530193B2 (en)
JPS62202345A (en) Rewriting type optical recording medium
JP2615627B2 (en) Optical information recording medium
JP2637982B2 (en) Optical information recording medium
JP2538915B2 (en) How to record and erase information
JPH0530192B2 (en)
JP2537875B2 (en) Information recording method
JPH041933B2 (en)
JPS62161590A (en) Optical information recording member
JP2687358B2 (en) Optical information recording medium
JPS62161587A (en) Optical information recording member