JPS62209742A - Optical information recording member - Google Patents

Optical information recording member

Info

Publication number
JPS62209742A
JPS62209742A JP61053034A JP5303486A JPS62209742A JP S62209742 A JPS62209742 A JP S62209742A JP 61053034 A JP61053034 A JP 61053034A JP 5303486 A JP5303486 A JP 5303486A JP S62209742 A JPS62209742 A JP S62209742A
Authority
JP
Japan
Prior art keywords
recording
point
composition
film
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61053034A
Other languages
Japanese (ja)
Other versions
JP2584741B2 (en
Inventor
Noboru Yamada
昇 山田
Kunio Kimura
邦夫 木村
Masatoshi Takao
高尾 正敏
Susumu Sanai
佐内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61053034A priority Critical patent/JP2584741B2/en
Priority to CN86107003A priority patent/CN1010519B/en
Priority to KR1019860007937A priority patent/KR900009187B1/en
Priority to DE3689886T priority patent/DE3689886T2/en
Priority to DE3689815T priority patent/DE3689815T2/en
Priority to EP86113211A priority patent/EP0217293B1/en
Priority to EP89118260A priority patent/EP0355865B1/en
Publication of JPS62209742A publication Critical patent/JPS62209742A/en
Priority to US08/053,346 priority patent/US5278011A/en
Priority to US08/053,343 priority patent/US6268107B1/en
Application granted granted Critical
Publication of JP2584741B2 publication Critical patent/JP2584741B2/en
Priority to US09/765,677 priority patent/US20010019810A1/en
Priority to US10/389,615 priority patent/USRE42222E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a recording member having excellent heat resistance and moisture resistance by providing a thin film consisting of at least Te, Ge and Sb. CONSTITUTION:The recording layer is constituted of the thin film consisting of the Te-Ge-Sb compsn. Since the bond of Te-Sb is immediately formed at the time of solidifying from the melt by addition of the Sb, the rate of crystallization is increased and a practicable rewriting type memory medium is realized. The amt. of the Sb to be added fixes the remaining excess Te bound with the Ge and therefore, the necessary concn. of the Sb is governed by the ratio of the Te/Ge and the adequate rate thereof is within the region enclosed by the points: point A1: (Te80Ge5Sb15), point B1: (Te55Ge5Sb40), point C1: (Te45Ge15 Sb40), point D1: (Te4Ge40Sb15), and point E1: (Te57Ge40Sb3). The medium having the excellent thermal stability of a recording signal is thus obtd. without considerably deteriorating the recording sensitively by laser light, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光、熱などを用いて高速かつ高密度に情報を
記録、消去、再生可能な光学情報記録部材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member capable of recording, erasing, and reproducing information at high speed and high density using light, heat, or the like.

従来の技術 近年、情報量の増大化、記録、再生の高速化、高密度化
に伴ない、レーザ光線を利用した光ディスクが注目され
ている。光ディスクには、一度のみ記録可能な追記型と
、記録した信号を消去し何度も使用可能な書き換え可能
なものがある。追記型光ディスクには、記録信号を穴あ
き状態として、再生するものや、凹凸を生成させて再生
するものがある。書き換え可能なものとして、アモルフ
ァスと結晶間の可逆的相変化を利用したT e −G 
e系カルコゲナイドガラス薄膜などがよく知られている
BACKGROUND OF THE INVENTION In recent years, optical discs using laser beams have been attracting attention as the amount of information increases, recording and reproducing speeds increase, and densities increase. Optical discs include write-once types that can be recorded only once, and rewritable types that can be used many times by erasing recorded signals. Some write-once optical discs reproduce recorded signals in a perforated state, and others reproduce them by generating unevenness. T e -G, which utilizes reversible phase change between amorphous and crystal, is rewritable.
E-based chalcogenide glass thin films are well known.

本発明者らは、先にT e −T e O2のような酸
化物を含んだ系の相転移による反射率変化を信号とする
方式を提案した。さらに、相転移を利用した書き換え可
能な光ディスクとして、Te−TaO2に対し各種添加
物を添加(Sn、 Ge、 Bi、 In。
The present inventors previously proposed a method in which a change in reflectance due to phase transition of a system containing an oxide such as T e -T e O2 is used as a signal. Furthermore, various additives (Sn, Ge, Bi, In, etc.) are added to Te-TaO2 to create a rewritable optical disk that utilizes phase transition.

Pb、 ’Ill、 Seなど)した例がある。これら
の記録部材の特徴は、C/Nが高く、耐湿性に対しても
優れるという特徴を有している。
Examples include Pb, 'Ill, Se, etc.). These recording members are characterized by a high C/N ratio and excellent moisture resistance.

発明が解決しようとする問題点 従来のカルコゲン化物よりなる書き換え可能な情報記録
部材は、一般的に、記録、消去の繰り返しに対する安定
性が悪いといった欠点を有する。
Problems to be Solved by the Invention Conventional rewritable information recording members made of chalcogenides generally have the drawback of poor stability against repeated recording and erasing.

この理由は、Te、Geとその他の添加成分が、数度の
くり返しによって、膜が相分離を生じてしまい、初期と
くり返し後では膜の構成成分が異なることに帰因すると
思われる。消去可能な光ディスクで相転移を利用する場
合、通常は、未記録、消去状態を結晶質とし、記録状態
を非晶質とする方法がとられる。この場合、記録はレー
ザ光で、一旦、膜を溶融させ急冷によって非晶質にする
訳であるが、現在の半導体レーザにはパワーの限界があ
り、できるだけ融点の低い膜が記録感度が高いことにな
る。このために、」二連したカルコゲン化物よりなる膜
は、記録感度を向上させるために、できるだけ融点の低
い組成、すなわちTeが多い膜組成となっている。とこ
ろが、Teが他の添加成分より多いということは、くり
返し時においてそれだけ相分離が起こし易いことを意味
する。したがって融点を下げるために添加した過剰のT
eをいかに固定して動きにくい組成にするかが、くり返
し特性や、CNR1消去率の経時変動に大きな影響を及
ぼすことになる。
The reason for this is thought to be that when Te, Ge and other additive components are repeated several times, phase separation occurs in the membrane, and the constituent components of the membrane are different at the initial stage and after the repetition. When utilizing phase transition in an erasable optical disc, a method is usually used in which the unrecorded and erased state is crystalline and the recorded state is amorphous. In this case, recording is done using a laser beam, which melts the film and then rapidly cools it to make it amorphous.However, current semiconductor lasers have power limitations, and films with as low a melting point as possible have the highest recording sensitivity. become. For this reason, in order to improve the recording sensitivity, the film composed of two consecutive chalcogenides has a composition with a melting point as low as possible, that is, a film composition with a large amount of Te. However, the fact that Te is present in a larger amount than other additive components means that phase separation is more likely to occur during repeated cycles. Therefore, the excess T added to lower the melting point
How e is fixed and the composition is made so that it does not easily move will have a large effect on the repeatability and the temporal fluctuation of the CNR1 erasure rate.

酸化物を含んだ記録部材にも、以下に記述する欠点があ
る。すなわち、消去率が録再消去のくり返しによって低
下することである。
Recording members containing oxides also have drawbacks as described below. That is, the erasure rate decreases due to repeated recording and re-erasing.

書き換え可能な光ディスクは、通常、初期状態を結晶状
態とし、記録状態を非晶質として記録を行なう。消去は
初期状態と同様に結晶質とする。
A rewritable optical disc usually records in a crystalline initial state and an amorphous recording state. The erasure is made crystalline like the initial state.

この記録部材の結晶質−非晶質間の相転移は、レ−ザの
徐冷−急冷の条件変化によって達成される。
This phase transition between crystalline and amorphous states of the recording member is achieved by changing the conditions of slow cooling and rapid cooling using a laser.

すなわち、レーザ光による加熱後、徐冷によって結晶質
となり、急冷によって非晶質となる。したがって記録、
消去のくり返しによって、膜は何度も結晶質、非晶質状
態を経ることになる。この場合、膜に酸化物が存在する
と、膜の粘性が高いので、カルコゲン化物の泳動性が少
なくなり、膜組成の偏析が生じやすくなる。さらに、酸
化物の存在は膜自身の熱伝導を低下させるので、レーザ
光の入射側と反対側の膜厚間で温度分布差を生じ、膜組
成の偏析はやはり生ずる。こうした理由により、酸化物
を含んだ膜は、記録、消去のくり返しによって次第に特
性が変化するなどの欠点を有していた。
That is, after heating with laser light, it becomes crystalline by slow cooling, and becomes amorphous by rapid cooling. Therefore record,
Through repeated erasing, the film passes through crystalline and amorphous states many times. In this case, if an oxide is present in the film, the viscosity of the film is high, so the migration of chalcogenide is reduced, and segregation of the film composition is likely to occur. Furthermore, since the presence of oxides reduces the thermal conductivity of the film itself, a difference in temperature distribution occurs between the film thickness on the laser light incident side and the opposite side, and segregation of film composition also occurs. For these reasons, films containing oxides have the disadvantage that their characteristics gradually change due to repeated recording and erasing.

本発呻は、上述した酸化物を含む膜のくり返し特性を向
」ニさせることを目的とし、さらに、カルコゲン化物よ
りなる従来組成の欠点(C/Nが低い、消去率が充分で
はない、耐湿性、耐熱性が悪い、くり返し特性が充分で
はない)を克服した光学情報記録部材を提供するもので
ある。
The purpose of this proposal is to improve the repeatability of films containing oxides as described above, and also to address the shortcomings of conventional compositions made of chalcogenides (low C/N, insufficient erasure rate, moisture resistance, etc.). The object of the present invention is to provide an optical information recording member that overcomes the following problems: poor heat resistance, poor heat resistance, and insufficient repeatability.

問題点を解決するための手段 本発明における記録層はTe−Ge−8b系の組成物か
ら成る薄膜であって、さらにはTe、Ge。
Means for Solving the Problems The recording layer in the present invention is a thin film made of a Te-Ge-8b composition, and further includes Te and Ge.

Sbの原子数比が組成の範囲を示す組成図である第1図
のA、B、C,D、Eの点を結んだ領域内にある材料に
より構成されている。
It is composed of materials within the region connecting points A, B, C, D, and E in FIG. 1, which is a composition diagram showing the range of the Sb atomic ratio.

作用 本発明の特徴は、Te−Ge系にSbを添加して過剰の
Teを固定することにある。このSbはTeと化合して
化合物Sb2Te、を形成し、Te濃度が50at%以
上のTe−Ge−8b系において、その融点は600℃
近傍になる。この温度は共晶組成のTe−Ge、Te−
8nなどと比較して200℃近く高い。
Function The feature of the present invention is that Sb is added to the Te-Ge system to fix excess Te. This Sb combines with Te to form a compound Sb2Te, which has a melting point of 600°C in a Te-Ge-8b system with a Te concentration of 50 at% or more.
Become a neighborhood. This temperature is the eutectic composition of Te-Ge, Te-
It is nearly 200℃ higher than 8n etc.

このことは、上記構成の組成物の熱転移温度(加熱によ
ってアモルファス状態より結晶状態へ転移する温度)が
高くなり、熱的な安定性が高いことを意味し、Te、G
e、Sb系薄膜を書き換え可能なメモリー媒体として用
いる場合(結晶状態を加熱急冷してアモルファス化し、
これを記録状態として用いるのが通例である)、このア
モルファス状態の記録部が加熱に対して安定になり、こ
れによって、記録情報の長期に亘る安定性が確保される
ことになる。一方、化学量論組成のTe−Ge。
This means that the thermal transition temperature (the temperature at which the amorphous state transitions from an amorphous state to a crystalline state upon heating) of the composition having the above structure is high, and the thermal stability is high.
e. When using an Sb-based thin film as a rewritable memory medium (the crystalline state is heated and rapidly cooled to become amorphous,
(This is usually used as the recording state), the recording portion in this amorphous state becomes stable against heating, thereby ensuring the long-term stability of the recorded information. On the other hand, Te-Ge has a stoichiometric composition.

Te−8nすなわち1゛e、。Ge5o、 T+、、5
n5o組成に比べると融点が150℃近く低い。このこ
とは、結晶状態のメモリー薄膜の微小部分を加熱融解後
、急冷してアモルファス化し、記録を行う場合、記録に
要するエネルギーが少なくてすむことを意味する。以上
のことから、レーザ光などによる記録感度を著しく低下
させることなく、記録信号の熱的安定性にすぐれた書き
換え可能なメモリー媒体が得られる。
Te-8n or 1゛e. Ge5o, T+,,5
The melting point is approximately 150°C lower than that of the n5o composition. This means that when recording is performed by heating and melting a minute portion of a crystalline memory thin film and then rapidly cooling it to make it amorphous, less energy is required for recording. From the above, a rewritable memory medium with excellent thermal stability of recorded signals can be obtained without significantly reducing the recording sensitivity by laser light or the like.

実施例 以下本発明の一実施例を図面に基づいて説明する。本発
明の光学情報記録部材は、Te−Ge−5bにより構成
される。本発明において、Teは単独またはGeあるい
はSbと結合し、これがアモルファス状態および結晶状
態における光学濃度変化を主として担う成分と考えられ
る。Te−Ge系において、化学量論組成のTe5oG
e、oではその融点が約725℃であり、これを加熱融
解し、急冷してアモルファス化するには大きなエネルギ
ー、たとえばレーザ光を用いる場合は大きなレーザパワ
ーを必要とする。また、共晶組成のTe−Ge系では、
その融点は約375℃であり、記録に要するレーザパワ
ーは少なくてすむが、前述したようにこの系には過剰な
Teが存在するためにTe−TeGeの分担を生じやす
く、これがアモルファス化および結晶化をくり返した場
合膜組成の不均一さを生じ、ノイズ成分となる。Te−
Ge系においては、その融点は組成によって多少異なる
が、およそ600℃〜630℃である。したがって、T
e−Ge系に比べて記録レーザパワーが少なくてすむ。
EXAMPLE An example of the present invention will be described below based on the drawings. The optical information recording member of the present invention is made of Te-Ge-5b. In the present invention, Te alone or combined with Ge or Sb is considered to be the component mainly responsible for the change in optical density in the amorphous state and the crystalline state. In the Te-Ge system, the stoichiometric composition of Te5oG
The melting point of e and o is about 725° C., and to heat and melt them and rapidly cool them to make them amorphous, a large amount of energy is required, for example, a large laser power is required when a laser beam is used. In addition, in the Te-Ge system with eutectic composition,
Its melting point is about 375°C, and the laser power required for recording is small, but as mentioned above, the presence of excess Te in this system tends to cause Te-TeGe division, which causes amorphization and crystallization. If this is repeated, the film composition will become non-uniform, resulting in a noise component. Te-
The melting point of Ge-based materials varies somewhat depending on the composition, but is approximately 600°C to 630°C. Therefore, T
It requires less recording laser power than the e-Ge system.

また、TeがSbと結合することによって結晶化速度が
向上する。これはフリーのTeが存在する場合、その融
液から徐冷によって結晶化する際、融液状態のTeには
3配位が存在し、これが冷却されるときに保持される。
Furthermore, the crystallization rate is improved by combining Te with Sb. This is because when free Te exists, when it is crystallized from the melt by slow cooling, Te in the melt state has three coordinations, which are retained when it is cooled.

結晶状態では2配位が安定であるために、一旦凍結され
た3配位の結合を2配位にする必要があるため結晶化速
度が遅い。しかしなから、Sbの添加によって融液から
固化する際に、直ちにTe−8bの結合をつくり、安定
化する。
Since 2-coordination is stable in the crystalline state, the crystallization rate is slow because it is necessary to change the 3-coordination bond once frozen to 2-coordination. However, when the melt is solidified by the addition of Sb, Te-8b bonds are immediately created and stabilized.

このために、結晶化速度が向上し、実用可能な書き換え
型メモリー媒体を実現できる。
Therefore, the crystallization speed is improved, and a practical rewritable memory medium can be realized.

Sbの添加量はGeと結合した残りの過剰Teを固定す
るので、必要なSb濃度はTe/Geの量に支配される
。第1図に本発明のTe−Ge−8bにより構成される
記録部材の適正範囲を示した。第1図において、各点は
以下の組成である。
Since the amount of Sb added fixes the remaining excess Te combined with Ge, the required Sb concentration is controlled by the amount of Te/Ge. FIG. 1 shows the appropriate range of a recording member made of Te-Ge-8b of the present invention. In FIG. 1, each point has the following composition.

A1点: (T es o G e、、S b□s )
B、点: (T B55 G et、 S b*。)0
1点” (T B46 G els S b4o )D
1点:(Te45Ge4゜5b1s)21点: (Ta
=yGe、、、5b3)Sbの添加量はTe−Ge−8
b系の組成比により異なる。たとえば、Ge高濃度域で
は、Te−Geの結晶化速度に速いので、Sb濃度は比
較的低く、Ge成分の少ない領域では、結晶化速度が遅
いため、比較的高濃度のSb添加を必要とする。
A1 point: (T es o G e,, S b□s )
B, point: (T B55 G et, S b *.) 0
1 point” (T B46 Gels S b4o) D
1 point: (Te45Ge4゜5b1s) 21 points: (Ta
=yGe,,,5b3) The amount of Sb added is Te-Ge-8
It varies depending on the composition ratio of the b series. For example, in a region with a high Ge concentration, the Sb concentration is relatively low because the crystallization rate is faster than that of Te-Ge, and in a region with a small Ge component, the crystallization rate is slow, so it is necessary to add a relatively high concentration of Sb. do.

上記範囲外にある場合、たとえばGe(rich)側で
は高融点のGe−TeGeが母体となるために、記録に
非常な高パワーを必要とし、メモリー材料として不適で
ある。また、Te(rich)側では、アモルファスか
ら結晶への熱転移温度が100℃近傍まで低下し、熱安
定性にすぐれたメモリー媒体が得られない。さらに5b
(rich)側では記録部と未記録部の信号の光学的コ
ントラストが得にくくなり、充分な記録特性が得られな
い。
If it is outside the above range, for example, on the Ge (rich) side, Ge--TeGe with a high melting point becomes the base material, and therefore extremely high power is required for recording, making it unsuitable as a memory material. Furthermore, on the Te (rich) side, the thermal transition temperature from amorphous to crystal drops to around 100° C., making it impossible to obtain a memory medium with excellent thermal stability. Further 5b
On the (rich) side, it becomes difficult to obtain optical contrast between the signals of the recorded portion and the unrecorded portion, and sufficient recording characteristics cannot be obtained.

以上述べた理由により、本発明は、第1図において、点
A□−BI  Cx  Dl Elで囲まれた範囲内に
限定される。すなわち、この範囲内のTe−G e −
S bの組成物を用いた場合、実用上、結晶質と非晶質
の可逆性を利用して、情報の記録、消去、書き換えが可
能となる。
For the reasons stated above, the present invention is limited to the range surrounded by the point A□-BI Cx Dl El in FIG. That is, Te-G e - within this range
When a composition of Sb is used, it is practically possible to record, erase, and rewrite information by utilizing the reversibility between crystalline and amorphous states.

次に、第1図の点A2−82−C2−D、−E2によっ
て囲まれた領域について述べる。この領域は、第1図の
点A1−Bよ−C1−D、−E1で囲まれた範囲より、
より実用的な組成範囲を示しである。
Next, the area surrounded by points A2-82-C2-D and -E2 in FIG. 1 will be described. This area is defined by the range surrounded by points A1-B, -C1-D, and -E1 in Figure 1.
This shows a more practical composition range.

第1図において、A2. B2. c2. D2. E
2の各点の組成を以下に示す。
In FIG. 1, A2. B2. c2. D2. E
The composition of each point in No. 2 is shown below.

A2点: T C7a G es S b14B2点:
Tel、□Ge1lSb3゜ C2点: Te5n Ge、oSb、。
A2 points: T C7a Ges S b14B2 points:
Tel, □Ge11Sb3°C2 point: Te5n Ge, oSb,.

D2点: Te5o G ego S bz。D2 points: Te5o G ego S bz.

B2点:Te6oGe3oSb1゜ この領域のアモルファスから結晶への熱転移温度は13
0℃〜195℃である。転移温度はA2が最も低く、B
2.C2,D2.B2の方向にGeあるいはSb濃度が
増大するにしたがって熱転移温度は上昇する。とくにG
e濃度への依存性が大きい。この点A、−B2−C2−
D2−E2で囲まれた領域内では熱的安定性およびレー
ザ光記録感度ともにすぐれている。
Point B2: Te6oGe3oSb1゜The thermal transition temperature from amorphous to crystal in this region is 13
It is 0°C to 195°C. A2 has the lowest transition temperature, B
2. C2, D2. As the Ge or Sb concentration increases in the direction of B2, the thermal transition temperature increases. Especially G
It is highly dependent on e concentration. This point A, -B2-C2-
The area surrounded by D2-E2 has excellent thermal stability and laser light recording sensitivity.

第1図中、A2−B、−C2−D2−E、の範囲外であ
って、かつA1−B1−C1−Dl−E工の範囲内の組
成物に関しては、用途、目的に応じた使い分けが必要で
ある。すなわち、上記組成物のうち、Ge(rich)
側では多少大きいレーザパワーを必要とするが、熱的安
定性にすぐれている。また、Te(ri、ch)側では
熱的安定性はやや劣るが極めて高感度なメモリー媒体が
得られる。
In Figure 1, compositions outside the range of A2-B, -C2-D2-E and within the range of A1-B1-C1-Dl-E are used depending on the use and purpose. is necessary. That is, in the above composition, Ge(rich)
Although it requires somewhat higher laser power on the side, it has excellent thermal stability. Furthermore, on the Te (ri, ch) side, a memory medium with extremely high sensitivity can be obtained, although the thermal stability is slightly inferior.

Te−Ge系に対するSbの添加効果は一般的に、メモ
リー媒体の熱的安定性を意味する熱転移温度を上昇させ
るとともに、膜の融点を下げ、アモルファス化を容易に
する。
The effect of adding Sb to the Te-Ge system generally increases the thermal transition temperature, which refers to the thermal stability of the memory medium, as well as lowers the melting point of the film and facilitates amorphization.

以上述べた理由により、本発明のTe−Ge−5bの最
適組成は限定される。
For the reasons stated above, the optimal composition of Te-Ge-5b of the present invention is limited.

次に本発明による光学情報記録部材の製法について述べ
る。第2図は、本発明の記録層を用いて構成した光ディ
スクの断面の模式図である。第2図において、1,5は
基板を示し、材質はポリカーボネート、アクリル樹脂、
ガラス、ポリエステルなどの透明な基材を用いることが
可能である。
Next, a method for manufacturing an optical information recording member according to the present invention will be described. FIG. 2 is a schematic cross-sectional view of an optical disc constructed using the recording layer of the present invention. In Fig. 2, 1 and 5 indicate the substrates, and the materials are polycarbonate, acrylic resin,
It is possible to use transparent substrates such as glass, polyester, etc.

2.4は基板1,5の内側に設けられた保護層で、種々
の酸化物、硫化物、炭化物を用いることができる。この
保護層2,4はその間に介装された記録膜3の記録、消
去の繰り返しによる基材の熱劣化を防ぐものであり、さ
らに、記録膜3を湿度より保護するものである。したが
って、保護層2゜4の材質、膜厚は、上述した観点より
決定される。
2.4 is a protective layer provided inside the substrates 1 and 5, and various oxides, sulfides, and carbides can be used. The protective layers 2 and 4 prevent thermal deterioration of the base material due to repeated recording and erasing of the recording film 3 interposed therebetween, and further protect the recording film 3 from humidity. Therefore, the material and thickness of the protective layer 2.4 are determined from the above-mentioned viewpoints.

記録膜3は蒸着、スパッタリングなどによって形成され
る。蒸着で行なう場合は各組成を単独に蒸着可能な3ソ
一ス蒸着機を用いるのが、均一膜を作成できるので望ま
しい。
The recording film 3 is formed by vapor deposition, sputtering, or the like. In the case of vapor deposition, it is preferable to use a three-source vapor deposition machine capable of individually vapor depositing each composition because a uniform film can be formed.

記録膜3の膜厚は保護層2,4の光学特性とのマツチン
グ、すなわち記録部と未記録との反射率の差が大きくと
れる値とする。
The thickness of the recording film 3 is set to a value that matches the optical properties of the protective layers 2 and 4, that is, a value that allows a large difference in reflectance between recorded and unrecorded areas.

以下、具体的な例で本発明を詳述する。The present invention will be explained in detail below using specific examples.

実施例1 3源蒸着が可能な電子ビーム蒸着機を用いて、Te、G
e、Sbをそれぞれのソースから基材上に同時に蒸着し
た。用いた基材は厚さ0.3mmXφ8薗のガラス板で
、蒸着は真空度がI X 1(1−′5Torr、基材
の回転速度1.5Orpmで行ない、膜厚は1000人
とした。各ソースからの蒸着速度は記録膜中のTe。
Example 1 Using an electron beam evaporator capable of three-source evaporation, Te, G
e, Sb were simultaneously deposited onto the substrate from each source. The substrate used was a glass plate with a thickness of 0.3 mm and a diameter of 8 mm. Vapor deposition was carried out at a vacuum degree of I x 1 (1-'5 Torr, a rotation speed of the substrate of 1.5 Orpm, and a film thickness of 1000 people. The deposition rate from the source is the Te in the recording film.

Ge、Sbの原子数の割合を調整するため、変化させた
。第1表の組成の割合は、この蒸着の速度より換算した
値であるが、代表的な組成をX線マイクロアナライザー
(XMA)で行なったところ、仕込値とほぼ同様の定量
結果が得られた。したがって、表中の仕込み組成は、膜
中でも同じと思ねれる。
The ratio of the numbers of Ge and Sb atoms was changed in order to adjust the ratio. The composition ratios in Table 1 are values converted from this vapor deposition rate, but when representative compositions were analyzed using an X-ray microanalyzer (XMA), quantitative results almost the same as the starting values were obtained. . Therefore, it seems that the feed composition in the table is the same in the film.

上記製法によって作成された試験片の評価方法を以下に
記す。
The evaluation method of the test piece produced by the above manufacturing method is described below.

〔転移温度〕[Transition temperature]

転移温度とは、蒸着直後の非晶質状態の膜が熱によって
結晶状態になる開始温度を意味する。
The term "transition temperature" refers to the starting temperature at which a film in an amorphous state immediately after vapor deposition changes to a crystalline state due to heat.

測定は、膜の透過率の測定が可能な装置を用い、ヒータ
ーにより試験片の温度を昇温速度1℃/secで上昇さ
せた場合の透過率が減少を開始する温度で測定した。転
移温度が高いことは、膜が熱的に安定であることを意味
する。
The measurement was carried out using a device capable of measuring the transmittance of a membrane at a temperature at which the transmittance starts to decrease when the temperature of the test piece is raised by a heater at a heating rate of 1° C./sec. A high transition temperature means that the film is thermally stable.

〔黒化、白化特性〕[Blackening, whitening properties]

黒化特性とは、非晶質から結晶質への変態に対しての転
移速度を示したもので、白化特性は結晶質から非晶質の
転移速度を示したものである。
The blackening property indicates the rate of transformation from amorphous to crystalline, and the whitening property indicates the rate of transition from crystalline to amorphous.

測定はφ8IIInlのガラス片上の記録膜にレンズを
用いてレーザ光を集光させ、サンプル片を上下、左右移
動可能とした装置を用いて行なった。レーザ光のスポッ
トは45 X O,4μm、パルス巾200ns、パワ
ー密度]、0.6m W/ p r!、波長は900n
mとした。
The measurement was carried out using a device that focused a laser beam on a recording film on a glass piece of φ8IIInl using a lens, and was able to move the sample piece vertically and horizontally. The laser beam spot is 45×O, 4 μm, pulse width 200 ns, power density], 0.6 m W/pr! , the wavelength is 900n
It was set as m.

黒化特性は、試験片を比較的緩かに移動させた場合の変
態(非晶質から結晶質)の速度を観察し、速度が充分早
く、かつ未記録部分と記録部分のコントラスト比が充分
大きいものを@とした。×は緩やかに移動させても、黒
化しないもの、あるいは、コントラスト比が小さいもの
を示す。0.Δは◎と×の中間に位置する。この定性的
な表現において、実用可能な黒化特性は0以上である。
The blackening characteristics are determined by observing the speed of transformation (from amorphous to crystalline) when the specimen is moved relatively slowly.The speed is sufficiently fast and the contrast ratio between the unrecorded area and the recorded area is sufficient. The larger one is marked as @. × indicates that the image does not turn black even when moved slowly, or that the contrast ratio is small. 0. Δ is located between ◎ and ×. In this qualitative expression, the practical blackening characteristic is 0 or more.

  次に白化特性について述べる。白化特性を観る場合
は、まず、一旦、黒化し、その上を試験片を速やかに移
動させて急冷状態を作り、白化(結晶質から非結晶質)
させる。白化状態がOのものは、移動速度が比較的緩や
かでも白化し、しかも非晶質部分と結晶質部分のコント
ラスト比が大きいものを示す。×は全く白化しないもの
を示している。
Next, we will discuss the whitening properties. When looking at the whitening characteristics, first, the specimen is blackened, and then the specimen is quickly moved over it to create a rapid cooling condition, and then the whitening (from crystalline to amorphous) is observed.
let A whitening state of O indicates that the whitening occurs even if the moving speed is relatively slow, and the contrast ratio between the amorphous portion and the crystalline portion is large. × indicates no whitening at all.

○とΔは、◎と×の中間に位置する。○ and Δ are located between ◎ and ×.

上述した表現によれば、黒化、白化特性とも非常にすぐ
れている場合は、◎、◎となるが、実際問題としては同
じ移動速度で、どちらも◎となることはあまり得す、望
ましい材料としては、◎。
According to the above expression, if both blackening and whitening properties are very good, it will be ◎ or ◎, but in reality, if the moving speed is the same and both are ◎, it is a desirable material that has little advantage. So, ◎.

○あるいは◎、Δと、多少黒化特性が優れているもので
ある。
○, ◎, or Δ, indicating that the blackening properties are somewhat excellent.

第1表に、本発明の範囲で作成した膜の転移温度と、黒
化、白化特性の結果を示す。
Table 1 shows the results of the transition temperature and blackening and whitening properties of the films prepared within the scope of the present invention.

第1表の結果より明らかなように、本発明の範囲にある
Te−Ge−8b系記録薄膜は黒化および白化がそれぞ
れ可能である。すなわちこの範囲内にある記録部材は、
加熱条件、例えば照射するレーザ光線の照射強度、照射
時間を適当に選ぶことで、非晶質状態と結晶質状態のい
ずれの状態をもとることが可能であり、光学的に情報を
記録し、かつ消去することが可能である。
As is clear from the results in Table 1, the Te-Ge-8b recording thin film within the scope of the present invention can be blackened and whitened. In other words, recording members within this range are
By appropriately selecting heating conditions, such as the irradiation intensity and irradiation time of the laser beam, it is possible to take on either an amorphous state or a crystalline state, and optically record information. and can be erased.

実施例2 基材として光ガイド用のトラックを備えた厚さ1.2m
mXφ200mmのポリカーボネイト樹脂基材を用い、
記録膜としてTe65Ge15Sb2o組成の薄膜を用
いて光ディスクを試作した。
Example 2 Thickness 1.2 m with tracks for light guide as substrate
Using a polycarbonate resin base material of mXφ200mm,
An optical disc was prototyped using a thin film having a composition of Te65Ge15Sb2o as a recording film.

まず、基材上に耐熱層としてZnS薄膜を900人蒸レ
ム、その上に記録層を約1000人の厚さに蒸着し、更
にその上に同じく耐熱層としてZnS薄膜を1800人
蒸着レム。
First, a ZnS thin film was deposited on the substrate as a heat-resistant layer for 900 minutes, a recording layer was deposited on top of it to a thickness of about 1,000 deposits, and then a ZnS thin film was deposited as a heat-resistant layer for 1,800 deposits on top of that.

この光ディスクの基板側から光学系を用いて絞り込んだ
レーザ光線を照射して信号を記録し、直ちに消去を行な
った。記録に先立って、スポット形状が1μm×10μ
mの長楕円形のレーザ光線を14mWの強さでトラック
に沿って照射し、トラック内の記録膜を結晶化し、次に
0.9μmφに絞り込んだレーザ光線を8mWの強さで
照射した。記録周波数は2 M Hz 、ディスクの回
転速度は5 m / sである。このとき照射部は非晶
質化され、トラックに沿って信号が記録された。スペク
トラムアナライザーによりC/Nを測定したところ、5
0dBが得られた。このトラック上に前述の長楕円スポ
ットを照射したところ、信号は完全に消去された。
A focused laser beam was irradiated using an optical system from the substrate side of this optical disk to record a signal, and immediately erase the signal. Prior to recording, the spot shape is 1 μm x 10 μm.
A long elliptical laser beam of 14 mW was irradiated along the track to crystallize the recording film within the track, and then a laser beam narrowed to 0.9 μmφ was irradiated with an intensity of 8 mW. The recording frequency was 2 MHz, and the disk rotation speed was 5 m/s. At this time, the irradiated area was made amorphous and a signal was recorded along the track. When the C/N was measured using a spectrum analyzer, it was 5.
0 dB was obtained. When the above-mentioned long elliptical spot was irradiated onto this track, the signal was completely erased.

実施例3 実施例2における光ディスクを用いて、寿命試験を80
℃、 80%RHの条件下で行なった。試験方法は、予
じめ情報を記録しておき、上記条件で保持後のC/Nの
劣化をみた。1ケ月経過後のC/Nの低下は−0,5d
Bと、無視できる程度であった。
Example 3 Using the optical disc in Example 2, a life test was conducted for 80
The test was carried out at 80% RH. The test method was to record information in advance and observe the deterioration of C/N after holding under the above conditions. C/N decrease after 1 month is -0.5d
B, which was negligible.

実施例4 実施例3における光ディスクの記録、消去の繰り返し特
性を評価した。10万回記録、消去を繰り返した後のC
/Nの低下は約1dB程度であった。
Example 4 The recording and erasing repetition characteristics of the optical disc in Example 3 were evaluated. C after repeating recording and erasing 100,000 times
The decrease in /N was about 1 dB.

発明の効果 以上本発明によるTe−Ge−8b系記録薄膜は、耐熱
性および耐湿性に極めて優れ、記録、消去を繰り返して
も膜が破壊されることがなく、実用上、極めて優れた光
学情報記録部材が得られる。
Effects of the Invention The Te-Ge-8b recording thin film according to the present invention has extremely excellent heat resistance and moisture resistance, and the film is not destroyed even after repeated recording and erasing. A recording member is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光学情報記録部材の組成の範囲を
示す組成図、第2図は本発明の一実施例における光学情
報記録部材の構成を示した断面図である。 1.5・・・基板、2,4・・・保護層、3・・・記録
膜代理人    森   本   義   弘第1図
FIG. 1 is a composition diagram showing the composition range of the optical information recording member according to the present invention, and FIG. 2 is a sectional view showing the structure of the optical information recording member in one embodiment of the present invention. 1.5...Substrate, 2,4...Protective layer, 3...Recording film agent Yoshihiro MorimotoFigure 1

Claims (1)

【特許請求の範囲】 1、アモルファス−結晶間の可逆的な相転移により書き
換え可能な光学情報記録であって、少なくともTe、G
eおよびSbから成る薄膜を備えた光学情報記録部材。 2、Te、GeおよびSbの原子数比が、組成の範囲を
示す組成図において、 A_1(Te_8_0Ge_5Sb_1_5)、B_1
(Te_5_5Ge_5Sb_4_0)C_1(Te_
4_5Ge_1_5Sb_4_0)、D_1(Te_4
_5Ge_4_0Sb_1_5)E_1(Te_5_3
Ge_4_0Sb_7)の各点で囲まれる領域内に有る
薄膜を備え たことを特徴とする特許請求の範囲第1項記載の光学情
報記録部材。 3、Te、GeおよびSbの原子数比が、組成の範囲を
示す組成図において、 A_2(Te_7_8Ge_8Sb_1_4)、B_2
(Te_6_2Ge_8Sb_3_0)C_2(Te_
5_0Ge_2_0Sb_3_0)、D_2(Te_5
_0Ge_3_0Sb_2_0)E_2(Te_6_0
Ge_3_0Sb_1_0)の各点で囲まれる領域内に
有る薄膜を備え たことを特徴とする特許請求の範囲第1項記載の光学情
報記録部材。
[Claims] 1. Optical information recording that is rewritable by reversible phase transition between amorphous and crystal, comprising at least Te, G
An optical information recording member comprising a thin film made of e and Sb. 2. In the composition diagram showing the composition range in which the atomic ratio of Te, Ge and Sb is A_1 (Te_8_0Ge_5Sb_1_5), B_1
(Te_5_5Ge_5Sb_4_0)C_1(Te_
4_5Ge_1_5Sb_4_0), D_1(Te_4
_5Ge_4_0Sb_1_5)E_1(Te_5_3
2. The optical information recording member according to claim 1, further comprising a thin film located within a region surrounded by each point of Ge_4_0Sb_7). 3. In the composition diagram showing the composition range in which the atomic ratio of Te, Ge and Sb is A_2 (Te_7_8Ge_8Sb_1_4), B_2
(Te_6_2Ge_8Sb_3_0)C_2(Te_
5_0Ge_2_0Sb_3_0), D_2(Te_5
_0Ge_3_0Sb_2_0)E_2(Te_6_0
2. The optical information recording member according to claim 1, further comprising a thin film located within a region surrounded by each point of Ge_3_0Sb_1_0).
JP61053034A 1985-09-25 1986-03-11 Rewritable optical information recording member Expired - Lifetime JP2584741B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61053034A JP2584741B2 (en) 1986-03-11 1986-03-11 Rewritable optical information recording member
CN86107003A CN1010519B (en) 1985-09-25 1986-09-22 Invertible optical recording information dielectrical
KR1019860007937A KR900009187B1 (en) 1985-09-25 1986-09-23 Optical information recording carrier
DE3689815T DE3689815T2 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical recording materials.
EP86113211A EP0217293B1 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical information media
EP89118260A EP0355865B1 (en) 1985-09-25 1986-09-25 Reversible optical information-recording medium
DE3689886T DE3689886T2 (en) 1985-09-25 1986-09-25 Reversible optical information recording medium.
US08/053,346 US5278011A (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US08/053,343 US6268107B1 (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US09/765,677 US20010019810A1 (en) 1985-09-25 2001-01-22 Reversible optical information-recording medium
US10/389,615 USRE42222E1 (en) 1985-09-25 2003-03-14 Reversible optival information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053034A JP2584741B2 (en) 1986-03-11 1986-03-11 Rewritable optical information recording member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7066622A Division JP2650868B2 (en) 1995-03-27 1995-03-27 Rewritable optical information recording method

Publications (2)

Publication Number Publication Date
JPS62209742A true JPS62209742A (en) 1987-09-14
JP2584741B2 JP2584741B2 (en) 1997-02-26

Family

ID=12931604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053034A Expired - Lifetime JP2584741B2 (en) 1985-09-25 1986-03-11 Rewritable optical information recording member

Country Status (1)

Country Link
JP (1) JP2584741B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222442A (en) * 1986-03-22 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Rewriting type optical recording medium
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
WO1989004043A1 (en) * 1987-10-28 1989-05-05 Matsushita Electric Industrial Co., Ltd. Optical data recording medium
JPH01180387A (en) * 1988-01-12 1989-07-18 Toray Ind Inc Information recording medium
JPH01184631A (en) * 1988-01-13 1989-07-24 Hitachi Ltd Information recording and reproducing method
JPH01277336A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member and optical disk
JPH0211388A (en) * 1988-06-30 1990-01-16 Ricoh Co Ltd Sublimation-type thermal transfer recording method
JPH02130186A (en) * 1988-11-11 1990-05-18 Toray Ind Inc Optical recording medium
JPH02147289A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Optical data recording member
JPH02158383A (en) * 1988-12-12 1990-06-18 Hitachi Ltd Data recording membrane
US5294523A (en) * 1988-08-01 1994-03-15 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
JPH07266706A (en) * 1995-03-27 1995-10-17 Matsushita Electric Ind Co Ltd Rewritable optical data recording method
JPWO2005076355A1 (en) * 2004-02-06 2008-01-10 株式会社ルネサステクノロジ Storage device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011285A1 (en) 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Information recording medium
CN101194310B (en) 2005-06-07 2011-03-02 松下电器产业株式会社 Information recording medium and method for producing the same
US8133566B2 (en) 2006-08-08 2012-03-13 Panasonic Corporation Information recording medium, its manufacturing method, and sputtering target
JP5112431B2 (en) 2007-06-11 2013-01-09 パナソニック株式会社 Information recording medium, manufacturing method thereof, and target
JP5870318B2 (en) 2011-03-08 2016-02-24 パナソニックIpマネジメント株式会社 Information recording medium and manufacturing method thereof
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203096A (en) * 1982-05-24 1983-11-26 Fujitsu Ltd Optical information recording medium
JPS5968850A (en) * 1982-10-12 1984-04-18 Toshiba Corp Information storage medium
JPS612594A (en) * 1984-06-15 1986-01-08 Matsushita Electric Ind Co Ltd Optical information-recording member
JPS6253886A (en) * 1984-12-26 1987-03-09 Asahi Chem Ind Co Ltd Information-recording medium
JPS62154245A (en) * 1985-12-26 1987-07-09 Asahi Chem Ind Co Ltd Information recording medium
JPS62196181A (en) * 1986-01-27 1987-08-29 Nippon Columbia Co Ltd Optical information-recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203096A (en) * 1982-05-24 1983-11-26 Fujitsu Ltd Optical information recording medium
JPS5968850A (en) * 1982-10-12 1984-04-18 Toshiba Corp Information storage medium
JPS612594A (en) * 1984-06-15 1986-01-08 Matsushita Electric Ind Co Ltd Optical information-recording member
JPS6253886A (en) * 1984-12-26 1987-03-09 Asahi Chem Ind Co Ltd Information-recording medium
JPS62154245A (en) * 1985-12-26 1987-07-09 Asahi Chem Ind Co Ltd Information recording medium
JPS62196181A (en) * 1986-01-27 1987-08-29 Nippon Columbia Co Ltd Optical information-recording medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222442A (en) * 1986-03-22 1987-09-30 Nippon Telegr & Teleph Corp <Ntt> Rewriting type optical recording medium
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
US5024910A (en) * 1987-10-28 1991-06-18 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
WO1989004043A1 (en) * 1987-10-28 1989-05-05 Matsushita Electric Industrial Co., Ltd. Optical data recording medium
JPH01180387A (en) * 1988-01-12 1989-07-18 Toray Ind Inc Information recording medium
JPH01184631A (en) * 1988-01-13 1989-07-24 Hitachi Ltd Information recording and reproducing method
JPH01277336A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member and optical disk
JPH0211388A (en) * 1988-06-30 1990-01-16 Ricoh Co Ltd Sublimation-type thermal transfer recording method
US5294523A (en) * 1988-08-01 1994-03-15 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
JPH02130186A (en) * 1988-11-11 1990-05-18 Toray Ind Inc Optical recording medium
JPH02147289A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Optical data recording member
JPH02158383A (en) * 1988-12-12 1990-06-18 Hitachi Ltd Data recording membrane
JPH07266706A (en) * 1995-03-27 1995-10-17 Matsushita Electric Ind Co Ltd Rewritable optical data recording method
JPWO2005076355A1 (en) * 2004-02-06 2008-01-10 株式会社ルネサステクノロジ Storage device
JP4856953B2 (en) * 2004-02-06 2012-01-18 ルネサスエレクトロニクス株式会社 Storage device

Also Published As

Publication number Publication date
JP2584741B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JPS62209742A (en) Optical information recording member
US5194363A (en) Optical recording medium and production process for the medium
JP2574325B2 (en) Optical information recording medium
US4939013A (en) Optical information storing medium
US6660451B1 (en) Optical information recording medium
JPH01116937A (en) Optical recording, reproducing and erasing material of information
JP2592800B2 (en) Optical information recording member
JPH0475835B2 (en)
JPS61269247A (en) Reversible optical information recording and reproducing method
JPS6358636A (en) Optical information recording medium
JPH0371035B2 (en)
JPH04134643A (en) Optical information recording medium
JPH0526668B2 (en)
JP2650868B2 (en) Rewritable optical information recording method
JPS62161590A (en) Optical information recording member
JPS62161587A (en) Optical information recording member
JPH02147289A (en) Optical data recording member
JPS63244422A (en) Information recording medium
JPH0453192B2 (en)
JPS6391837A (en) Optical information recording member
JPH0530193B2 (en)
JPS62161588A (en) Optical information recording member
JPH0714657B2 (en) Optical information recording member
JPS62161589A (en) Optical information recording member
JPS62202345A (en) Rewriting type optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term