JPS612594A - Optical information-recording member - Google Patents

Optical information-recording member

Info

Publication number
JPS612594A
JPS612594A JP59123003A JP12300384A JPS612594A JP S612594 A JPS612594 A JP S612594A JP 59123003 A JP59123003 A JP 59123003A JP 12300384 A JP12300384 A JP 12300384A JP S612594 A JPS612594 A JP S612594A
Authority
JP
Japan
Prior art keywords
recording
thin film
enhancement
atoms
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59123003A
Other languages
Japanese (ja)
Other versions
JPH0526668B2 (en
Inventor
Noboru Yamada
昇 山田
Kunio Kimura
邦夫 木村
Eiji Ono
鋭二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59123003A priority Critical patent/JPS612594A/en
Priority to CA000483786A priority patent/CA1245762A/en
Priority to US06/743,801 priority patent/US4656079A/en
Priority to DE8585107452T priority patent/DE3574193D1/en
Priority to EP19850107452 priority patent/EP0169367B1/en
Publication of JPS612594A publication Critical patent/JPS612594A/en
Publication of JPH0526668B2 publication Critical patent/JPH0526668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable to record and erase information with low energy, by using a thin film of a material based on a Te-TeO2 material containing a relatively large amount of Te component with at least Sb, Ge and Au incorporated therein, in which the compositional ratios of the additives are specified. CONSTITUTION:The thin film is provided in which the relative values of the total number of atoms of Te-Sb-Ge and the numbers of atoms of Au and O lie in the shaded region A-E on Fig. 7 and the relative numbers of atoms of Te, Ge and Sb lie in the shaded region F-K on Fig. 8. Accordingly, by using the thin film of the five-element oxide system Te-O-Ge-Sb-Au, an optical information-recording member can be obtained which comprises Te as a main constituent for reversible change and has a combination of excellent characteristics owing to the respective effects of the constituents, namely, enhancement of thermal stability by Ge, enhancement of recording sensitivity by Sb, enhancement of erasing speed by Au, and enhancement of moisture resistance by O.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光線を用いて情報信号を高密度かつ高速
に記録再生し、かつ情報の書き換えが可能な光学情報記
録部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical information recording member that uses a laser beam to record and reproduce information signals at high density and high speed, and that allows information to be rewritten.

従来例の構成とその問題点 レーザ光線を利用して高密度な情報の記録再生を行なう
技術は既に公知であシ現在文書ファイルシステム、静止
画ファイルシステム等への応用がさかんに行なわれてい
る0また書き換え可能なタイプの記録システムについて
も研究開発の事例が報告されつつある。
Conventional configurations and their problems The technology for recording and reproducing high-density information using laser beams is already well known, and is currently being actively applied to document file systems, still image file systems, etc. Furthermore, research and development cases are being reported regarding rewritable recording systems.

レーザ光線を用いて記録薄膜の光学的性質、例えば屈折
率、消衰係数等を可逆的に増減させることで情報を繰り
返し記録消去する記録媒体については例えば特公昭47
−26897に見られるT @ s 、G e 1s 
S b 2 S 2 のように酸素以外のカルコゲン元
素をペースとするアモルファス薄膜が知られていたが湿
気に対して弱いという問題があり実用化には至っていな
かった。この耐湿性を改良したものにTeと0をベース
とする酸化物系の薄膜がある。これらは比較的強くて短
いパルス光を照射して照射部を昇温状態から急冷してそ
の光学定数を減少させ、比較的弱くて長いパルス光を照
射して光学定数を増大させることで記録消去を行なうと
いうもので、記録時には一般に光学定数を減少させる方
向、消去時には増大する方向を利用しようというもので
ある。
Regarding recording media in which information is repeatedly recorded and erased by reversibly increasing or decreasing the optical properties of the recording thin film, such as the refractive index and extinction coefficient, using a laser beam, for example, Japanese Patent Publication No. 47
T @ s , G e 1s found in -26897
Amorphous thin films based on chalcogen elements other than oxygen, such as S b 2 S 2 , have been known, but they have not been put into practical use due to the problem of being sensitive to moisture. An oxide-based thin film based on Te and O has improved moisture resistance. These erase records by irradiating relatively strong and short pulsed light to rapidly cool the irradiated area from a heated state to decrease its optical constant, and by irradiating relatively weak and long pulsed light to increase the optical constant. The idea is to generally use the direction in which the optical constant decreases during recording and the direction in which it increases during erasing.

従来記録材料として用いられてきたTe−Tea2系薄
膜は例えばアモルファス状態のT e O2マトリック
ス中にTeの小粒子(〜20人)が散在した状態、ある
いはTeとT e O2とが例えばX線回析でばピーク
が検出されない程度のアモルファスに近い状態で混ざり
合ったものと考えられるが、いずれにせよ光の照射によ
ってその構造を大きく変化し情報信号の記録に寄与する
のはTe粒子である。従って、このTe粒子に適当な物
質を化合させることでTeの可逆的構造変化に必要な熱
的条件を制御し、例えばレーザ光線等での記録消去に要
する照射パワー、照射時間をある程度操作することは可
能である。
A Te-Tea2 thin film, which has been conventionally used as a recording material, is produced in a state in which small particles of Te (~20 particles) are scattered in an amorphous TeO2 matrix, or in a state in which Te and TeO2 are separated by, for example, X-ray radiation. It is thought that the Te particles are mixed in an almost amorphous state with no peak detected in the analysis, but in any case, it is the Te particles that change their structure significantly upon irradiation with light and contribute to the recording of information signals. Therefore, by combining these Te particles with an appropriate substance, the thermal conditions necessary for reversible structural changes of Te can be controlled, and for example, the irradiation power and irradiation time required for erasing records with laser beams can be controlled to some extent. is possible.

例えば特開昭55−28530には、Ss、Sによって
Te−Tea2系薄膜の構造変化の可逆性を高める方法
、特願昭58−68158には、金属、半金属の中でも
特にSn、Ge、In、Sb、Bi等の元素の添加によ
って、やはりTe−Teo2系薄膜の構造可逆性を高め
、同時に膜の安定性、製造時の再現性をも高める方法に
ついての提案がある。その後の詳しい研究によってこの
中で例えばGeを添加するとTe粒子径の増大、秩序の
回復に要するエネルギーが急激に増加し微量でもその記
録信号ビットの熱的安定性を制御することができること
、(1983、第30回応用物理学関係連合講演会予稿
集P87〜)、またSnはその半金属的性質によって記
録時にはレーザ光線の照射による溶融状態から固化する
際、Teと結合してその粒径成長を抑制する効果ととも
に逆に消去時には結晶性回復の核として働くという効果
を合わせもちその添加濃度を選ぶことで記録感度、消去
感度を制御することができること等が明らかになり、G
eとSnとを同時に添加した記録薄膜を用いて光ディス
クが試作された(1983  JAPAN DISPL
AY予稿集P46〜)。このディスクは実時間で同時に
記録。
For example, Japanese Patent Application Laid-Open No. 55-28530 describes a method for increasing the reversibility of structural changes in Te-Tea2 thin films using Ss and S, and Japanese Patent Application No. 58-68158 describes a method for increasing the reversibility of structural changes in Te-Tea2 thin films using Ss and S. There is a proposal for a method of increasing the structural reversibility of the Te-Teo2 thin film by adding elements such as , Sb, and Bi, and at the same time improving the stability of the film and the reproducibility during manufacturing. Subsequent detailed research revealed that, for example, when Ge is added, the Te particle size increases and the energy required to restore order increases rapidly, making it possible to control the thermal stability of recorded signal bits even in small amounts (1983 , Proceedings of the 30th Applied Physics Conference, P87~), and due to its semimetallic properties, when Sn solidifies from a molten state due to laser beam irradiation during recording, it combines with Te and slows down the grain size growth. It has become clear that in addition to the suppressing effect, G
An optical disk was prototyped using a recording thin film to which e and Sn were simultaneously added (1983 JAPAN DISPL
AY Proceedings P46~). This disc records simultaneously in real time.

消去することが可能であり、かつ記録信号ビットも安定
という優れた特性を有していたが感度面、特に消去感度
が十分ではなく、例゛えば現在の半導体レーザーでは能
力限界の上限であシ、更なる感度向上が必要となってい
た。
Although it had the excellent characteristics of being able to erase data and stably recording signal bits, the sensitivity, especially the erasing sensitivity, was not sufficient. , further improvement in sensitivity was required.

発明の目的 本発明は従来のTe TeO2酸化物系薄膜を改良し低
パワーで記録、消去が可能な高感1度光学情報記録媒体
を提供することを目的とするものである。
OBJECTS OF THE INVENTION The object of the present invention is to improve the conventional Te TeO2 oxide thin film and provide a highly sensitive one-degree optical information recording medium that can record and erase with low power.

発明の構成 本発明は、前記目的を達成するためにTe成分が比較的
多いTe−Tea2系材料全材料スに少なくともSb、
Ge、Auを同時に添加して成る薄膜を用いるものであ
り、前記添加物の各組成比を適当に選ぶことで記録薄膜
の安定性を損なうことなく記録消去感度の向上を実現す
るものである。
Structure of the Invention In order to achieve the above object, the present invention includes at least Sb, Sb,
A thin film made by adding Ge and Au at the same time is used, and by appropriately selecting the composition ratio of each of the additives, it is possible to improve the recording/erasing sensitivity without impairing the stability of the recording thin film.

実施例の説明 以下、図面を参照しつつ本発明を詳述する。第1図は、
本発明の光学情報記録部材の断面図である。本発明にお
いては、基材1の上に記録薄膜2を蒸着あるいはスパッ
タリング等の方法で形成する。基材は通常の光ディスク
に用いるものであればよ(、PMMA、塩化ビニール、
ポリカーボネイト等の透明な樹脂、あるいはガラス板等
を適用することができる。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to the drawings. Figure 1 shows
FIG. 1 is a sectional view of an optical information recording member of the present invention. In the present invention, the recording thin film 2 is formed on the base material 1 by a method such as vapor deposition or sputtering. The base material may be one used for ordinary optical discs (PMMA, vinyl chloride,
Transparent resin such as polycarbonate, a glass plate, etc. can be used.

記録薄膜としては、Te −0−Sb−Go の4元に
更にAuを添加した6元系薄膜を用いる。前述のように
、Te −0−8n−Ge  の4元系薄膜を用いて形
成した記録薄膜は、実時間で同時に記録消去することが
可能であるが感度的に十分では無かった。
As the recording thin film, a 6-element thin film is used, which is made by adding Au to the quaternary Te-0-Sb-Go. As mentioned above, a recording thin film formed using a quaternary thin film of Te-0-8n-Ge is capable of recording and erasing data simultaneously in real time, but the sensitivity is not sufficient.

このTe−0−3n−Geの4元系における感度限界は
、前述したようにSnに2つの働きを兼ねさせていると
いう点に発すると考えられる。つまりSnの添加濃度を
変化させることによって、例えばSnの添加濃度を増加
した場合には2つの働きのうちの結晶性の回復の核とし
ての効果が大きくなる反面、系全体の融点が上昇して溶
融しにくくなり記録が行ないにくくなる。逆に減少した
場合には融点は低下して溶融しやすくなる反面、消去時
の結晶核が減少し消去しにくくなる。もちろん極端に減
少した場合にはTeの粒径成長の抑制効果が失なわれ可
逆性が無くなってしまう。つまり、記録感度、消去感度
はその両方が同時にSnの濃度に依存するため、実際の
系においてはそのどちらをも満足する濃度を選択するこ
とになシそこに組成的な感度限界が生じるものである。
The sensitivity limit in the Te-0-3n-Ge four-element system is thought to be due to the fact that Sn serves two functions as described above. In other words, by changing the additive concentration of Sn, for example, if the additive concentration of Sn is increased, the effect as a nucleus for recovering crystallinity, which is one of the two functions, becomes greater, but on the other hand, the melting point of the entire system increases. It becomes difficult to melt, making it difficult to record. On the other hand, when it decreases, the melting point decreases and it becomes easier to melt, but on the other hand, the number of crystal nuclei during erasing decreases and it becomes difficult to erase. Of course, if the amount decreases extremely, the effect of suppressing Te grain size growth will be lost and reversibility will be lost. In other words, recording sensitivity and erasing sensitivity both depend on the Sn concentration at the same time, so in an actual system, it is impossible to select a concentration that satisfies both of them, and this creates a compositional sensitivity limit. be.

そこで本発明においては上記anの役割を2つに分け、
記録時におけるTeの粒成長の抑制作用をBiに、また
消去時における核生成の役割をAuに別々に組わせるこ
とによって材料設計の自由度を拡大し更なる感度向上を
計るものであるO8bはその半金属的性質から、Snと
同様に膜中においてTeと結合して非晶質を形成しやす
いうえ、例えばTeとの化合物Sb2Te3は、5nT
eに比較しても融点が低く記録感度の向上が期待できる
。Te  TeO2系薄膜にAu、を添加する効果につ
いては既に特願昭59−61463において明らかにし
た。つまり、AuはTe  TeO2薄膜中でAu−T
eという何らかの化合物を形成しその物質が結晶化しや
すいことから消去時に結晶核として働き消去感度を高め
るということに加えて、Auの性質として酸化を受けに
くいため少量の添加でも十分効果があり系全体の他の特
性におよぼす影響は少ない。また、Auを添加した系に
おいては融点の低下が見られ他の添加物質と組み合わせ
ることで記録特性の向上が計れるものと考えられる。
Therefore, in the present invention, the role of the above an is divided into two,
O8b aims to expand the degree of freedom in material design and further improve sensitivity by separately combining the role of Te to suppress grain growth during recording with Bi and the role of nucleation during erasing with Au. Because of its semimetallic properties, like Sn, it tends to combine with Te in the film to form an amorphous state, and for example, a compound with Te, Sb2Te3,
It has a lower melting point than e, and can be expected to improve recording sensitivity. The effect of adding Au to a TeTeO2 thin film has already been clarified in Japanese Patent Application No. 59-61463. In other words, Au is Au-T in the TeTeO2 thin film.
It forms some kind of compound called e, which easily crystallizes, so it acts as a crystal nucleus during erasure and increases the erasure sensitivity.In addition, since the nature of Au is that it is resistant to oxidation, even a small amount of addition is sufficient to improve the overall system. It has little effect on other properties. Furthermore, in the system to which Au is added, the melting point is lowered, and it is thought that the recording characteristics can be improved by combining it with other additives.

本発明においてはTe−Tea2系材料系材前述のよう
に熱的安定性制御素子としてGe、記録特性制御素子と
してSb1消去特性制御素子としてAuを適用し、各要
素の構成比を変えて最適組成の抽出を行なった。
In the present invention, Te-Tea2-based materials are used. As mentioned above, Ge is used as a thermal stability control element, Sb is used as a recording property control element, and Au is used as an erasure property control element, and the composition ratio of each element is changed to create an optimal composition. was extracted.

以下、具体的例をもって本発明を更に詳しく説明する0
まず、本発明のTe −0−Go−Sb−Au系記録材
料の製法について説明する。
The present invention will be explained in more detail below using specific examples.
First, a method for manufacturing the Te-0-Go-Sb-Au recording material of the present invention will be explained.

第2図は本発明の記録部材の製造に用いた4元の蒸着装
置のペルジャー内の様子を示したものである。図中、1
4〜17はそれぞれTe TeO2゜Ge、Sb、Au
に対応したソースであって10〜13はシャッター、6
〜9は膜厚モニター装置のヘッドを示す。真空系1Bを
’r 0−5Terr程度の真空に引いた後、真空系内
に備えた4台の電子ビーム用ガン(図示省略)を用い、
4つのソースを各々、別々に電子線ビームで加熱し蒸着
レートをモニターして電源にフイドノ(ツクしながら外
部モーター3に接続されたシャフト4に支持された回転
板6上にT e −0−Ge −8b−Auの6元薄膜
を合成する。
FIG. 2 shows the inside of a Pelger of a quaternary vapor deposition apparatus used for manufacturing the recording member of the present invention. In the figure, 1
4 to 17 are Te TeO2゜Ge, Sb, Au, respectively
Sources corresponding to 10 to 13 are shutters, 6
9 shows the head of the film thickness monitoring device. After drawing the vacuum system 1B to a vacuum of about 0-5 Terr, using four electron beam guns (not shown) provided in the vacuum system,
Each of the four sources is separately heated with an electron beam, the evaporation rate is monitored, and the T e -0- A 6-element thin film of Ge-8b-Au is synthesized.

このとき、Te−Te02ソースには、例えば特願昭5
8−116317に記載の焼結体ペレットを使用するこ
とができ、6元を4つのソースで精度よく制御すること
が可能である。膜組成はAES。
At this time, for example, the Te-Te02 source is
The sintered pellets described in 8-116317 can be used, and it is possible to precisely control the six elements using four sources. The film composition is AES.

XPS、XMA、SIMS等の方法を用いて′決定する
ことができる。
It can be determined using methods such as XPS, XMA, SIMS, etc.

蒸着方法としてはもちろん6つのソースを用いることも
可能であるし、また特願昭68−233009に記載の
混合物ペレットを使用してソースの数を減らすことも可
能である。更に、スパッタリングによって形成すること
も可能である。
Of course, it is possible to use six sources as the vapor deposition method, and it is also possible to reduce the number of sources by using the mixture pellets described in Japanese Patent Application No. 68-233009. Furthermore, it is also possible to form by sputtering.

次に、上述の方法で形成した記録薄膜についてその特性
を評価する方法について説明する。
Next, a method for evaluating the characteristics of the recording thin film formed by the above method will be described.

本発明の記録部材は繰り返し可逆的変化を利用するもの
であるから光学定数が増大する方向の特性(光学濃度が
増加するので黒化と呼ぶ)すなわち消去特性と、減少す
る方向の特性(光学濃度が減少するので白化と呼ぶ)す
なわち記録特性とを同時に評価する必要がある。
Since the recording member of the present invention utilizes repeated and reversible changes, it has a characteristic in the direction in which the optical constant increases (called blackening because the optical density increases), that is, an erasing characteristic, and a characteristic in the direction in which the optical constant decreases (optical density In other words, it is necessary to evaluate the recording characteristics at the same time.

第3図は、本発明の記録部材の評価系を簡単に示したも
のである。半導体レーザ19を発した光は第1のレンズ
20で平行光とされた後、第2のレンズ系21で円いビ
ームに整形され、ビームスプリッタ−22,λ/4板2
板金3して第3のレンズ24で半値中で約0.9μmの
円スポットに収束され、記録媒体26上に照射される。
FIG. 3 simply shows an evaluation system for the recording member of the present invention. The light emitted from the semiconductor laser 19 is collimated by the first lens 20, then shaped into a circular beam by the second lens system 21, and then passed through the beam splitter 22 and the λ/4 plate 2.
The sheet metal 3 is focused by the third lens 24 into a circular spot of approximately 0.9 μm at half maximum, and is irradiated onto the recording medium 26 .

反射光は入射光と反対の経路をたどりビームスプリッタ
−22で曲げられ第4のレンズ27で収束され光検出器
28に入り記録状態の確認がおこなわれる。
The reflected light follows a path opposite to that of the incident light, is bent by a beam splitter 22, is converged by a fourth lens 27, and enters a photodetector 28 to confirm the recording state.

本発明においては、半導体レーザーを変調し、黒化特性
の評価には照射パワーを比較的小さく例えば1mW/μ
m2程度のパワー密度に固定し照射時間を変えて黒化開
始の照射時間を測定する、または照射時間を例えば1μ
冠程度に固定し照射光パワーを変えて黒化開始の照射光
パワーを測定する等の方法を適用する。同様に白化特性
の評価には記録部材をあらかじめ黒化しておき照射光パ
ワーを比較的高く例えば7 mW/μ−に固定して白化
に必要な最短照射時間を測定する、あるいは照射時間を
例えば5QnlE程度に固定し照射光パワーを変えて白
化開始の照射光パワーを測定する等の方法を適用する。
In the present invention, the semiconductor laser is modulated, and the irradiation power is set to a relatively small value, for example, 1 mW/μ, for evaluating the blackening characteristics.
Fix the power density to about m2 and change the irradiation time and measure the irradiation time at which blackening starts, or set the irradiation time to 1μ, for example.
A method such as fixing the irradiation light to the crown level and changing the irradiation light power to measure the irradiation light power at which blackening begins is applied. Similarly, to evaluate the whitening characteristics, the recording member is blackened in advance, the irradiation light power is fixed at a relatively high level, for example, 7 mW/μ-, and the shortest irradiation time required for whitening is measured, or the irradiation time is set to 5QnlE, for example. A method such as fixing the level and changing the irradiation light power and measuring the irradiation light power at which whitening starts is applied.

次に、前述の方法で形成した様々な組成の記録部材につ
いて上記の方法により評価をおこなった結果について説
明する。
Next, the results of evaluating recording members of various compositions formed by the above-described method using the above-described method will be described.

実施例1 評価材料組成として、Te −Ge−Sbの原子数の比
が76:10:15となるように組成制御を行ない、同
時にこのT @ 7s G lil 1o S b 1
esとAu、0との3つの系としてAuおよびOの組成
制御を行なって様々な組成の記録部材を得た。
Example 1 As the evaluation material composition, the composition was controlled so that the ratio of the number of atoms of Te-Ge-Sb was 76:10:15, and at the same time, this T @ 7s G lil 1o S b 1
The compositions of Au and O were controlled as three systems: es, Au, and 0, and recording members with various compositions were obtained.

第4図aは上記組成の中で(TeO,75GeO,1”
bo、16)80o20  :)まり、 T @ e 
oG @ s S b 12020に対してAuの添加
量を変え1mW/μm2のパワーで照射したときの黒化
開始に要する照射時間の変化を示したものである。この
図よりAuを添加することによって黒化開始の照射時間
は大巾に短縮化されるが、添加量が2%程度から既に十
分な効果が得られることがわかる。bは、例えば1mW
/μ−のパワーで6μ蒐照射して黒化した部分に、例え
ば照射時間を60 n SIKとして照射パワーを変化
して照射したときの白化開始に要する照射パワーの変化
を示している。これから、Auを添加することで白化開
始に必要な照射光パワーは増大するが16チ程度までは
実用上問題が無いこと、20チでは非常に白化しにくい
ことがわかる。この2つの図からTe−0−Sb−Go
−Au系において基本的特性が確保でき、かつAuの添
加量としては2〜15%の範囲に選ぶことで記録特性を
そこなうことな〈従来の数倍の速度で消去することが可
能であることがわかった。この時、照射パワー密度を高
めると、各カーブは左方向ヘシフトすることが確かめら
れた。
Figure 4a shows (TeO, 75GeO, 1”
bo, 16) 80o20:) Mari, T @ e
This figure shows the change in the irradiation time required to start blackening when oG @ s S b 12020 is irradiated with a power of 1 mW/μm 2 with different amounts of Au added. From this figure, it can be seen that the addition of Au greatly shortens the irradiation time to start blackening, but a sufficient effect can already be obtained with an addition amount of about 2%. b is, for example, 1 mW
The graph shows the change in the irradiation power required to start whitening when the irradiation time is 60 n SIK and the irradiation power is varied to irradiate a blackened area by irradiation with a power of /μ- for 6 μm. From this, it can be seen that although adding Au increases the irradiation light power required to start whitening, there is no practical problem up to about 16 inches, and that whitening is extremely difficult to occur at 20 inches. From these two figures, Te-0-Sb-Go
- The basic characteristics can be secured in the Au system, and by selecting the amount of Au added in the range of 2 to 15%, the recording characteristics will not be impaired (it is possible to erase at several times the speed of conventional methods) I understand. At this time, it was confirmed that each curve shifted to the left when the irradiation power density was increased.

ついでTe−GeSbの構成比を変えた系について同様
の実験を行なった結果について説明する。
Next, the results of similar experiments conducted on systems in which the composition ratio of Te-GeSb was changed will be explained.

実施例2 評価材料組成としてTe−Ge−5b 、 Au 、O
の構成比を70:10:20となるように組成制御を行
ない、この中でTe−Go−Sbの3成分の組成比を変
化させて様々な組成の記録部材を得た。
Example 2 Evaluation material composition: Te-Ge-5b, Au, O
The composition was controlled so that the composition ratio was 70:10:20, and recording members with various compositions were obtained by changing the composition ratio of the three components Te-Go-Sb.

第6図aは、上記組成物の中でTe−Sb −Goの3
成分系に占めるSbの組成比を20%とし、Geの組成
比を変化した時の黒化開始温度を例えば特開昭59−7
0229記載の方法で、調べた結果を示す。この図から
Goの添加濃度が増加すると黒化開始温度が上昇し白状
態の熱的な安定性が高まることがわかる。これらの記録
膜について50℃のクリーンオープン中に放置してその
透過率変化を調べたところ、変化開始温度が100℃以
下のものでは約24Hで透過率の減少が確認されたが、
それ以上のものでは、約1ケ月後にもせいぜい絶対量の
1%程度の変化しか見られずGo濃度が3%以上あれば
熱的安定性は十分であると考えられる。更にGo濃度を
増すと膜はより高温の条件にも耐えるようになるが膜の
透過率の大巾な増大(吸収の減少)を伴って今度は逆に
黒化感度が低下する傾向になる。Go添加濃度が3%〜
16チの範囲では十分な消去感度が得られた。
Figure 6a shows that 3 of Te-Sb-Go in the above composition.
For example, when the composition ratio of Sb in the component system is set to 20% and the composition ratio of Ge is changed, the blackening start temperature is calculated from JP-A-59-7.
The results of the investigation using the method described in 0229 are shown below. From this figure, it can be seen that as the concentration of Go added increases, the blackening initiation temperature increases and the thermal stability of the white state increases. When these recording films were left in a clean open at 50°C and their transmittance changes were examined, it was confirmed that the transmittance decreased after about 24 hours for those whose change start temperature was 100°C or lower.
If it is more than that, only a change of about 1% in absolute amount is observed even after about one month, and it is considered that thermal stability is sufficient if the Go concentration is 3% or more. If the Go concentration is further increased, the film will be able to withstand higher temperature conditions, but the film's transmittance will greatly increase (absorption will decrease), and the blackening sensitivity will tend to decrease. Go addition concentration is 3%~
Sufficient erasing sensitivity was obtained in the range of 16 inches.

第6図すは、Te−5b−Geの3成分系に占めるGo
の組成比を10%としSbの組成比を変化した時の記録
感度の変化を示している照射パルス中は約50 n S
eCである。この図からSbの添加濃度が6%程度では
やや感度が悪く反射率変化量も小さく、それ以下では白
化しにくいこと、1o、3゜チ程度では十分な記録(白
化)感度が得られること、36%程度になるとやや感度
の低下とともに反射率変化量が減少することがわかる。
Figure 6 shows Go occupying in the Te-5b-Ge three-component system.
This shows the change in recording sensitivity when the composition ratio of Sb is changed to 10%.During the irradiation pulse, approximately 50 nS
It is eC. This figure shows that when the concentration of Sb added is about 6%, the sensitivity is slightly poor and the amount of change in reflectance is small, and when it is less than that, it is difficult to whiten, and when the concentration is about 1° and 3°, sufficient recording (whitening) sensitivity can be obtained. It can be seen that when it reaches about 36%, the sensitivity decreases a little and the amount of change in reflectance decreases.

このとき、消去速度はやはりAuの効果で従来に数倍す
ることがわかった。Sb濃度を更に増加するとやがて主
成分のTeの割合が減少し可逆性そのものが失なわれて
しまう。
At this time, it was found that the erasing speed was several times higher than that of the conventional method due to the effect of Au. If the Sb concentration is further increased, the proportion of Te, which is the main component, will eventually decrease and the reversibility itself will be lost.

以上のようにして各構成要素の適当な濃度がわかった。As described above, the appropriate concentration of each component was found.

次に、本発明の薄膜についてその湿度に対する耐久性を
比較した結果を示す。
Next, the results of comparing the durability against humidity of the thin films of the present invention will be shown.

実施例3 従来よりT e”T e O□系をベースとする酸化物
系薄膜においては膜中の酸素濃度によって耐湿性が変化
することが知られている。そこで、代表的組成としてT
e7゜G e s S b 1s A u 1゜という
組成をべ一スとしその酸素濃度が0〜60%の範囲で変
化するように組成制御をおこなった。
Example 3 It has been known that the moisture resistance of oxide thin films based on T e "T e O□ system changes depending on the oxygen concentration in the film.
Based on the composition of e7°G e s S b 1s A u 1°, the composition was controlled so that the oxygen concentration varied within the range of 0 to 60%.

第6図は上記薄膜を40’C,90RH%の恒温恒湿槽
中に約1ケ月間放置したときの透過率変化の様子を調べ
た結果を示す。この図から全体の系に占める酸素の組成
比が10%以上であれば初期の段階で透過率の減少が見
られるもののあとはほとんど変化が無いこと、30%以
上であれば初期の状態から全く変化が見られないことが
わかる。
FIG. 6 shows the results of examining the change in transmittance when the thin film was left in a constant temperature and humidity chamber at 40'C and 90RH% for about one month. This figure shows that if the composition ratio of oxygen in the entire system is 10% or more, there is a decrease in transmittance at the initial stage, but there is almost no change after that, and if it is 30% or more, there is no change from the initial state. It can be seen that no change is observed.

酸素は、膜の中においてTeと結合してT e O2を
形成するか、あるいはGe、Sbと結合してG e O
2。
Oxygen combines with Te in the film to form T e O2, or with Ge and Sb to form G e O
2.

5b2Q3等を形成するかあるいはそれらが複合した酸
化物を形成していることも考えられるが、いずれもTe
を中心とするTe系合金を分断する形で混在しあうこと
でその耐湿性を高める働きをするものと考えられる。た
だし、O成分をあまり増加すると、系の熱伝達率が低下
し光照射による熱が蓄積されやすくなり、この結果、く
り返し時において膜が破れやすくなる。0成分が40%
以下であればこの点は問題が無いことがわかった。
5b2Q3, etc. or a composite oxide of these may be formed, but in both cases Te
It is thought that by intermixing the Te-based alloy in a divided manner, it works to improve its moisture resistance. However, if the O component is increased too much, the heat transfer coefficient of the system decreases and heat due to light irradiation tends to be accumulated, and as a result, the film becomes more likely to break during repeated cycles. 0 component is 40%
It turns out that there is no problem with this point if the following is true.

以上の評価結果をまとめると、T o −〇 −G e
 −5b−Au5元素薄膜は、Te−Ge−8bの3成
分の構成割合が、第8図中のF〜Kで囲まれた領域に属
し、かつTe、Go、SbとAu、Oの構成割合が第7
図中のA〜Eで囲まれた領域において、例えばT @ 
aoo 20G Q es S b 1o A u s
  で代表されるものが、記録消去特性、及び安定性に
優れた記録特性を有することがわかった。各点の座標を
次表に示す。
To summarize the above evaluation results, T o −〇 −G e
-5b-Au five-element thin film has a composition ratio of the three components Te-Ge-8b belonging to the region surrounded by F to K in Fig. 8, and a composition ratio of Te, Go, Sb, Au, and O. is the seventh
In the area surrounded by A to E in the figure, for example, T @
aoo 20G Q es S b 1o A u s
It was found that those represented by the following have excellent recording/erasing characteristics and recording characteristics with excellent stability. The coordinates of each point are shown in the table below.

発明の効果 本発明によれば、T e −0−G e −8b −A
u の5元系酸化物薄膜を用いて、Teを可逆的変化の
主成分とし7、各構成要素による効果、すなわち1)Q
eによる熱的安定性向上 2)Sbによる記録感度の向上 3)Auによる消去速度の向上 4)Oによる耐湿性の向上 の複数の効果を合わせもつ優れた特性の、光学情報記録
部材を得ることができる。
Effect of the invention According to the present invention, T e -0-G e -8b -A
Using a 5-element oxide thin film of
To obtain an optical information recording member with excellent characteristics that combines the following effects: 2) improvement in thermal stability by Sb, 3) improvement in erasing speed by Au, and 4) improvement in moisture resistance by O. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学情報記録部材の一実施例における
断面図、第2図は本発明の光学情報記録媒体を製造する
蒸着装置の一例の構成、を示す一部切欠いた斜視図、第
3図は本発明の光学情報記録部材の記録消去特性を測定
する装置の光学系を示す断面図、第4図は本発明の光学
情報記録部材の一実施例におけるAuの濃度による記録
消去特性の変化を示すグラフ、第6図(a)’ 、 (
b)は各々本発明の光学情報記録部材のGo濃度と黒化
開始温度及び、Sbの濃度と白化開始パワー特性を示す
グラフ、第6図は本発明の一実施例における0の濃度と
耐湿特性の関係を示すグラフ、第7図及び第8図は本発
明の光学情報記録部材に用いる光学情報記録膜の組成領
域を表わす三角ダイアグラムである。 1・・・・・・基材、2・・・・・・記録薄膜。 代理人の氏名 弁理士 中 尾 敏 勇 ほか1名第1
図 第2図 第3図 第4図 (aン tt) ”Y  射1 ” 7− (yPIw/)(、−)第5
図 (Q> (A) 第6図 叙買時間(〆ay) 第7図 /ρρ γe−にe−θb
FIG. 1 is a sectional view of an embodiment of the optical information recording member of the present invention, and FIG. 2 is a partially cutaway perspective view showing the configuration of an example of a vapor deposition apparatus for manufacturing the optical information recording medium of the present invention. FIG. 3 is a cross-sectional view showing an optical system of an apparatus for measuring the recording and erasing characteristics of the optical information recording member of the present invention, and FIG. Graph showing changes, Figure 6(a)', (
b) is a graph showing Go concentration, blackening start temperature, and Sb concentration and whitening start power characteristics of the optical information recording member of the present invention, and FIG. 6 is a graph showing 0 concentration and moisture resistance characteristics in an example of the present invention. 7 and 8 are triangular diagrams showing the composition range of the optical information recording film used in the optical information recording member of the present invention. 1... Base material, 2... Recording thin film. Name of agent: Patent attorney Toshi Isamu Nakao and 1 other person 1st
Figure 2 Figure 3 Figure 4 (antt) "Y ray 1" 7- (yPIw/) (, -) 5th
Figure (Q> (A) Figure 6 Purchase time (〆ay) Figure 7/ρρ γe- to e-θb

Claims (1)

【特許請求の範囲】[Claims] 少なくともTe、O、Sb、Ge及びAuから成る薄膜
で、膜中のTe−Sb−Geの原子数の和とAu、Oの
原子数との割合が第7図中におけるA〜Eで囲まれた斜
線の領域に有り、かつTe、Ge、Sbの原子数との割
合が第8図中におけるF〜Kで囲まれた領域に存在する
薄膜を備えた光学情報記録部材。
In a thin film consisting of at least Te, O, Sb, Ge, and Au, the ratio of the sum of the number of Te-Sb-Ge atoms to the number of Au and O atoms in the film is surrounded by A to E in Figure 7. 8. An optical information recording member comprising a thin film which is present in the diagonally shaded region and whose ratio of the number of atoms of Te, Ge, and Sb is present in the region surrounded by F to K in FIG.
JP59123003A 1984-06-15 1984-06-15 Optical information-recording member Granted JPS612594A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59123003A JPS612594A (en) 1984-06-15 1984-06-15 Optical information-recording member
CA000483786A CA1245762A (en) 1984-06-15 1985-06-12 Reversible optical information recording medium
US06/743,801 US4656079A (en) 1984-06-15 1985-06-12 Reversible optical information recording medium
DE8585107452T DE3574193D1 (en) 1984-06-15 1985-06-14 Reversible optical information recording medium
EP19850107452 EP0169367B1 (en) 1984-06-15 1985-06-14 Reversible optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123003A JPS612594A (en) 1984-06-15 1984-06-15 Optical information-recording member

Publications (2)

Publication Number Publication Date
JPS612594A true JPS612594A (en) 1986-01-08
JPH0526668B2 JPH0526668B2 (en) 1993-04-16

Family

ID=14849851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123003A Granted JPS612594A (en) 1984-06-15 1984-06-15 Optical information-recording member

Country Status (1)

Country Link
JP (1) JPS612594A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258787A (en) * 1985-05-13 1986-11-17 Asahi Chem Ind Co Ltd Information-recording medium
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62209742A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Optical information recording member
JPH02158383A (en) * 1988-12-12 1990-06-18 Hitachi Ltd Data recording membrane
JPH02252577A (en) * 1989-03-28 1990-10-11 Ricoh Co Ltd Information recording medium
US8470514B2 (en) 2007-03-30 2013-06-25 Panasonic Corporation Information recording medium and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258787A (en) * 1985-05-13 1986-11-17 Asahi Chem Ind Co Ltd Information-recording medium
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62209742A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Optical information recording member
JPH02158383A (en) * 1988-12-12 1990-06-18 Hitachi Ltd Data recording membrane
JPH02252577A (en) * 1989-03-28 1990-10-11 Ricoh Co Ltd Information recording medium
US8470514B2 (en) 2007-03-30 2013-06-25 Panasonic Corporation Information recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0526668B2 (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US5194363A (en) Optical recording medium and production process for the medium
JP3566743B2 (en) Optical recording medium
JP2584741B2 (en) Rewritable optical information recording member
JPS612594A (en) Optical information-recording member
JPH0475835B2 (en)
JP2592800B2 (en) Optical information recording member
JPS612593A (en) Optical information-recording member
JPS612592A (en) Optical information-recording member
JPH0371035B2 (en)
JPH05151619A (en) Optical information recording medium and recording method
JPH0530194B2 (en)
JPS6288152A (en) Optical information recording member
JPS6358636A (en) Optical information recording medium
JPH0194545A (en) Optical type information recording medium
JPH042436B2 (en)
JPH0371034B2 (en)
JPS63155437A (en) Information recording medium
JPH0262736A (en) Optical information recording medium
JPS6391837A (en) Optical information recording member
JPS62161590A (en) Optical information recording member
JPS63167440A (en) Method for recording or recording and erasing information
JP2954731B2 (en) Information recording medium and information recording method using the same
JPH042437B2 (en)
JPS6391836A (en) Optical information recording member
JPS62161587A (en) Optical information recording member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees