JPS612592A - Optical information-recording member - Google Patents

Optical information-recording member

Info

Publication number
JPS612592A
JPS612592A JP59123001A JP12300184A JPS612592A JP S612592 A JPS612592 A JP S612592A JP 59123001 A JP59123001 A JP 59123001A JP 12300184 A JP12300184 A JP 12300184A JP S612592 A JPS612592 A JP S612592A
Authority
JP
Japan
Prior art keywords
recording
thin film
enhancement
atoms
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59123001A
Other languages
Japanese (ja)
Other versions
JPH0530192B2 (en
Inventor
Noboru Yamada
昇 山田
Kunio Kimura
邦夫 木村
Eiji Ono
鋭二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59123001A priority Critical patent/JPS612592A/en
Priority to CA000483786A priority patent/CA1245762A/en
Priority to US06/743,801 priority patent/US4656079A/en
Priority to DE8585107452T priority patent/DE3574193D1/en
Priority to EP19850107452 priority patent/EP0169367B1/en
Publication of JPS612592A publication Critical patent/JPS612592A/en
Publication of JPH0530192B2 publication Critical patent/JPH0530192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable to record and erase information with low energy, by using a thin film of a material based on a Te-TeO2 material containing a relatively large amount of component Te with at least, In, Ge and Au incorporated therein, in which the compositional ratios of the additives are specified. CONSTITUTION:The thin film is provided in which the relative values of the total number of atoms of Te-In-Ge and the numbers of atoms of Au and O lie in the shaded region A-E on the figure and the relative numbers of atoms of Te, Ge and In lie in the shaded region F-K on the figure. Accordingly, by using the thin film of the five-element oxide system Te-O-GE-In-Au, an optical information-recording member can be obtained which comprises Te as a main constituent for reversible change and has a combination of excellent characteristics owing to the respective effects of the constituents, namely, enhancement of thermal stability by Ge, enhancement of recording sensitivity by In, enhancement of erasing speed by Au, and enhancement of moisture resistance by O.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光線を用いて情報信号を高密度かつ高速
に記録再生し、かつ情報の書き換えが可能な光学情報記
録部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical information recording member that uses a laser beam to record and reproduce information signals at high density and high speed, and that allows information to be rewritten.

従来例の構成とその問題点 レーザ光線を利用して高密度な情報の記録再生を行なう
技術は既に公知であシ現在文書ファイルシステム、静止
画ファイルシステム等への応用がさかんに行なわれてい
る。また書き換え可能なタイプの記録システムについて
も研究開発の事例が報告されつつある。
Conventional configurations and their problems The technology for recording and reproducing high-density information using laser beams is already well known, and is currently being actively applied to document file systems, still image file systems, etc. . In addition, research and development cases are being reported regarding rewritable recording systems.

゛レーザ光線を用いて記録薄膜の光学的性質、例えば屈
折率、消衰係数等を可逆的に増減させることで情報を繰
り返し記録消去する記録媒体については例えば特公昭4
7−26897に見られるT 111 s 1G el
s S b 2 S 2 のように酸素以外のカルコゲ
ン元素をベースとするアモルファス薄膜が知られていた
が湿気に対して弱いという問題があり実用化には至って
いなかった。この耐湿性を改良したものにTeとOをベ
ースとする酸化物系の薄膜がある。これらは比較的強く
て短いパルス光を照射して照射部を昇温状態から急冷し
てその光学定数を減少させ、比較的弱くて長いパルス光
を照射して光学定数を増大させることで記録消去を行な
うというもので、記録時には一般に光学定数を減少させ
る方向、消去時には増大する方向を利用しようというも
のである。
``Recording media in which information is repeatedly recorded and erased by reversibly increasing or decreasing the optical properties of the recording thin film, such as the refractive index and extinction coefficient, using a laser beam, are described in Japanese Patent Publication No. 4, for example.
T 111 s 1G el found in 7-26897
Amorphous thin films based on chalcogen elements other than oxygen, such as s S b 2 S 2 , have been known, but they have not been put into practical use due to the problem of being sensitive to moisture. An oxide thin film based on Te and O has improved moisture resistance. These erase records by irradiating relatively strong and short pulsed light to rapidly cool the irradiated area from a heated state to decrease its optical constant, and by irradiating relatively weak and long pulsed light to increase the optical constant. The idea is to generally use the direction in which the optical constant decreases during recording and the direction in which it increases during erasing.

従来記録材料として用いられてきたTe  TeO2系
薄膜は例えばアモルファス状態のT e O2マトリツ
ク中にTeの小粒子(〜2〇人)が散在した状態、ある
いはToとT e O2とが例えばX線回析ではピーク
が検出されない程度のアモルファスに近d状態で混ざり
合ったものと考えられるが、いずれにせよ光の照射によ
ってその構造を大きく変化し情報信号の記録に寄与する
のはTe粒子である。従って、このTe粒子に適当な物
質を化合させることでToの可逆的構造変化に必要な熱
的条件を制御し、例えばレーザ光線等での記録消去に要
する照射パワー、照射時間をある程度操作することは可
能である。
The TeTeO2 thin film conventionally used as a recording material has, for example, an amorphous TeO2 matrix in which small particles of Te (~20 particles) are scattered, or To and TeO2 formed by, for example, X-ray radiation. It is thought that the Te particles are mixed in an amorphous, near-d state with no peak detected in the analysis, but in any case, it is the Te particles that significantly change their structure upon irradiation with light and contribute to the recording of information signals. Therefore, by combining these Te particles with an appropriate substance, the thermal conditions necessary for reversible structural change of To can be controlled, and for example, the irradiation power and irradiation time required for erasing records with a laser beam can be controlled to some extent. is possible.

例えば特開昭55−28530には、Se、Sによって
Te Ter2系薄膜の構造変化の可逆性を高める方法
、特願昭58−58158には、金属、半金属の中でも
特にSn、Ge、In、Sb、Bi等の元素の添加によ
って、やはりTe−Tea2系薄膜の構造可逆性を高め
、同時に膜の安定性、製造時の再現性をも高める方法に
ついての提案がある。その後の詳しい研究によって、こ
の中で例えばG。
For example, Japanese Patent Application Laid-Open No. 55-28530 describes a method for increasing the reversibility of structural changes in Te Ter2 thin films using Se and S, and Japanese Patent Application No. 58-58158 describes a method for increasing the reversibility of structural changes in Te Ter2 thin films using Se and S. There are proposals for a method of increasing the structural reversibility of the Te-Tea2 thin film by adding elements such as Sb and Bi, and at the same time improving the stability of the film and the reproducibility during manufacturing. After detailed research, for example, G.

を添加するとTe粒子径の増大、秩序の回復に要するエ
ネルギーが急激に増加し微量でもその記録信号ピットの
熱的安定性を制御する仁とができること(1983,第
30回応用物理学関係連合講演会予稿集P87〜)、ま
たSnはその半金属的性質によって記録時にはレーザ光
線の照射による溶融状態から固化する際、Teと結合し
てその粒径成長を抑制する効果とともに、逆妃消去時に
は結晶性回復の核として働くという効果を合わせもち、
その添加濃度を選ぶことで記録感度、消去感度を制御す
ることができること等が明らかになシ、GeとSnとを
同時に添加した記録薄膜を用いて光ディスクが試作され
た(1983  工APANDISPLAY  予稿集
P46〜)。このディスクは実時間で同時に記録、消去
することが可能であシ、かつ記録信号ビットも安定とい
う優れた特性を有していたが、感度面、特に消去感度が
十分ではなく、例えば現在の半導体レーザでは能力限界
の上限であり、更なる感度向上が必要となっていた。
Adding Te increases the particle size and the energy required to restore order increases rapidly, making it possible to control the thermal stability of recorded signal pits even in small amounts (1983, 30th Applied Physics Union Lecture) In addition, due to its semimetallic nature, Sn combines with Te when it solidifies from a molten state by laser beam irradiation during recording, suppressing the grain size growth, and also forms a crystal during reverse erasing. It also has the effect of acting as a core for sexual recovery,
It became clear that recording sensitivity and erasing sensitivity could be controlled by selecting the doping concentration, and an optical disk was prototyped using a recording thin film to which Ge and Sn were added simultaneously (1983 Engineering APAND IS PLAY Proceedings P46 ~). This disk had the excellent characteristics of being able to record and erase data simultaneously in real time, and the recorded signal bits were also stable. This is the upper limit of laser performance, and further improvement in sensitivity is required.

発明の目的 本発明は、従来のTe T@02酸化物系薄膜を改良し
、低パワーで記録、消去が可能な高感度光学情報記録媒
体を提供することを目的とするものである。
OBJECTS OF THE INVENTION The object of the present invention is to improve the conventional Te T@02 oxide thin film and provide a highly sensitive optical information recording medium that can be recorded and erased with low power.

発明の構成 本発明は、前記目的を達成するために、Te成分が比較
的多いTo T@102系材料をペースに、少なくとも
In、Ge、Auを同時に添加して成る薄膜を用いるも
のであり、前記添加物の各組成比を適当に選ぶことで記
録薄膜の安定性を損なうことなく記録消去感度の向上を
実現するものである0実施例の説明 以下、図面を参照しつつ本発明を詳述する。第1図は、
本発明の光学情報記録部材の断面図である。本発明にお
いては、基材1の上に記録薄膜2を蒸着あるいはスパッ
タリング等の方法で形成する。基材は通常の光ディスク
に用いるものであればよ(、PMMA、塩化ビニール、
ポリカーボネイト等の透明な樹脂、あるいはガラス板等
を適用することができる。
Structure of the Invention In order to achieve the above-mentioned object, the present invention uses a thin film made of a To T@102 material with a relatively large Te component and simultaneously adding at least In, Ge, and Au. By appropriately selecting the composition ratio of each of the additives, it is possible to improve the recording and erasing sensitivity without impairing the stability of the recording thin film.Description of Examples The present invention will be described in detail below with reference to the drawings. do. Figure 1 shows
FIG. 1 is a sectional view of an optical information recording member of the present invention. In the present invention, the recording thin film 2 is formed on the base material 1 by a method such as vapor deposition or sputtering. The base material may be one used for ordinary optical discs (PMMA, vinyl chloride,
Transparent resin such as polycarbonate, a glass plate, etc. can be used.

記録薄膜としては、T e −0−I n −G eの
4元に更にAuを添加した5元系薄膜を用いる。前述の
ように、T o −0−8n −G e  の4元系薄
膜を用いて形成した記録薄膜は、実時間で同時に゛記録
消去することが可能であるが感度的に十分では無かった
As the recording thin film, a quinary thin film in which Au is further added to the quaternary T e -0-I n -G e is used. As mentioned above, a recording thin film formed using a quaternary thin film of T o -0-8n -G e is capable of simultaneously recording and erasing data in real time, but the sensitivity is not sufficient.

このTo−0−8n−Geの4元系における感度限界は
、前述したようにSnに2つの働きを兼ねさせていると
いう点に発すると考えられる。っまりSnの添加濃度を
変化させることによって、例えばSnの添加濃度を増加
した場合には2つの働きのうちの結晶性の回復の核とし
ての効果が大きくなる反面、系全体の融点が上昇して溶
融しにくくなり記録が行ないにくくなる。逆に減少した
場合には融点は低下して溶融しやすくなる反面、消去時
の結晶核が減少し消去しにくくなる。もちろん極端に減
少した場合にはTeの粒径成長の抑制効果が失なわれ可
逆性が無くなってしまう。つまり、記録感度、消去感度
はその両方が同時にSnの濃度に依存するため、実際の
系においてはそのどちらをも満足、する濃度を選択する
ことになり、そこに組成的な感度限界が生じるものであ
る。
The sensitivity limit in the To-0-8n-Ge four-element system is thought to be due to the fact that Sn serves two functions as described above. By changing the additive concentration of Sn, for example, if the additive concentration of Sn is increased, the effect as a nucleus for crystallinity recovery among the two functions becomes greater, but on the other hand, the melting point of the entire system increases. This makes recording difficult. On the other hand, when it decreases, the melting point decreases and it becomes easier to melt, but on the other hand, the number of crystal nuclei during erasing decreases and it becomes difficult to erase. Of course, if the amount decreases extremely, the effect of suppressing Te grain size growth will be lost and reversibility will be lost. In other words, recording sensitivity and erasing sensitivity both depend on the Sn concentration, so in an actual system, a concentration that satisfies both needs to be selected, and this is where a compositional sensitivity limit occurs. It is.

そこで本発明においては上記Snの役割を2つに分け、
記録時におけるTeの粒成長の抑制作用をInに、まだ
消去時における核生成の役割をAuに別々に担わせるこ
とによって材料設計の自由度を拡大し、更なる感度向上
を計るものである。
Therefore, in the present invention, the role of Sn is divided into two,
By separately allowing In to play the role of suppressing the grain growth of Te during recording, and allowing Au to play the role of nucleation during erasing, the degree of freedom in material design is expanded and further sensitivity is improved.

Inはその半金属的性質からSnと同様膜中においてT
oと結合して非晶質を形成しやすいうえ、例えばTeと
の化合物InTe、工n2Te3等は5nTeに比べて
も融点が低く記録感度の向上が期待できる。
Due to its semimetallic properties, In has T in the film like Sn.
It is easy to combine with 5nTe to form an amorphous state, and compounds with Te, such as InTe and 5nTe3, have lower melting points than 5nTe and can be expected to improve recording sensitivity.

Te TeO2系薄膜にAuを添加する効果については
既に特願昭59−61463において明らかにした。つ
まり、AuはTe  TeO2系においてAu−Teと
いう何らかの化合物を形成し、その物質が結晶化しやす
いことから消去時において結晶核として働き消去感度を
高めるということに加えて、Auの性質とし酸化を受け
ないだめ、少量の添加でも十分効果が有り、系全体の他
の特性におよぼす影響は少ない。また、Auを添加した
系においては目立って融点の低下が見られ、他の添加物
質を適当に選ぶことで記録、消去の両特性に優れた記録
薄膜が得られると考えられるものである。
The effect of adding Au to a TeTeO2 thin film has already been disclosed in Japanese Patent Application No. 59-61463. In other words, Au forms a compound called Au-Te in the TeTeO2 system, and since this substance is easily crystallized, it acts as a crystal nucleus during erasure and increases the erasure sensitivity. However, it is sufficiently effective even when added in small amounts, and has little effect on other properties of the entire system. Furthermore, in the system to which Au was added, the melting point was noticeably lowered, and it is believed that by appropriately selecting other additives, a recording thin film with excellent recording and erasing properties can be obtained.

本発明において、Te−Teo2系材料に、前述のよう
に熱的安定性制御要素としてGe、記録特性制御要素と
してIn、消去特性制御要素としてAuを適用し、各要
素の構成比を変えて最適組成の抽出を行なった。
In the present invention, as mentioned above, Ge is applied as a thermal stability control element, In as a recording characteristic control element, and Au as an erasing characteristic control element to the Te-Teo2-based material, and the composition ratio of each element is changed to optimize the The composition was extracted.

以下、具体的例をもって本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail using specific examples.

まず、本発明のT e −0−G e−I n−Au系
記録材料の製法について説明する。
First, a method for manufacturing the T e -0-G e-I n-Au recording material of the present invention will be explained.

第2図は本発明の記録部材の製造に用いた4元の蒸着装
置のペルジャー内の様子を示したものである。図中、1
4−17はそれぞれT e  T e O2。
FIG. 2 shows the inside of a Pelger of a quaternary vapor deposition apparatus used for manufacturing the recording member of the present invention. In the figure, 1
4-17 are T e T e O2, respectively.

Ge、In、Auに対応したソースであって10〜13
はシャッター、6〜9は膜厚モニター装置のヘッドを示
す。真空系18を1oTorr 程度の真空に引いた後
、真空系内に備えた4台の電子ビーム用ガン(図示省略
)を用い、4つのソースを各々、別々に電子線ビームで
加熱し蒸着レートをモニターして電源にフィードバック
しながら外部モーター3に接続されたシャフト4に支持
された回転板5上にT e −0−G e −I n 
−A u t7) 5元薄膜を合成する。このときTe
−Teo2ソースには、例えば特願昭58−11631
7に記載の焼結体ペレットを使用することができ、6元
を4つのソースで精度よく制御することが可能である。
A source compatible with Ge, In, and Au with 10 to 13
1 is a shutter, and 6 to 9 are heads of a film thickness monitoring device. After drawing the vacuum system 18 to a vacuum of about 10 Torr, the four sources were individually heated with electron beams using four electron beam guns (not shown) provided in the vacuum system to control the evaporation rate. T e -0 - G e -I n is placed on a rotary plate 5 supported by a shaft 4 connected to an external motor 3 while monitoring and feeding back to the power supply.
-Aut7) Synthesize a 5-element thin film. At this time Te
- For Teo2 source, for example, Japanese Patent Application No. 58-11631
The sintered pellets described in 7 can be used, and it is possible to precisely control the six elements using four sources.

膜組成はAES。The film composition is AES.

XPS、XMA、SIMS 等の方法を用いて決定する
ことができる。
It can be determined using methods such as XPS, XMA, SIMS, etc.

蒸着方法としては、もちろん5つのソースを用いるとと
も可能であるし、また特願昭68−233009に記載
の混合物ペレットを使用してソースの数を減らすことも
可能である。更に、スパッタリングによって形成するこ
とも可能である。
As for the vapor deposition method, it is of course possible to use five sources, and it is also possible to reduce the number of sources by using the mixture pellets described in Japanese Patent Application No. 68-233009. Furthermore, it is also possible to form by sputtering.

次に、」二連の方法で形成した記録薄膜についてその特
性を評価する方法について説明する。
Next, a method for evaluating the characteristics of the recording thin film formed by the two methods will be described.

本発明の記録部材は繰り返し可逆的変化を利用するもの
であるから光学定数が増大する方向の特性(光学濃度が
増加するので黒化と呼ぶ)すなわち消去特性と、減少す
る方向の特性(光学濃度が減少するので白化と呼ぶ)す
なわち記録特性とを同時に評価する必要がある。
Since the recording member of the present invention utilizes repeated and reversible changes, it has a characteristic in the direction in which the optical constant increases (called blackening because the optical density increases), that is, an erasing characteristic, and a characteristic in the direction in which the optical constant decreases (optical density In other words, it is necessary to evaluate the recording characteristics at the same time.

第3図は、本発明の記録部材の評価系を簡単に示したも
のである。半導体レーザ19を発した光は第1のレンズ
20で平行光とされた後、第2のレンズ系21で円いビ
ーム整形され、ビームスプリッタ−22,λ/4板2板
金3して第3のレンズ24で半値巾で約0.9μmの円
スポット12収束され、記録媒体25上に照射される。
FIG. 3 simply shows an evaluation system for the recording member of the present invention. The light emitted by the semiconductor laser 19 is made into parallel light by the first lens 20, and then shaped into a circular beam by the second lens system 21. A circular spot 12 having a half width of about 0.9 μm is converged by the lens 24 and irradiated onto the recording medium 25 .

反射光は入射光と反対の経路をたどりビームスプリッタ
−22で曲けられ、第4のレンズ27で収束され光検出
器28に入り記録状態の確認がおこなわれる。
The reflected light follows a path opposite to that of the incident light, is bent by the beam splitter 22, is converged by the fourth lens 27, and enters the photodetector 28 to confirm the recording state.

本発明においては、半導体レーザを変調し、黒化特性の
評価には照射パワーを比較的小さく例えば1mW/μ−
程度のパワー密度に固定し照射時間を変えて黒化開始の
照射時間を測定する、まだは照射時間を例えば1μ就程
度に固定し照射光パワーを変−えて黒化開始の照射光パ
ワーを測定する等の方法を適用する。同様に白化特性の
評価には記録部材をあらかじめ黒化しておき照射光パワ
ーを比較的高く、例えば7mW/μ−に固定して白化に
必要な最短照射時間を測定する。あるいは照射時間を例
えば60nsec程度に固定し照射光パワーを変えて白
化開始の照射光パワーを測定する等の方法を適用する。
In the present invention, the semiconductor laser is modulated, and the irradiation power is set to a relatively low value, for example, 1 mW/μ-, for evaluating the blackening characteristics.
Measure the irradiation time at which blackening starts by fixing the irradiation time at a certain power density and changing the irradiation time.For example, fix the irradiation time to about 1 μm and measure the irradiation light power at which blackening starts by changing the irradiation light power. Apply methods such as Similarly, to evaluate the whitening property, the recording member is blackened in advance, the irradiation light power is fixed at a relatively high level, for example, 7 mW/μ-, and the shortest irradiation time required for whitening is measured. Alternatively, a method may be applied in which the irradiation time is fixed to, for example, about 60 nsec, the irradiation light power is changed, and the irradiation light power at which whitening starts is measured.

次に、前述の方法で形成した様々な組成の記録部材につ
いて上記の方法により評価をおこなった結果について説
明する。
Next, the results of evaluating recording members of various compositions formed by the above-described method using the above-described method will be described.

実施例1 評価材料組成として、To−Ge −Inの原子数の比
が75:10:15となるように組成制御を行ない、同
時にこのTe76Ge1゜In16と、Au、0との3
つの系としてAuおよび0の組成制御を行なって様々な
組成の記録部材を得た。
Example 1 As for the evaluation material composition, the composition was controlled so that the ratio of the number of atoms of To-Ge-In was 75:10:15, and at the same time, the composition of Te76Ge1°In16, Au, and 0 was
The compositions of Au and O were controlled as one system, and recording members with various compositions were obtained.

第4図aは上記組成の中で(” eO,T5Ge0. 
IIno、 15)80020 つまり、  T e 
e o G e a I n 12o2゜に対してAu
の添加量を変え、1mW/μ−のパワーで照射したとき
の黒化開始に要する照射時間の変化を示したものである
。この図よりAuを添加することによ−て黒化開始の照
射時間は大巾に短縮化されるが、添加量が2%程度から
既に十分な効果が得られることがわかる。bは、例えば
1 mW/μ−のパワーで6μ渡照射して黒化した部分
に、例えば照射時間を5 On In2として照射パワ
ーを変化して照射したときの白化開始に要する照射パワ
ーの変化を示している。これから、Auを添加すること
で白化開始に必要な照射光パワーは増大するが16%程
度までは実用上問題が無いこと、20%では非常に白化
しにくいことがわかる。
Figure 4a shows ("eO, T5Ge0.
IIno, 15) 80020 That is, T e
Au for e o G e a I n 12o2°
This figure shows the changes in the irradiation time required for the start of blackening when the amount of addition was changed and irradiation was performed at a power of 1 mW/μ. This figure shows that adding Au greatly shortens the irradiation time to start blackening, but a sufficient effect can be obtained even when the amount added is about 2%. b represents the change in the irradiation power required to start whitening when a blackened area is irradiated with a power of 1 mW/μ- for a duration of 6μ, and the irradiation power is varied, for example, with an irradiation time of 5 On In2. It shows. It can be seen from this that although adding Au increases the irradiation light power required to start whitening, there is no practical problem up to about 16%, and that whitening is extremely difficult to occur at 20%.

この2つの図からTo−〇−I n−Ge−Au系にお
いて基本的特性が確保でき、かつAuの添加量としては
2〜16%の範囲に選ぶことで記録特性をそこなうこと
な〈従来の数倍の速度で消去することが可能であること
がわかった。この時、照射パワー密度を高めると、各カ
ーブは左方向ヘシフトすることが確かめられた。
From these two figures, the basic characteristics can be secured in the To-〇-I n-Ge-Au system, and by selecting the amount of Au added in the range of 2 to 16%, the recording characteristics will not be impaired. It turns out that it is possible to erase data several times faster. At this time, it was confirmed that each curve shifted to the left when the irradiation power density was increased.

ついで、To−Ge−Inの構成比を変えた系について
同様の実験を行なった結果について説明する。
Next, the results of similar experiments conducted on systems in which the composition ratio of To--Ge--In was changed will be explained.

実施例2 評価材料組成としてTo−Ge−In 、Au 、Oの
組成比を70:10:20となるように組成制御を行な
い、この中でTe−Ge−Inの3成分の組成比を変化
させて様々な組成の記録部材を得た。
Example 2 As the evaluation material composition, the composition ratio of To-Ge-In, Au, and O was controlled to be 70:10:20, and the composition ratio of the three components Te-Ge-In was changed. Recording members having various compositions were obtained in this manner.

第6図aは、上記組成物の中でTo−In−Geの3成
分系に占めるInの組成比を15%とし、Geの組成比
を変化した時の黒化開始温度を例えば特開昭59−70
229記載の方法で調べた結果を示す。この図から、G
eの添加濃度が増加すると黒化開始温度が上昇し白状態
の熱的な安定性が高まることがわかる。これらの記録膜
について50℃のクリーンオーブン中に放置してその透
過率変化を調べたところ、変化開始温度が100℃以下
のものでは約24Hで透過率の減少が確認されたが、そ
れ以上のものでは、約1ケ月後にもせいぜい絶対量の1
%程度の変化しか見られず、Ge濃度が3%以上あれば
熱的安定性は十分であると考えられる。更にGe濃度を
増すと膜はより高温の条件にも耐えるようになるが膜の
透過率の大巾な増大(吸収の減少)を伴って今度は逆に
黒化感度が低下する傾向になる。Ge添加濃度が3%〜
16%の範囲では十分な消去感度が得られた。
Figure 6a shows, for example, the blackening start temperature when the composition ratio of In in the three-component system of To-In-Ge in the above composition is 15% and the composition ratio of Ge is changed. 59-70
The results of the investigation using the method described in No. 229 are shown below. From this figure, G
It can be seen that as the addition concentration of e increases, the blackening start temperature increases and the thermal stability of the white state increases. When these recording films were left in a clean oven at 50°C and their transmittance changes were examined, it was confirmed that the transmittance decreased after about 24 hours for those whose change start temperature was below 100°C, but For example, after about a month, at most 1 of the absolute amount
% change was observed, and it is considered that thermal stability is sufficient if the Ge concentration is 3% or more. If the Ge concentration is further increased, the film will be able to withstand higher temperature conditions, but the film's transmittance will greatly increase (absorption will decrease), and the blackening sensitivity will tend to decrease. Ge addition concentration is 3%~
Sufficient erasure sensitivity was obtained in the 16% range.

第6図すは、Te−In−Geの3成分系に占めるGe
の組成比を10%としInの組成比を変化した時の記録
感度の変化を示している照射パルス巾は約50 n g
52である。この図から、Inの添加濃度が3%程度で
はやや感度が悪く反射率変化量も小さく、それ以下では
白化しにくいこと10.20%程度では十分な記録(白
化)感度が得られること、30%程度になるとやや感度
の低下とともに反射率変化量が減少することがわかる。
Figure 6 shows the Ge content in the Te-In-Ge three-component system.
The irradiation pulse width, which shows the change in recording sensitivity when the composition ratio of In is changed to 10%, is approximately 50 ng.
It is 52. From this figure, it can be seen that when the concentration of In added is about 3%, the sensitivity is slightly poor and the amount of change in reflectance is small, and when it is less than that, it is difficult to whiten, and when the concentration of In is about 10.20%, sufficient recording (whitening) sensitivity can be obtained. %, it can be seen that the sensitivity decreases slightly and the amount of change in reflectance decreases.

このとき、消去速度はやはりAuの効果で従来に数倍す
ることがわかった。In濃度を更に増加するとやがて主
成分のToの割合が減少し可逆性そのものが失なわれて
しまう。
At this time, it was found that the erasing speed was several times higher than that of the conventional method due to the effect of Au. If the In concentration is further increased, the proportion of To, the main component, will eventually decrease and the reversibility itself will be lost.

以上のようにして各構成要素の適当な濃度がわかった。As described above, the appropriate concentration of each component was found.

次に、本発明の薄膜についてその濃度に対する耐久性を
比較した結果を示す。
Next, the results of comparing the durability of the thin film of the present invention with respect to its concentration will be shown.

実施例3 従来よりTe  TaO2系をベースとする酸化物系薄
膜においては膜中の酸素濃度によって耐湿性が変化する
ことが知られている。そこで、代表的組成としてT @
 7oG @ 6I n 1s A u 1oという組
成をベースとし、その酸素濃度が0〜60%の範囲で変
化するように組成制御をおこなった。
Example 3 It has been known that the moisture resistance of TeTaO2-based oxide thin films changes depending on the oxygen concentration in the film. Therefore, as a typical composition, T @
Based on the composition 7oG @ 6I n 1s A u 1o, the composition was controlled so that the oxygen concentration varied within the range of 0 to 60%.

第6図は、上記薄膜を40℃、90RH%の恒温恒湿槽
中に約1ケ月間放置したときの透過率変化の様子を調べ
だ結果を示す。この図から全体の系に占める酸素の組成
比が10%以上であれば初期の段階で透過率の減少が見
られるものの、あとはほどんど変化が無いこと、30%
以上であれば初期の状態から全く変化が見られないこと
がわかる。酸素は、膜の中においてToと結合してTe
O2を形成するか、あるいはGe、Inと結合してGe
O2゜I n 203等を形成するか、あるいはそれら
が複合した酸化物を形成していることも考えられるが、
いずれもToを中心とするTe系合金を分断する形で混
在しあうことでその耐湿性を高める働きをするものと考
えられる。
FIG. 6 shows the results of examining the change in transmittance when the thin film was left in a constant temperature and humidity chamber at 40° C. and 90 RH% for about one month. This figure shows that if the composition ratio of oxygen in the entire system is 10% or more, there is a decrease in transmittance at the initial stage, but there is almost no change after that.
If the above is the case, it can be seen that there is no change at all from the initial state. Oxygen combines with To in the film to form Te.
Forms O2 or combines with Ge and In to form Ge
It is possible that O2゜I n 203 or the like or a composite oxide of these is formed.
It is thought that both of these work to increase the moisture resistance of the Te-based alloy, which is mainly composed of To, by intermingling with each other in a divided manner.

ただし、0成分をあまシ増加すると、系の熱伝達率が低
下し光照時による熱が蓄積されやすくなり、この結果く
り返し時において膜が破れやすくなる。0成分が40%
以下であればこの点は問題が無いことがわかった。
However, if the zero component is increased too much, the heat transfer coefficient of the system decreases, and the heat generated during light irradiation is likely to be accumulated, and as a result, the film becomes more likely to tear during repeated use. 0 component is 40%
It turns out that there is no problem with this point if the following is true.

以上の評価結果をまとめると、T e −0−G e 
−I n−Au  S元系薄膜は、Te−Ge−Inの
3成分の構成割合が、第8図中のF−にで囲まれた領域
に属し、かつTe−Ge−InとAu、Oの構成割合が
第7図中のA〜Eで囲まれた領域において、例えばT 
fil e 0020G @ s I n 1oAu 
6  で代表されるものが、記録消去特性、及び安定性
に優れた記録特性を有することがわかった。各点の座標
を次表に示す。
To summarize the above evaluation results, T e −0−G e
-I n-Au S-based thin film has a composition ratio of the three components of Te-Ge-In that belongs to the region surrounded by F- in FIG. For example, in the area surrounded by A to E in FIG.
fil e 0020G @ s I n 1oAu
It was found that those represented by No. 6 had excellent recording/erasing characteristics and recording characteristics with excellent stability. The coordinates of each point are shown in the table below.

発明の効果 本発明によれば、Te−0−Ge−I n−Au (7
) 5元系酸化物薄膜を用いて、Teを可逆的変化の主
成分とし、各構成要素による効果、すなわち1)Geに
よる熱的安定性向上 2)Inによる記録感度の向上 3)Auによる消去速度の向上 4) Oによる耐湿性の向上 の複数の効果を合わせもつ優れた特性の、光学情報記録
部材を得ることができる。
Effects of the Invention According to the present invention, Te-0-Ge-I n-Au (7
) Using a quinary oxide thin film, Te is the main component for reversible changes, and the effects of each component are as follows: 1) Improvement in thermal stability with Ge 2) Improvement in recording sensitivity with In 3) Erasing with Au Improvement in speed 4) It is possible to obtain an optical information recording member with excellent characteristics that combines the multiple effects of improving moisture resistance due to O.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学情報記録部材の一実施例における
断面図、第2図は本発明の光学情報記録媒体を製造する
蒸着装置の一例の構成を示す一部切欠いた斜視図、第3
図は本発明の光学情報記録部材の記録消去特性を測定す
る装置の光学系を示す断面図、第4図は本発明の光−情
報記録部材の一実施例におけるAuの濃度による記録消
去特性の変化を示すグラフ、第5図a、bは各々本発明
の光学情報記録部材のGe9度と黒化開始温度及び、I
nの濃度と白化開始パワー特性を示すグラフ、第6図は
本発明の一実施例における0の濃度と耐湿特性の関係を
示すグラフ、第7図及び第8図は本発明の光学情報記録
部材に用いる光学情報記録膜の組成領域を表わす三角ダ
イアグラムである。 1・・・・・・基材、2・・・・・・記録薄膜。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第4図 (αJ 118射n8P11f−声1;eC) (h) vI!、v/X#ワー(MW/)tsn’)第5図 yq、針内“ワー 01ヴン戸す 第6図 名文、  雪  時 間 (doど) 第7図 10σ re−1n−(re
FIG. 1 is a sectional view of an embodiment of the optical information recording member of the present invention, FIG. 2 is a partially cutaway perspective view showing the configuration of an example of a vapor deposition apparatus for manufacturing the optical information recording medium of the present invention, and FIG.
The figure is a sectional view showing the optical system of an apparatus for measuring the recording and erasing characteristics of the optical information recording member of the present invention, and FIG. Graphs illustrating changes, FIGS. 5a and 5b, are Ge9 degrees, blackening start temperature, and I of the optical information recording member of the present invention, respectively.
FIG. 6 is a graph showing the relationship between the density of n and the whitening initiation power characteristic, FIG. 6 is a graph showing the relationship between the density of 0 and moisture resistance characteristics in an embodiment of the present invention, and FIGS. 7 and 8 are the optical information recording members of the present invention. 1 is a triangular diagram showing the composition range of an optical information recording film used for. 1... Base material, 2... Recording thin film. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 4 (αJ 118 shot n8P11f-voice 1; eC) (h) vI! , v /

Claims (1)

【特許請求の範囲】[Claims] 少なくともTe、O、In、Ge、及びAuから成る薄
膜で、膜中のTe−In−Geの原子数の和とAu、O
の原子数との割合が第7図中におけるA〜Eで囲まれた
斜線の領域に有り、かつTe、Ge、Inの原子数の割
合が第8図中におけるF〜Kで囲まれた領域に存在する
薄膜を備えた光学情報記録部材。
A thin film consisting of at least Te, O, In, Ge, and Au, the sum of the number of Te-In-Ge atoms in the film and Au, O
The ratio of the number of atoms of Te, Ge, and In is in the diagonally shaded area surrounded by A to E in FIG. 7, and the ratio of the number of Te, Ge, and In atoms is in the area surrounded by F to K in FIG. 8. An optical information recording member comprising a thin film present in
JP59123001A 1984-06-15 1984-06-15 Optical information-recording member Granted JPS612592A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59123001A JPS612592A (en) 1984-06-15 1984-06-15 Optical information-recording member
CA000483786A CA1245762A (en) 1984-06-15 1985-06-12 Reversible optical information recording medium
US06/743,801 US4656079A (en) 1984-06-15 1985-06-12 Reversible optical information recording medium
DE8585107452T DE3574193D1 (en) 1984-06-15 1985-06-14 Reversible optical information recording medium
EP19850107452 EP0169367B1 (en) 1984-06-15 1985-06-14 Reversible optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123001A JPS612592A (en) 1984-06-15 1984-06-15 Optical information-recording member

Publications (2)

Publication Number Publication Date
JPS612592A true JPS612592A (en) 1986-01-08
JPH0530192B2 JPH0530192B2 (en) 1993-05-07

Family

ID=14849807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123001A Granted JPS612592A (en) 1984-06-15 1984-06-15 Optical information-recording member

Country Status (1)

Country Link
JP (1) JPS612592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62283431A (en) * 1986-05-31 1987-12-09 Toshiba Corp Optical recording medium
JPS6356827A (en) * 1986-08-27 1988-03-11 Tdk Corp Information recording medium and information recoding and erasing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62283431A (en) * 1986-05-31 1987-12-09 Toshiba Corp Optical recording medium
JPS6356827A (en) * 1986-08-27 1988-03-11 Tdk Corp Information recording medium and information recoding and erasing method

Also Published As

Publication number Publication date
JPH0530192B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
US5194363A (en) Optical recording medium and production process for the medium
JP3566743B2 (en) Optical recording medium
JP2584741B2 (en) Rewritable optical information recording member
US4939013A (en) Optical information storing medium
US5882493A (en) Heat treated and sintered sputtering target
JPH0475835B2 (en)
GB2057017A (en) Recording member
JP2592800B2 (en) Optical information recording member
JPS612594A (en) Optical information-recording member
JPS612592A (en) Optical information-recording member
JP2908826B2 (en) Information recording medium
JPS612593A (en) Optical information-recording member
JPH0371035B2 (en)
JPH04134643A (en) Optical information recording medium
JPH05151619A (en) Optical information recording medium and recording method
JPH0673991B2 (en) Optical information recording element
JPH0530194B2 (en)
JPS6288152A (en) Optical information recording member
JPH0371034B2 (en)
JP2954731B2 (en) Information recording medium and information recording method using the same
JPS6391837A (en) Optical information recording member
JPS62161590A (en) Optical information recording member
JPS59109392A (en) Optical information recording medium
JPS6391836A (en) Optical information recording member
JPS62161587A (en) Optical information recording member