JP3506621B2 - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP3506621B2
JP3506621B2 JP34073498A JP34073498A JP3506621B2 JP 3506621 B2 JP3506621 B2 JP 3506621B2 JP 34073498 A JP34073498 A JP 34073498A JP 34073498 A JP34073498 A JP 34073498A JP 3506621 B2 JP3506621 B2 JP 3506621B2
Authority
JP
Japan
Prior art keywords
layer
recording
transparent dielectric
dielectric layer
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34073498A
Other languages
Japanese (ja)
Other versions
JP2000173103A (en
Inventor
信 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34073498A priority Critical patent/JP3506621B2/en
Publication of JP2000173103A publication Critical patent/JP2000173103A/en
Application granted granted Critical
Publication of JP3506621B2 publication Critical patent/JP3506621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、照射するレーザ光
等の光線の出力に応じて非晶質−結晶質の2状態に相変
化する記録層を有し、前記2状態における記録ピットの
光の反射率差を利用してデジタル情報を記録、再生する
ものであって、書き換え可能な光記録媒体に関する。 【0002】 【従来の技術】従来の相転移を利用した書き換え可能な
光記録媒体M(以下、媒体Mという)の部分断面図を図
1に示す。同図において、1はポリカーボネート等の樹
脂、ガラス等から成るディスク状の透明基板、2はZn
S−SiO2 等から成る第1透明誘電体層、3はGeT
e等から成り非晶質−結晶質の2状態に相変化可能な記
録層、4はZnS−SiO2 等から成る第2透明誘電体
層、5はAl等の高反射率材料から成る反射層である。 【0003】このような書き換え可能な媒体Mにおい
て、記録層3は結晶質状態と非結晶質状態とで光の反射
率が異なっており、一般的には結晶質状態の方が反射率
が高い。そして、媒体Mの動作原理は以下のようなもの
である。まず、記録層3の全ての記録ピットを結晶化し
ておく。即ち、反射率が高い状態とし初期化しておく。
情報の書込には、媒体Mを回転させながら2種のレーザ
パワーにパルス変調されたレーザビームを照射し、高出
力(10数〜20mW程度)のレーザビームが照射され
た記録ピットでは記録層3材料の融点よりも高温にな
り、溶融して急冷され非晶質化する。一方、中出力(5
〜10mW程度)のレーザビームが照射された記録ピッ
トでは、前記融点以下の結晶化可能温度範囲まで昇温さ
れた後、冷却され結晶質状態になる。 【0004】上記の書込動作は、古い情報が残留してい
る上から直接行うことができ、各記録ピットは新しい情
報に対応した状態に変化する。つまり、重ね書きによる
オーバーライト(以下、OWと略す)が可能である。再
生は、読取用の低出力(1〜2mW程度)のレーザビー
ムを照射して、高反射率の結晶質相か低反射率の非晶質
相かを判読し、0,1のデジタル情報として読み取る。 【0005】上記記録層3の材料としては、Te,S
e,Sのうちの1元素を含む材料のカルコゲン化物が適
しており、カルコゲン化物は非晶質になりやすいという
特徴がある。具体的には、GeTe系材料、GeSbT
e系材料、InSeTlCo系材料、InSbTe系材
料等がある。 【0006】そして、従来、このような相変化型の媒体
Mにおいて、記録層の透明基板側の面又は記録層の上下
の面に接してSiO2 とWからなる界面層を形成するこ
とにより、OW消去率が高く、耐環境性に優れたものが
提案されている(特開平10−106026号公報:従
来例1とする)。 【0007】また、他の従来例として、透明基板上に誘
電体層と垂直磁化膜とを有する光磁気ディスクにおい
て、前記誘電体層が水素元素を含有したSiN−MX
(MXは遷移金属元素並びにランタニド元素の単体及び
SiNを除く化合物からなる群の少なくとも一員の物
質)であるものが公知である(特開平4−139636
号公報:従来例2とする)。 【0008】更に、他の従来例として、相変化型の光学
情報記録媒体であって、透明基板上に下層保護層、光学
記録層及び上層保護層をこの順序で設け、光学記録層の
両側若しくは一方に光学記録層に接して密着層を設け、
この密着層が周期率表4a族及び6a族元素及びその化
合物のうちの少なくとも一種から成り、その膜厚が1〜
50nmであることにより、光学記録層と保護層との密
着力を改善し、その結果繰り返し特性が向上するものが
知られている(特許2790874号公報:従来例3と
する)。 【0009】 【発明が解決しようとする課題】しかしながら、上記従
来例1は、SiO2 とWからなる界面層を設けている
が、OW消去率は20dB〜30dB程度と必ずしも高
いものではなかった。また、従来例2について、本発明
者等の実験によると上記SiN−MX系誘電体層は密着
性及び繰り返し記録再生特性が劣ることが判明した。更
に、従来例3は、密着性は良好であるが、OW消去率が
小さく、また光吸収性が大きく記録感度等が低下すると
いった問題があった。 【0010】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的はOW消去率が高く、密着性
に優れ、また光吸収係数が小さく記録感度等に優れたも
のとすることにある。 【0011】 【課題を解決するための手段】本発明の光記録媒体は、
透明基板上に、第1透明誘電体層と、照射する光線の出
力に応じて非晶質又は結晶質に相変化する記録層と、第
2透明誘電体層と、反射層とを順次有する光記録媒体で
あって、前記第1透明誘電体層と第2透明誘電体層は、
下記材料から成り、更に前記記録層の上面側及び下面側
の双方に、85℃、相対湿度95%の環境にて1000
時間放置して膜剥離がないようにすべく、下記組成式M
aN−Mbで表される界面層を設けたことを特徴とす
る。第1、第2透明誘電体層の材料・・・ZnS−Si
,SiN系材料,SiON系材料,SiO,Si
O,TiO,Al,Y,TaN,Al
N,ZnS,Sb,SnSe,SbSe
CeF,アモルァスSi,TiB,BC,B,C 【0012】MaN−Mb・・・MaはSi又はAlで
あり、MbはB,Bi,Al,Si,P,S,Ti,
V,Zn,Ge,Y,W,Cr,Zr,Taから成る元
素群の各単体、前記元素群の各酸化物、前記元素群の各
炭化物、のうち少なくとも1種を含む。但し、Ma=M
b且つMbが単元素の場合を除外する。 【0013】本発明は、上記構成により、光線による温
度上昇時に前記界面層と記録層との界面で記録層の結晶
核が生成し易くなり、その結果記録層が非晶質状態から
結晶質状態へ変化する速度が大きくなり、OW消去率等
の特性が向上する。また、記録層は記録時に結晶質状
態、液体状態、非晶質状態と相変化するが、従来記録時
に記録層とそれに隣接した透明誘電体層との間で相互拡
散が生じていたのが、解消されるという効果も有する。
更に、上記界面層は密着性にも優れる。 【0014】 【発明の実施の形態】本発明の媒体M1の基本的な層構
成を図2に示す。同図において、11はポリカーボネー
ト、ポリオレフィン、エポキシ樹脂、アクリル樹脂、ガ
ラス、樹脂層を表面に形成した強化ガラス、透光性セラ
ミック等から成るディスク状の透明基板、12はZnS
−SiO2 等から成る第1透明誘電体層、13は上記M
aN−Mbから成る界面層、14は相変化型の記録層、
15は前記界面層、16はZnS−SiO2 等から成る
第2透明誘電体層、17はAl等から成る反射層であ
る。 【0015】本発明において、記録層14はGeTe、
GeSbTe、InSeTlCo、InSbTe等の材
料がよく、なかでもGeTe、GeSbTeが書き換え
可能回数が大きく、結晶化する際に短時間の結晶化が可
能であり、非晶質状態の安定性も高いという点で好まし
い。 【0016】また、Gea Sbb Tec とした場合、5
at(原子)%≦a≦70at%がよく、a<5at%
では結晶化速度が遅く、70at%<aでは非晶質状態
が不安定になる。0at%≦b≦50at%がよく、5
0at%<bでは非晶質状態が不安定になる。40at
%≦c≦70at%がよく、c<40at%では結晶化
温度が高くなりすぎ、70at%<cのときも結晶化温
度が高くなりすぎる。 【0017】また、記録層14の厚さは、5〜30nm
がよく、5nm未満では結晶質状態と非晶質状態間の反
射率差が小さくなり、30nmを超えると繰り返し記録
再生によるBER(Bit Error Rate)等の特性劣化が大き
くなる。より好ましくは、10〜20nmである。 【0018】また、本発明の界面層13,15は上述し
たMaN−Mbから成る。このとき、Ma=Mb且つM
bが単元素の場合、例えばSiN−Si,AlN−Al
は本発明のMaN−Mbの範疇から除外する。 【0019】そして、Ma=Siの場合SiN−YAl
Oが好ましく、SiN−YAlOはOW消去率が大き
く、再生信号のジッターが小さくなる。また、SiN−
YAlOにおいて、YをCe,Pr,Nd,Hf等のラ
ンタニド元素と置換しても構わない。この他、SiN−
AlN−LO系(Lは原子番号57〜72のランタニド
元素),SiN−AlN系等のSiNとMbの窒化物
型、SiN−WC,SiN−SiC等のSiNとMbの
炭化物型、SiN−SiO等のSiNとMbの酸化物型
である。 【0020】前記SiN−MbにおけるMbの組成比は
3〜50mol%が好適であり、3mol%未満では密
着性及び繰り返し記録再生回数が共に劣り、50mol
%を超えると光吸収係数が0.5を超え再生信号のジッ
ターが劣化し、又は繰り返し記録再生回数が低下する。
この場合、光吸収係数が0.5を超えると、界面層1
3,15自体がレーザビーム照射で加熱され、記録マー
クが歪み再生信号のジッターが増大することになる。前
記界面層13,15の厚みについては、10〜400Å
が好適であり、10Å未満では界面の均一性が保てなく
なり、400Åを超えると記録感度が劣化する。 【0021】また、Ma=Alの場合AlN−SiC−
CrOが好ましく、これはOW消去率が大きく、再生信
号のジッターが小さい。前記AlN−MbにおけるMb
の組成比は7〜40mol%が好適であり、7mol%
未満では繰り返し記録再生回数が少なく、又はOW消去
率を大きくとれない。40mol%を超えると、光吸収
係数が0.5を超える、又は繰り返し記録再生回数が少
なくなる。この場合、界面層13,15の厚みについて
は、上記と同様に10〜400Åが好適であり、10Å
未満では界面の均一性が保てなくなり、400Åを超え
ると記録感度が劣化する。 【0022】また、参考例としてMa=Geの場合を挙
げる。この場合、GeN−AlO−Crが好適であり、
OW消去率が大きくなり再生信号のジッターが小さくな
る。また、GeN−MbにおけるMbの組成比は5〜4
5mol%が良く、5mol%未満では密着性に劣り、
45mol%を超えると光吸収係数が0.5を超える、
又は密着性が低下する。この場合、界面層13,15の
厚みについては、上記と同様に10〜400Åが好適で
あり、10Å未満では界面の均一性が保てなくなり、4
00Åを超えると記録感度が劣化する。 【0023】また、本発明の界面層13,15は記録層
14の上面側及び下面側の少なくとも一方に設ければ良
いが、図2でいえば上面側(反射層17側)に設ける方
が好ましく、その場合繰り返し記録に対する再生信号の
ジッターが減少する。更には、記録層14の上面側及び
下面側の両方に設けるのが良く、繰り返し記録再生回数
の増加とジッターの減少に効果がある。 【0024】本発明の界面層13,15は、以下のよう
な機能を有する。レーザビーム等の光線により記録層1
4が昇温された時、界面層13,15と記録層14との
界面で記録層14の結晶核が生成し易くなり、その結果
記録層14が非晶質状態から結晶質状態へ変化する速度
が大きくなり、OW消去率等の特性が向上する。また、
記録層14は記録時に結晶質状態、液体状態、非晶質状
態と相変化するが、従来記録時に記録層14とそれに隣
接した透明誘電体層との間で成分元素の相互拡散が生じ
ていたのが、解消されるという効果も有する。更に、界
面層13,15は密着性に優れるため、層全体の密着性
が向上する。 【0025】上記第1,第2透明誘電体層12,16
は、記録層14や界面層13,15の保護層及び中間層
として機能するものであり、その材質は、ZnS−Si
2 ,SiN系材料,SiON系材料,SiO2 ,Si
O,TiO2 ,Al2 3 ,Y2 3 ,TaN,Al
N,ZnS,Sb2 3 ,SnSe2 ,Sb2 Se3
CeF3 ,アモルァスSi(以下、a−Siと表記す
る),TiB2 ,B4 C,B,C等が好ましい。 【0026】特に、ZnS−SiO2 がよく、この材料
は高温での特性変化が少ない。(ZnS)x (Si
2 100-x とした場合、60at%≦x≦95at%
が好適であり、x<60at%では耐熱性が悪く、x>
95at%ではZnSの粒径が大きくなりジッターを劣
化させる。 【0027】これら第1,第2透明誘電体層12,16
の厚みは、1nm〜200nmが良く、1nm未満では
均一に成膜することが困難であり、200nmを超える
と繰り返し記録再生に対するBER等の特性劣化が大き
い。 【0028】また、反射層17は反射率が高いAl,A
lCr合金,AlCu合金,AlTi合金,Au,A
g,AuCu合金,Pt,AuPt合金等が好ましく用
いられる。 【0029】かくして、本発明の光記録媒体は、OW消
去率等の特性が向上し、記録層と透明誘電体層との間で
の相互拡散が解消され、更に界面層により密着性に優れ
るという作用効果を有する。 【0030】本発明において、上記各層を透明基板11
の両面に各々積層するか、片面に上記各層を積層した2
枚の透明基板11を貼り付けることにより、2倍の記録
容量としてもよい。また、本発明は、レーザビームをパ
ルス変調する光強度変調方式によるものに限らず、電子
ビーム、電磁波等のエネルギー線による加熱方式にも応
用可能である。本発明の媒体M1は書き換え可能な光デ
ィスクであり、DVD(デジタルビデオディスク)、C
D(コンパクトディスク)、CD−ROM等の光ディス
クに適用できる。 【0031】尚、本発明は上記の実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の変更は何等差し支えない。 【0032】 【実施例】本発明の実施例を以下に説明する。 【0033】(実施例1)図2の媒体M1(光ディス
ク)を以下のようにして構成した。ポリカーボネートか
ら成る3.5インチ径のディスク状の透明基板11の主
面上に、膜厚約1000Å、ZnS−SiO2 から成る
第1透明誘電体層12、膜厚約200Å、SiN−YA
lO等から成る界面層13、膜厚約200Å、Ge2
2 Te5 から成る記録層14、膜厚約200Å、Si
N−YAlO等から成る界面層15、膜厚約200Å、
ZnS−SiO2 から成る第2透明誘電体層16、膜厚
約1000Å、AlCrから成る反射層17を、マグネ
トロンスパッタリング法により成膜した。 【0034】また、比較例1として図3に示すような媒
体M2(光ディスク)を以下のように作製した。媒体M
2は、ポリカーボネートから成る3.5インチ径のディ
スク状の透明基板21の主面上に、膜厚約1000Å、
ZnS−SiO2 から成る第1透明誘電体層22、膜厚
約200Å、Ge2 Sb2 Te5 から成る記録層23、
膜厚約200Å、ZnS−SiO2 から成る第2透明誘
電体層24、膜厚約1000Å、AlCrから成る反射
層25を、マグネトロンスパッタリング法により成膜し
た。 【0035】次に、比較例2〜5として図4に示すよう
な媒体M3(光ディスク)を以下のように作製した。媒
体M3は、ポリカーボネートから成る3.5インチ径の
ディスク状の透明基板31の主面上に、膜厚約1000
Å、ZnS−SiO2 から成る第1透明誘電体層32、
膜厚約200Å、SiN,SiO,AlN又はCrから
成る界面層33、膜厚約200Å、Ge2 Sb2 Te5
から成る記録層34、膜厚約200Å、SiN,Si
O,AlN又はCrから成る界面層35、膜厚約200
Å、ZnS−SiO2 から成る第2透明誘電体層36、
膜厚約1000Å、AlCrから成る反射層37を、マ
グネトロンスパッタリング法により成膜した。 【0036】そして、これらについて、層全体の密着
性、繰返し記録に対するジッター、OW消去率、光吸収
係数、繰り返し記録再生回数を測定した結果を表1に、
また、SiN−YAlOから成る界面層13,15を有
する媒体M1について、界面層13,15の厚さを変化
させた場合の記録感度を測定した結果を表2に示す。 【0037】 【表1】【0038】 【表2】 【0039】尚、表1における密着性は、85℃,相対
湿度95%の環境で、0時間及び1000時間放置した
後顕微鏡で膜の剥離を観察した場合、剥離の無いものを
丸印、一部剥離したものを三角印、ほぼ膜全体が剥離し
たものを×印とした。 【0040】上記OW消去率の測定は以下のようにして
行った。まず、光ディスクのトラックの線速度を6.1
8m/sとし、光波長830nmで13mW(非晶質状
態に対応)と5mW(結晶質状態に対応)にパルス変調
されたレーザビームを照射し、4.91MHz、パルス
幅30nsで記録を行い、次いで1.84MHz、パル
ス幅30nsでOWし、OW前の4.91MHzでのキ
ャリアレベルとOW後の4.91MHzでのキャリアレ
ベルの差をOW消去率とした。 【0041】また、繰返し記録に対するジッターは、光
ディスクのトラックの線速度を6.18m/sとし、光
波長830nmで13mW(非晶質状態に対応)と5m
W(結晶質状態に対応)にパルス変調されたレーザビー
ムを照射し、4.91MHzで記録を最初に行った時の
再生信号のジッターと、同様の記録を106 回行った後
の再生信号のジッターを測定した。 【0042】そして、繰り返し記録再生回数は、ジッタ
ーを測定した同じ箇所に繰り返し記録を行い再生信号の
ジッターを測定し、このジッターが10%を超えた時点
での繰り返し記録再生回数である。 【0043】表1に示すように、本発明品は密着性、ジ
ッター、OW消去率、光吸収係数、繰り返し記録再生回
数に関し、比較例に比べて優れた特性を示した。また、
表2から、界面層13,15の厚さが400Åを超える
と記録感度が劣化することが判明した。 【0044】(実施例2)界面層13,15をAlN−
SiC−CrO等で形成した以外は実施例1の媒体M1
と同様に構成し、実施例1と同様にして、これらの層全
体の密着性、繰返し記録に対するジッター、OW消去
率、光吸収係数、繰り返し記録再生回数を測定した結果
を表3に示す。また、比較例6として、界面層13,1
5をSiO2とした以外は本実施例2と同様に構成した
ものを作製した。更に、AlN−SiC−CrOから成
る界面層13,15を有するものについて、界面層1
3,15の厚さを変化させた場合の記録感度及びジッタ
ーを測定した結果を表4に示す。 【0045】 【表3】 【0046】 【表4】【0047】表3に示すように、本発明品は密着性、ジ
ッター、OW消去率、光吸収係数、繰り返し記録再生回
数に関し、比較例6に比べて優れた特性を示した。ま
た、表4に示すように、界面層13,15の厚さが40
0Åを超えると記録感度が劣化することが判明した。 【0048】(実施例3)界面層13,15をGeN−
AlO−Cr等で形成した以外は実施例1の媒体M1と
同様に構成し、実施例1と同様にして、これらの層全体
の密着性、繰返し記録に対するジッター、OW消去率、
光吸収係数、繰り返し記録再生回数を測定した結果を表
5に示す。また、比較例7として、界面層13,15を
GeNとした以外は本実施例3と同様に構成したものを
作製した。 【0049】 【表5】 【0050】表5に示すように、本発明品は密着性、ジ
ッター、OW消去率、光吸収係数、繰り返し記録再生回
数に関し、比較例7に比べて優れた特性を示した。 【0051】 【発明の効果】本発明は、記録層の上面側及び下面側の
少なくとも一方に、MaN−Mb(但し、MaはSi,
Al又はGeであり、MbはB,Bi,Al,Si,
P,S,Ti,V,Zn,Ge,Y,W,Cr,Zr,
Taから成る元素群の各単体、Mbは前記元素群の各酸
化物、Mbは前記元素群の各窒化物、Mbは前記元素群
の各炭化物、のうち少なくとも1種を含む。)から成る
界面層を設けたことにより、光線照射による温度上昇時
に界面層と記録層との界面で記録層の結晶核が生成し易
くなり、その結果OW消去率等の特性が向上する。ま
た、記録時に記録層と透明誘電体層との間での相互拡散
が解消され、界面層を設けたことにより層全体の密着性
が向上し、更には光吸収係数が小さくなり記録感度が向
上するという作用効果を有する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a recording layer which changes into two states, amorphous and crystalline, in accordance with the output of a light beam such as a laser beam to be irradiated. In addition, the present invention relates to a rewritable optical recording medium for recording and reproducing digital information by utilizing a difference in light reflectance of recording pits in the two states. 2. Description of the Related Art FIG. 1 is a partial sectional view of a conventional rewritable optical recording medium M utilizing a phase transition (hereinafter referred to as a medium M). In the figure, 1 is a disk-shaped transparent substrate made of resin such as polycarbonate, glass or the like, and 2 is Zn
The first transparent dielectric layer made of S-SiO 2 or the like, 3 GeT
e, etc., a recording layer capable of phase-change into two states of amorphous-crystalline, 4 is a second transparent dielectric layer made of ZnS-SiO 2 or the like, 5 is a reflective layer made of a high reflectivity material such as Al. It is. In such a rewritable medium M, the recording layer 3 has a different light reflectivity between the crystalline state and the non-crystalline state. Generally, the crystalline state has a higher reflectivity. . The operating principle of the medium M is as follows. First, all the recording pits of the recording layer 3 are crystallized. That is, initialization is performed in a state where the reflectance is high.
For writing information, a laser beam pulse-modulated to two kinds of laser powers is irradiated while rotating the medium M, and a recording layer is formed in a recording pit irradiated with a high-power (about 10 to 20 mW) laser beam. The temperature becomes higher than the melting points of the three materials, and the materials are melted and rapidly cooled to become amorphous. On the other hand, medium output (5
The recording pit irradiated with the laser beam (about 10 to 10 mW) is heated to a crystallizable temperature range equal to or lower than the melting point and then cooled to a crystalline state. [0004] The above-described writing operation can be performed directly after old information remains, and each recording pit changes to a state corresponding to new information. That is, overwriting by overwriting (hereinafter abbreviated as OW) is possible. Reproduction is performed by irradiating a low-output (about 1 to 2 mW) laser beam for reading to determine whether the crystalline phase has a high reflectivity or an amorphous phase having a low reflectivity, and outputs digital information of 0,1. read. The material of the recording layer 3 is Te, S
A chalcogenide of a material containing one element of e and S is suitable, and the chalcogenide has a feature that it is likely to be amorphous. Specifically, GeTe-based materials, GeSbT
There are e-based materials, InSeTlCo-based materials, InSbTe-based materials, and the like. Conventionally, in such a phase change type medium M, an interface layer made of SiO 2 and W is formed in contact with the surface of the recording layer on the transparent substrate side or the upper and lower surfaces of the recording layer. A device having a high OW erasure rate and excellent environmental resistance has been proposed (Japanese Patent Laid-Open No. 10-106026: Conventional Example 1). As another conventional example, in a magneto-optical disk having a dielectric layer and a perpendicular magnetization film on a transparent substrate, the dielectric layer contains SiN-MX containing a hydrogen element.
(MX is a substance of at least one member of the group consisting of a transition metal element, a simple substance of a lanthanide element, and a compound other than SiN) is known (JP-A-4-139636).
Publication: Conventional Example 2). Further, as another conventional example, a phase-change type optical information recording medium, in which a lower protective layer, an optical recording layer, and an upper protective layer are provided in this order on a transparent substrate, and is provided on both sides of the optical recording layer or On one side, an adhesion layer is provided in contact with the optical recording layer,
The adhesion layer is made of at least one of the elements of Groups 4a and 6a of the periodic table and compounds thereof, and has a thickness of 1 to 4.
It is known that when the thickness is 50 nm, the adhesion between the optical recording layer and the protective layer is improved, and as a result, the repetition characteristics are improved (Japanese Patent No. 2790874: Conventional Example 3). [0009] However, in the above-mentioned prior art example 1, although the interface layer made of SiO 2 and W is provided, the OW erasure rate is not necessarily as high as about 20 dB to 30 dB. Further, with respect to Conventional Example 2, experiments by the present inventors have revealed that the SiN-MX-based dielectric layer is inferior in adhesion and repeated recording / reproducing characteristics. Further, Conventional Example 3 has good adhesion, but has a problem that the OW erasure rate is small, the light absorption is large, and the recording sensitivity and the like are reduced. Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide a high OW erasure rate, excellent adhesion, and a small light absorption coefficient, and excellent recording sensitivity. It is in. [0011] The optical recording medium of the present invention comprises:
A light having a first transparent dielectric layer, a recording layer that changes into an amorphous or crystalline phase in accordance with the output of an irradiating light beam, a second transparent dielectric layer, and a reflective layer on a transparent substrate. A recording medium, wherein the first transparent dielectric layer and the second transparent dielectric layer comprise:
It is made of the following material, and is further provided on both the upper surface side and the lower surface side of the recording layer under an environment of 85 ° C. and 95% relative humidity.
The following composition formula M
An interface layer represented by aN-Mb is provided. Material of first and second transparent dielectric layers: ZnS-Si
O 2 , SiN-based material, SiON-based material, SiO 2 , Si
O, TiO 2, Al 2 O 3, Y 2 O 3, TaN, Al
N, ZnS, Sb 2 S 3 , SnSe 2 , Sb 2 Se 3 ,
CeF 3, Amoruasu Si, TiB 2, B 4 C , B, C [0012] MAN-Mb · · · Ma is Si or Al, Mb is B, Bi, Al, Si, P, S, Ti,
It contains at least one of each element of the element group consisting of V, Zn, Ge, Y, W, Cr, Zr, and Ta, each oxide of the element group, and each carbide of the element group. Where Ma = M
Excludes cases where b and Mb are single elements. According to the present invention, with the above-described structure, crystal nuclei of the recording layer are easily generated at the interface between the interface layer and the recording layer when the temperature rises due to light rays. As a result, the recording layer changes from an amorphous state to a crystalline state. The speed at which the OW erasure rate changes increases, and characteristics such as the OW erasure rate improve. In addition, the recording layer undergoes a phase change between a crystalline state, a liquid state, and an amorphous state during recording, but interdiffusion has occurred between the recording layer and the transparent dielectric layer adjacent thereto during conventional recording. It also has the effect of being eliminated.
Further, the interface layer is excellent in adhesion. FIG. 2 shows a basic layer structure of a medium M1 according to the present invention. In the figure, 11 is a disk-shaped transparent substrate made of polycarbonate, polyolefin, epoxy resin, acrylic resin, glass, tempered glass having a resin layer formed on the surface, translucent ceramic, etc., and 12 is ZnS
A first transparent dielectric layer 13 made of SiO 2 or the like;
aN-Mb interfacial layer, 14 is a phase change type recording layer,
15 the interface layer, 16 is a second transparent dielectric layer made of ZnS-SiO 2 or the like, 17 is a reflective layer made of Al or the like. In the present invention, the recording layer 14 is made of GeTe,
Materials such as GeSbTe, InSeTlCo, and InSbTe are good. Among them, GeTe and GeSbTe have a large number of rewritable times, can be crystallized for a short time when crystallizing, and have high stability in an amorphous state. preferable. [0016] In addition, in the case of a Ge a Sb b Te c, 5
at (atomic)% ≦ a ≦ 70 at% is preferable, and a <5 at%
In this case, the crystallization speed is low, and when 70 at% <a, the amorphous state becomes unstable. 0 at% ≦ b ≦ 50 at% is preferred, and 5 at%
When 0 at% <b, the amorphous state becomes unstable. 40at
% ≦ c ≦ 70 at% is good. When c <40 at%, the crystallization temperature is too high, and when 70 at% <c, the crystallization temperature is too high. The recording layer 14 has a thickness of 5 to 30 nm.
If the thickness is less than 5 nm, the reflectance difference between the crystalline state and the amorphous state becomes small, and if it exceeds 30 nm, the characteristic deterioration such as BER (Bit Error Rate) due to repeated recording / reproducing increases. More preferably, it is 10 to 20 nm. The interface layers 13 and 15 of the present invention are made of the above-mentioned MaN-Mb. At this time, Ma = Mb and M
When b is a single element, for example, SiN-Si, AlN-Al
Is excluded from the category of MaN-Mb of the present invention. When Ma = Si, SiN-YAl
O is preferable, and SiN-YAlO has a large OW erasing rate and a small jitter of a reproduced signal. In addition, SiN-
In YAlO, Y may be replaced with a lanthanide element such as Ce, Pr, Nd, and Hf. In addition, SiN-
SiN and Mb nitride types such as AlN-LO type (L is a lanthanide element having an atomic number of 57 to 72), SiN-AlN type and the like; SiN and Mb carbide type such as SiN-WC and SiN-SiC; SiN-SiO It is an oxide type of SiN and Mb. The composition ratio of Mb in the SiN-Mb is preferably 3 to 50 mol%, and if it is less than 3 mol%, both the adhesion and the number of repeated recording / reproduction are inferior.
%, The light absorption coefficient exceeds 0.5, the jitter of the reproduced signal is degraded, or the number of times of repeated recording and reproduction is reduced.
In this case, if the light absorption coefficient exceeds 0.5, the interface layer 1
The laser beams 3 and 15 themselves are heated by the irradiation of the laser beam, the recording marks are distorted, and the jitter of the reproduced signal increases. The thickness of the interface layers 13 and 15 is 10 to 400 °.
If it is less than 10 °, the uniformity of the interface cannot be maintained, and if it exceeds 400 °, the recording sensitivity deteriorates. When Ma = Al, AlN—SiC—
CrO is preferred, which has a high OW erasure rate and low jitter of the reproduced signal. Mb in the AlN-Mb
Is preferably 7 to 40 mol%, and 7 mol%
If it is less than 1, the number of times of repeated recording and reproduction is small, or the OW erasing rate cannot be increased. If it exceeds 40 mol%, the light absorption coefficient exceeds 0.5 or the number of times of repeated recording / reproduction decreases. In this case, the thickness of the interface layers 13 and 15 is preferably 10 to 400 ° similarly to the above, and 10 °
If it is less than 400 ° C., the uniformity of the interface cannot be maintained, and if it exceeds 400 °, the recording sensitivity deteriorates. As a reference example, the case of Ma = Ge will be described. In this case, GeN-AlO-Cr is preferred,
The OW erasure rate increases, and the jitter of the reproduced signal decreases. Further, the composition ratio of Mb in GeN-Mb is 5-4.
5 mol% is good, and less than 5 mol% is inferior in adhesion,
If it exceeds 45 mol%, the light absorption coefficient exceeds 0.5,
Or, the adhesiveness decreases. In this case, the thickness of the interface layers 13 and 15 is preferably 10 to 400 ° similarly to the above, and if the thickness is less than 10 °, uniformity of the interface cannot be maintained, and
If it exceeds 00 °, the recording sensitivity deteriorates. The interface layers 13 and 15 of the present invention may be provided on at least one of the upper surface side and the lower surface side of the recording layer 14. However, in FIG. Preferably, in that case, the jitter of the reproduction signal for repeated recording is reduced. Furthermore, it is preferable to provide it on both the upper surface side and the lower surface side of the recording layer 14, which is effective in increasing the number of times of repeated recording and reproduction and reducing jitter. The interface layers 13 and 15 of the present invention have the following functions. Recording layer 1 by a light beam such as a laser beam
When the temperature of the recording layer 4 is increased, crystal nuclei of the recording layer 14 are easily generated at the interface between the interface layers 13 and 15 and the recording layer 14, and as a result, the recording layer 14 changes from an amorphous state to a crystalline state. The speed is increased, and characteristics such as the OW erase ratio are improved. Also,
The recording layer 14 undergoes a phase change between a crystalline state, a liquid state, and an amorphous state during recording, but inter-diffusion of component elements has occurred between the recording layer 14 and the transparent dielectric layer adjacent thereto during conventional recording. This has the effect of being eliminated. Furthermore, since the interface layers 13 and 15 are excellent in adhesion, the adhesion of the entire layer is improved. The first and second transparent dielectric layers 12 and 16
Functions as a protective layer and an intermediate layer for the recording layer 14 and the interface layers 13 and 15, and is made of ZnS-Si.
O 2 , SiN-based material, SiON-based material, SiO 2 , Si
O, TiO 2, Al 2 O 3, Y 2 O 3, TaN, Al
N, ZnS, Sb 2 S 3 , SnSe 2 , Sb 2 Se 3 ,
CeF 3 , amorphous Si (hereinafter referred to as a-Si), TiB 2 , B 4 C, B, C, and the like are preferable. In particular, ZnS—SiO 2 is preferable, and this material has little change in characteristics at high temperatures. (ZnS) x (Si
O 2 ) When 100-x , 60 at% ≦ x ≦ 95 at%
Is preferable, and when x <60 at%, heat resistance is poor, and x>
At 95 at%, the particle size of ZnS becomes large and the jitter is deteriorated. The first and second transparent dielectric layers 12, 16
The thickness is preferably from 1 nm to 200 nm, and if it is less than 1 nm, it is difficult to form a film uniformly, and if it exceeds 200 nm, characteristics such as BER for repeated recording and reproduction are greatly deteriorated. The reflection layer 17 is made of Al, A having a high reflectance.
1Cr alloy, AlCu alloy, AlTi alloy, Au, A
g, AuCu alloy, Pt, AuPt alloy and the like are preferably used. Thus, the optical recording medium of the present invention has improved properties such as the OW erasure rate, eliminates interdiffusion between the recording layer and the transparent dielectric layer, and has excellent adhesion due to the interface layer. Has an effect. In the present invention, each of the above layers is formed on the transparent substrate 11.
2 each of which is laminated on both sides of the
By attaching two transparent substrates 11, the recording capacity may be doubled. The present invention is not limited to the light intensity modulation method of pulse-modulating a laser beam, but is also applicable to a heating method using energy beams such as electron beams and electromagnetic waves. The medium M1 of the present invention is a rewritable optical disk, such as a DVD (digital video disk),
It can be applied to optical disks such as D (compact disk) and CD-ROM. It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention. Embodiments of the present invention will be described below. Example 1 The medium M1 (optical disk) shown in FIG. 2 was constructed as follows. On a main surface of a 3.5-inch-diameter disk-shaped transparent substrate 11 made of polycarbonate, a first transparent dielectric layer 12 made of ZnS-SiO 2 , a film thickness of about 200 °, SiN-YA
interfacial layer 13 made of 10 O or the like, about 200 膜厚 in thickness, Ge 2 S
b 2 Te 5 recording layer 14, thickness about 200 °, Si
An interface layer 15 made of N-YAlO or the like;
A second transparent dielectric layer 16 made of ZnS-SiO 2, a reflective layer 17 made of AlCr and having a thickness of about 1000 ° was formed by magnetron sputtering. As a comparative example 1, a medium M2 (optical disk) as shown in FIG. 3 was produced as follows. Medium M
Reference numeral 2 denotes a film having a thickness of about 1000 ° on a main surface of a 3.5-inch diameter disk-shaped transparent substrate 21 made of polycarbonate.
A first transparent dielectric layer 22 of ZnS—SiO 2 , a thickness of about 200 °, a recording layer 23 of Ge 2 Sb 2 Te 5 ,
A second transparent dielectric layer 24 made of ZnS-SiO 2 and a reflective layer 25 made of AlCr and having a thickness of about 200 ° and AlCr were formed by magnetron sputtering. Next, as Comparative Examples 2 to 5, a medium M3 (optical disk) as shown in FIG. 4 was produced as follows. The medium M3 has a thickness of about 1000 on a main surface of a 3.5-inch diameter disk-shaped transparent substrate 31 made of polycarbonate.
Å, a first transparent dielectric layer 32 made of ZnS—SiO 2 ,
Interfacial layer 33 made of SiN, SiO, AlN or Cr with a film thickness of about 200 °, Ge 2 Sb 2 Te 5 with a film thickness of about 200 °
Recording layer 34 made of SiN, Si
An interface layer 35 of O, AlN or Cr, having a thickness of about 200
Å, a second transparent dielectric layer 36 made of ZnS—SiO 2 ,
A reflective layer 37 made of AlCr and having a thickness of about 1000 ° was formed by magnetron sputtering. Table 1 shows the results of measuring the adhesion of the entire layer, the jitter for repeated recording, the OW erasure rate, the light absorption coefficient, and the number of repeated recording / reproduction.
Table 2 shows the measurement results of the recording sensitivity of the medium M1 having the interface layers 13 and 15 made of SiN-YAlO when the thickness of the interface layers 13 and 15 was changed. [Table 1] [Table 2] In Table 1, the adhesion was evaluated by observing the peeling of the film with a microscope after leaving it for 0 hours and 1000 hours in an environment of 85 ° C. and 95% relative humidity. Those with partial peeling were marked with triangles, and those with almost the entire film peeled were marked with x. The measurement of the OW erasure rate was performed as follows. First, the linear velocity of a track on an optical disk is set to 6.1.
Irradiation with a laser beam pulse-modulated at 13 mW (corresponding to an amorphous state) and 5 mW (corresponding to a crystalline state) at a light wavelength of 830 nm and recording at 4.91 MHz and a pulse width of 30 ns at 8 m / s, Next, OW was performed at 1.84 MHz and a pulse width of 30 ns, and the difference between the carrier level at 4.91 MHz before OW and the carrier level at 4.91 MHz after OW was defined as the OW erasure rate. The jitter for repeated recording was 13 mW (corresponding to an amorphous state) at 5 nm at an optical wavelength of 830 nm, with the track linear velocity of the optical disk being 6.18 m / s.
W is irradiated with pulse-modulated laser beam (corresponding to a crystalline state), and jitter of the reproduced signal when the first recording was performed at 4.91MHz, similar records 10 6 times reproduction signal after Was measured. The number of times of repetitive recording / reproduction is the number of times of repetitive recording / reproducing when the jitter exceeds 10% by repeatedly recording at the same place where the jitter was measured and measuring the jitter of the reproduced signal. As shown in Table 1, the product of the present invention exhibited superior characteristics with respect to adhesion, jitter, OW erasure rate, light absorption coefficient, and number of times of repeated recording / reproduction as compared with the comparative example. Also,
From Table 2, it was found that when the thickness of the interface layers 13 and 15 exceeded 400 °, the recording sensitivity deteriorated. (Embodiment 2) The interface layers 13 and 15 are made of AlN-
The medium M1 of Example 1 except that the medium M1 was formed of SiC—CrO or the like.
Table 3 shows the results of measuring the adhesion of these layers as a whole, the jitter with respect to repeated recording, the OW erasure rate, the light absorption coefficient, and the number of times of repeated recording / reproduction in the same manner as in Example 1. As Comparative Example 6, the interface layers 13, 1
A device having the same configuration as in Example 2 except that 5 was changed to SiO 2 was produced. Further, for those having the interface layers 13 and 15 made of AlN—SiC—CrO,
Table 4 shows the measurement results of the recording sensitivity and the jitter when the thicknesses of the recording layers 3 and 15 were changed. [Table 3] [Table 4] As shown in Table 3, the product of the present invention exhibited superior characteristics in comparison with Comparative Example 6 with respect to adhesion, jitter, OW erasure rate, light absorption coefficient, and number of times of repeated recording / reproduction. Further, as shown in Table 4, the thickness of the interface layers 13 and 15 was 40
It was found that when the angle exceeds 0 °, the recording sensitivity deteriorated. (Embodiment 3) The interface layers 13 and 15 are made of GeN-
Except for being formed of AlO-Cr or the like, the medium was configured in the same manner as the medium M1 of Example 1, and in the same manner as Example 1, the adhesion of these layers as a whole, the jitter against repeated recording, the OW erasure rate,
Table 5 shows the measurement results of the light absorption coefficient and the number of times of repeated recording / reproduction. Further, as Comparative Example 7, a device having the same configuration as in Example 3 except that the interface layers 13 and 15 were made of GeN was produced. [Table 5] As shown in Table 5, the product of the present invention exhibited superior characteristics in comparison with Comparative Example 7 with respect to adhesion, jitter, OW erasure rate, light absorption coefficient, and number of times of repeated recording / reproduction. According to the present invention, at least one of the upper surface and the lower surface of the recording layer is provided with MaN-Mb (where Ma is Si,
Al or Ge, and Mb is B, Bi, Al, Si,
P, S, Ti, V, Zn, Ge, Y, W, Cr, Zr,
Each element of the element group composed of Ta, Mb includes at least one oxide of the element group, Mb includes each nitride of the element group, and Mb includes at least one carbide of the element group. ) Makes it easier to generate crystal nuclei of the recording layer at the interface between the interface layer and the recording layer when the temperature rises due to light irradiation, and as a result, the characteristics such as the OW erasure rate are improved. In addition, during recording, mutual diffusion between the recording layer and the transparent dielectric layer is eliminated, and the provision of the interface layer improves the adhesion of the entire layer, and further reduces the light absorption coefficient to improve recording sensitivity. It has the effect of doing.

【図面の簡単な説明】 【図1】従来の光記録媒体Mの部分断面図である。 【図2】本発明の光記録媒体M1の部分断面図である。 【図3】比較例1の光記録媒体M2の部分断面図であ
る。 【図4】比較例2の光記録媒体M3の部分断面図であ
る。 【符号の説明】 1:透明基板 2:第1透明誘電体層 3:記録層 4:第2透明誘電体層 5:反射層 11:透明基板 12:第1透明誘電体層 13:界面層 14:記録層 15:界面層 16:第2透明誘電体層 17:反射層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional view of a conventional optical recording medium M. FIG. 2 is a partial cross-sectional view of the optical recording medium M1 of the present invention. FIG. 3 is a partial cross-sectional view of an optical recording medium M2 of Comparative Example 1. FIG. 4 is a partial cross-sectional view of an optical recording medium M3 of Comparative Example 2. [Description of Signs] 1: transparent substrate 2: first transparent dielectric layer 3: recording layer 4: second transparent dielectric layer 5: reflective layer 11: transparent substrate 12: first transparent dielectric layer 13: interface layer 14 : Recording layer 15: interface layer 16: second transparent dielectric layer 17: reflective layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 7/24 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G11B 7/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】透明基板上に、第1透明誘電体層と、照射
する光線の出力に応じて非晶質又は結晶質に相変化する
記録層と、第2透明誘電体層と、反射層とを順次有する
光記録媒体であって、前記第1透明誘電体層と第2透明
誘電体層は、下記材料から成り、更に前記記録層の上面
側及び下面側の双方に、85℃、相対湿度95%の環境
にて1000時間放置して膜剥離がないようにすべく、
下記組成式MaN−Mbで表される界面層を設けたこと
を特徴とする光記録媒体。 第1、第2透明誘電体層の材料・・・ZnS−Si
,SiN系材料,SiON系材料,SiO,Si
O,TiO,Al,Y,TaN,Al
N,ZnS,Sb,SnSe,SbSe
CeF,アモルァスSi,TiB,B C,B,C
MaN−Mb・・・MaはSi又はAlであり、Mbは
B,Bi,Al,Si,P,S,Ti,V,Zn,G
e,Y,W,Cr,Zr,Taから成る元素群の各単
体、前記元素群の各酸化物、前記元素群の各炭化物、の
うち少なくとも1種を含む。但し、Ma=Mb且つMb
が単元素の場合を除外する。
(57) [Claim 1] A first transparent dielectric layer on a transparent substrate, a recording layer which changes into an amorphous or crystalline phase in accordance with the output of an irradiating light beam, (2) An optical recording medium having a transparent dielectric layer and a reflective layer in order, wherein the first transparent dielectric layer and the second transparent dielectric layer are made of the following materials, and further, upper and lower surfaces of the recording layer to both sides, 85 ° C., in order to be free of peeling off and left for 1,000 hours at a relative humidity of 95% RH,
An optical recording medium comprising an interface layer represented by the following composition formula: MaN-Mb. Material of first and second transparent dielectric layers: ZnS-Si
O 2 , SiN-based material, SiON-based material, SiO 2 , Si
O, TiO 2, Al 2 O 3, Y 2 O 3, TaN, Al
N, ZnS, Sb 2 S 3 , SnSe 2 , Sb 2 Se 3 ,
CeF 3 , amorphous Si, TiB 2 , B 4 C, B, C
MaN-Mb ... Ma is Si or Al, and Mb is B, Bi, Al, Si, P, S, Ti, V, Zn, G
e, Y, W, Cr, Zr, and at least one element selected from the group consisting of elemental elements, oxides of the element group, and carbides of the element group. However, Ma = Mb and Mb
Excludes the case where is a single element.
JP34073498A 1998-11-30 1998-11-30 Optical recording medium Expired - Fee Related JP3506621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34073498A JP3506621B2 (en) 1998-11-30 1998-11-30 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34073498A JP3506621B2 (en) 1998-11-30 1998-11-30 Optical recording medium

Publications (2)

Publication Number Publication Date
JP2000173103A JP2000173103A (en) 2000-06-23
JP3506621B2 true JP3506621B2 (en) 2004-03-15

Family

ID=18339808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34073498A Expired - Fee Related JP3506621B2 (en) 1998-11-30 1998-11-30 Optical recording medium

Country Status (1)

Country Link
JP (1) JP3506621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064905B2 (en) 2003-10-29 2008-03-19 株式会社東芝 Phase change optical recording medium

Also Published As

Publication number Publication date
JP2000173103A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
US5753413A (en) Rewritable medium for recording information in which the atomic arrangement is changed without the shape being changed and the optical constant is changed
JP2000113514A (en) Phase transition type optical disk
JPH11250502A (en) Optical disk
JP3506621B2 (en) Optical recording medium
JP2629746B2 (en) Optical recording medium
JP2001067722A (en) Optical recording medium
JP2001126315A (en) Optical information recording medium
JP3550317B2 (en) Optical recording medium
JP2000190637A (en) Optical information recording medium
JP2000339764A (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP3211537B2 (en) Optical recording medium
JP3550319B2 (en) Optical recording medium
JPH07220303A (en) Phase change type disk medium
JP2003067974A (en) Phase change optical recording medium
JP2798247B2 (en) Optical recording medium
JP2000348380A (en) Optical recording medium
JP2000331379A (en) Optical information recording medium
JPH05217212A (en) Information recording medium
JP2001006213A (en) Optical recording medium
JPH08129777A (en) Optical information recording medium
JPH08124213A (en) Optical recording medium
JP2001331970A (en) Optical information recording medium
JP2000137929A (en) Optical recording medium
JPH08115536A (en) Optical recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees