JPS60124039A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS60124039A
JPS60124039A JP58231561A JP23156183A JPS60124039A JP S60124039 A JPS60124039 A JP S60124039A JP 58231561 A JP58231561 A JP 58231561A JP 23156183 A JP23156183 A JP 23156183A JP S60124039 A JPS60124039 A JP S60124039A
Authority
JP
Japan
Prior art keywords
layer
recording
recording medium
irradiated
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231561A
Other languages
Japanese (ja)
Inventor
Ichiro Saito
一郎 斉藤
Yoichi Osato
陽一 大里
Hidekazu Fujii
英一 藤井
Kozo Arao
荒尾 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58231561A priority Critical patent/JPS60124039A/en
Publication of JPS60124039A publication Critical patent/JPS60124039A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable the information recording with change of optical characteristics by providing a substrate at the outside of the 1st or 2nd layer and forming the 2nd layer with a composite material obtained by dispersing a material which has high light absorbing performance and changes its optical characteristics with heat. CONSTITUTION:The 1st layer 1 is formed on a substrate (a) with a material which has a >=30% reflection factor with just a single layer to the recording light of a specific wavelength. Then the 2nd layer 2 into which a material having high light absorbing performance with high stability to the heat and changing its optical characteristics by heat is provided on the layer 1. The material of high light absorbing performance of the layer 2 absorbs the semiconductor laser irradiated, and the energy of the laser light is converted into the thermal energy to cause temperature rise. The layer 2 changes the reflection factor, the transmittance, the refractive index, etc. at the area irradiated by the laser light owing to a local temperature rise at said area. Then the information is recorded by the optical difference between the area irradiated by the laser light and the area where no laser light is irradiated.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、光学式のビデオディスク、電子ファイル、デ
ィジタルオーディオディスク等に適用して好適な光学的
情報記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to an optical information recording medium suitable for application to optical video discs, electronic files, digital audio discs, and the like.

(2)背景技術 基板」二に形成された薄膜層にレーザービームを照射し
、情報の記録・再生を行なう光学的情報記録媒体が種々
提案されている。
(2) Background Art Various optical information recording media have been proposed in which information is recorded and reproduced by irradiating a thin film layer formed on a substrate with a laser beam.

例えば、ビヌマスBl、テルルTe等の低融点金属によ
って記録薄膜層を形成し、これにレーザー光を照射して
これを溶融、蒸発させ記録ピットを形成し、情報の記録
を行なうものがある。しかし、このような記録形態で記
録ピットを形成させるためには、パワーの大きいレーザ
ー光が必要であり、また形成された記録ピットの形状が
一様でないという欠点がある。その結果、記録の再生を
行った際のノイズの原因となり易く、安定した再生信号
が得られないすなわち高密度記録を達成しにくいという
欠点がある。
For example, there is a method in which a recording thin film layer is formed of a low melting point metal such as binumuth Bl or tellurium Te, and information is recorded by irradiating this with laser light to melt and evaporate it to form recording pits. However, in order to form recording pits in this recording form, a laser beam with high power is required, and there is also a drawback that the shapes of the formed recording pits are not uniform. As a result, there are disadvantages in that it tends to cause noise when recording is reproduced, and that a stable reproduced signal cannot be obtained, that is, it is difficult to achieve high-density recording.

(3)発明の開示 本発明の目的は、上述の如き欠点を解決した光学的情報
記録媒体を提供することである。
(3) Disclosure of the Invention An object of the present invention is to provide an optical information recording medium that solves the above-mentioned drawbacks.

本発明は、書き込み、読み出し側から第2および第1の
層が順次積層されており、更に少なくとも該第2層また
は該第1層の外側に基板を有する光学的情報記録媒体で
あって、」−記第1の層は特定波長′の記録光に対して
単層のみでは反射率が30%以」二を示す材料からなり
、上記第2の層は光吸収性が大きく、加熱に対して安定
である材料の中に、主として加熱によって光学的特性が
変化する材料を分散させた複合材料から構成され、該第
2の層の該光学的特性の変化によって情報を記録するこ
とを特徴とする光学的情報記録媒体である。
The present invention provides an optical information recording medium in which a second layer and a first layer are sequentially laminated from the write and read sides, and further includes a substrate outside at least the second layer or the first layer, - The first layer is made of a material that exhibits a reflectance of 30% or more when used as a single layer for recording light of a specific wavelength, and the second layer has high light absorption and is resistant to heating. It is composed of a composite material in which a material whose optical properties change mainly by heating is dispersed in a stable material, and information is recorded by changing the optical properties of the second layer. It is an optical information recording medium.

すなわち、記録薄膜の溶融または蒸発等によって記録ビ
ットを形成して情報記録を行なう記録形態を避け、本発
明においては、記録薄膜の光学的特性、例えば各対相、
透過率、屈折率等の変化によって情報を記録するもので
、記録パワーの低減と高密度記録を可能にするものであ
る。また、記録層は熱的に安定な材料の中に、加熱によ
って光学的特性の変化する材料を分散させた構成からな
っているため、感度の劣化を防11−することができる
That is, the present invention avoids a recording form in which information is recorded by forming recording bits by melting or evaporating a recording thin film, and in the present invention, the optical characteristics of the recording thin film, for example, each relative phase,
Information is recorded by changes in transmittance, refractive index, etc., making it possible to reduce recording power and achieve high-density recording. Furthermore, since the recording layer is composed of a thermally stable material in which a material whose optical properties change upon heating is dispersed, deterioration of sensitivity can be prevented.

更に、従来まで光学的特性が変化するためには照射光に
対して吸収が大きい材料に限定されていたのに対し、熱
的に安定な材料が大きな光吸収性・を有することで光学
的特性の変化する材料に熱エイ、ルギーを有効に与える
ことができるので、光学的特性の変化する材料は吸収が
小さくても良い。
Furthermore, whereas until now optical properties could change only if materials had a large absorption of irradiated light, thermally stable materials with large light absorption can change optical properties. Since heat beams and energy can be effectively applied to materials whose optical properties change, the absorption of materials whose optical properties change may be small.

(4)発明を実施するための最良の形態以下図面を参照
して本発明の詳細な説明する。
(4) Best Mode for Carrying Out the Invention The present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

図において基板(a)、例えばガラス基板あるいはアク
リル樹脂等の光透過性の基板の」−に、特定波長の記録
光に対して単層のみでは反射率が30%以上を示す材料
からなる第1の層(1)を設け、その」二に光吸収性が
大きく、且つ加熱に対して安定な材料の中に、主として
加熱によって光学的特性例えば(支)対相、透過率、屈
折率等が変化する材料を分散させた第2の層(2)を設
ける。
In the figure, a substrate (a), for example, a glass substrate or an acrylic resin or other light-transmissive substrate, has a first layer made of a material that exhibits a reflectance of 30% or more when used as a single layer for recording light of a specific wavelength. A layer (1) is provided, and the layer (1) is made of a material that has high light absorption and is stable against heating. A second layer (2) is provided in which a variable material is dispersed.

第1の層(1)は、記録光の波長、例えば波長820 
nmの半導体レーザー光に対して単層のみでは反射率が
30%以上を示す材料からなる。また、 3− 第2の層(2)が熱エネルギーによって光学的特性の変
化する温度範囲において、この第1の層は物理的、化学
的変化の起こらないことが望ましい。
The first layer (1) has a wavelength of recording light, for example, a wavelength of 820.
It is made of a material that exhibits a reflectance of 30% or more when used as a single layer with respect to nm semiconductor laser light. In addition, 3- It is desirable that the first layer (2) undergo no physical or chemical changes in the temperature range in which the optical properties of the second layer (2) change due to thermal energy.

例えば、金Au 、銀Ag 、銅Cu 、アルミニウム
Al。
For example, gold Au, silver Ag, copper Cu, aluminum Al.

ニッケルN1.チタンTI、あるいはこれらの合金等を
利用することができ、その膜厚は20〜500nmが好
ましい。
Nickel N1. Titanium TI or an alloy thereof can be used, and the film thickness is preferably 20 to 500 nm.

第2の層(2)は、」二連した記録光に対して光吸収性
が大きく、且つ熱的に安定な材料、例えばBj2S3 
+ Bi2Te3 + St + CuInSe2 +
 AgInSe2 、 Cu1nTe2+GeS 、 
sb、、s3. CdSe 、 CdTe等の化合物の
中に主として加熱によって光学的特性の変化する材料、
例えばSe 、 Te 、 As 、 Sb 、 Cd
 、 In 、 Ge t Sn等の一種またはこれら
を含む化合物、例えばAs2S3゜Sb2Se3. T
eSe2 、 TeaoGe4oSnH) + GeS
e 、 As2Te3等を分散させた複合材料を利用し
得る。第2の層(2)の膜厚は10〜500 nmが好
ましい。また第2の層(2)に含まれる主として加熱に
よって光学的特性が変化する材料の体積割合(充填係数
)は0.1〜0.95の範囲が好ましい。
The second layer (2) is made of a thermally stable material, such as Bj2S3, which has a high light absorption property for two continuous recording beams.
+ Bi2Te3 + St + CuInSe2 +
AgInSe2, Cu1nTe2+GeS,
sb,,s3. Among compounds such as CdSe and CdTe, there are materials whose optical properties change mainly by heating.
For example, Se, Te, As, Sb, Cd
, In, Get Sn, or a compound containing these, for example, As2S3°Sb2Se3. T
eSe2, TeaoGe4oSnH) + GeS
A composite material in which As2Te3, etc. are dispersed can be used. The thickness of the second layer (2) is preferably 10 to 500 nm. Further, the volume ratio (filling coefficient) of the material contained in the second layer (2) whose optical properties change mainly due to heating is preferably in the range of 0.1 to 0.95.

 4一 本発明による光学的情報記録媒体に対して情報の記録は
以下のように行なう。
41 Information is recorded on the optical information recording medium according to the present invention as follows.

第1図のように、第2の層(2)を有する側より、例え
ば波長820 nm、出力]、OmWの半導体レーザー
を照射する。このとき、第2の層(2)では、」−述の
如く光吸収性の大きい材料によって主として吸収が起こ
り、レーザー光のエイ・ルギーは熱エネルギーに変換さ
れ、温度上昇が生じる。また、吸収されない残りのレー
ザー光は、第2の層(2)を透過し、第1の層(1)に
達する。この第1の層(1)は、反射率が高いため、第
1の層(1)に達したレーザー光は反射され町び第2の
層(2)に達する。
As shown in FIG. 1, a semiconductor laser with a wavelength of 820 nm and an output of OmW, for example, is irradiated from the side having the second layer (2). At this time, in the second layer (2), absorption mainly occurs due to the material with high light absorption as described above, and the energy of the laser beam is converted into thermal energy, causing a temperature rise. Further, the remaining laser light that is not absorbed passes through the second layer (2) and reaches the first layer (1). Since this first layer (1) has a high reflectance, the laser light that reaches the first layer (1) is reflected and reaches the second layer (2).

更に薄膜の干渉効果によって、レーザー光のエネルギー
を効率良く第2の層(2)に与えることができる。これ
らのエネルギーによって、第2の層(2)はレーザー光
が照射された部分の局部的な温度上昇が生じ、それによ
ってその部分の光学的特性、例えば反射率、透過率、屈
折率が変化し、レーザー光が照射された部分とされない
部分で光学的な差となって現われ、情報の記録がなされ
る。
Furthermore, due to the interference effect of the thin film, the energy of the laser beam can be efficiently applied to the second layer (2). These energies cause a local temperature increase in the part of the second layer (2) irradiated with the laser beam, which changes the optical properties of that part, such as reflectance, transmittance, and refractive index. , an optical difference appears between the areas that are irradiated with the laser light and the areas that are not, and information is recorded.

記録された情報の読み出しは、同様に半導体レーザーを
照射して第2の層(2)における光学的特性の差を検知
して行なう。このとき、読み出しに用いる半導体レーザ
ーのパワーは、記録時に比べて十分小さいパワー例えは
3 mWで行ない、この読み出しによるパワーでは記録
されることはない。
The recorded information is read out by similarly irradiating the second layer (2) with a semiconductor laser and detecting the difference in optical properties in the second layer (2). At this time, the power of the semiconductor laser used for reading is sufficiently lower than that during recording, for example, 3 mW, and no recording is performed with this reading power.

第1の層(1)は、反射率が30%す、上を有する材ネ
゛1が好ましい。これは、情報が記録された部分とされ
ない部分のコントラストを高めるためで、反射率が30
%す、下であると、SN比の低下を招くことになるため
である。
The first layer (1) is preferably a material having a reflectance of 30%. This is to increase the contrast between areas where information is recorded and areas where information is not recorded, and the reflectance is 30.
This is because if it is below 50%, the S/N ratio will decrease.

」−述した例では、基板(a)の1−に第1の層を設け
、更にその−Lに第2の層(2)を設けた場合を示した
が、基板(a)の」−に第2の層(2)を設け、その」
−に第1の層(1)を設けることもできる。第2図は後
者の例を示すものであるが、この図の場合には接着層(
6)を用いて別の基板(a′)を貼り合せ、両側の基板
の間に記録媒体をはさんだサンドイッチ構造のものを例
示しである。尚、レーザー光による情報の書き込み、読
み出しは第2図に示すように基板(a)側から行う。
In the example described above, the first layer is provided on 1- of the substrate (a), and the second layer (2) is further provided on the -L. A second layer (2) is provided to the
- can also be provided with a first layer (1). Figure 2 shows an example of the latter; in this case, the adhesive layer (
6) is used to bond another substrate (a'), and a sandwich structure is illustrated in which a recording medium is sandwiched between the substrates on both sides. Note that writing and reading of information using a laser beam is performed from the substrate (a) side as shown in FIG.

次に、本発明による光学的情報記録媒体の具体的実施例
を示す。
Next, specific examples of the optical information recording medium according to the present invention will be shown.

実施例 ガラス基板aの」−に、抵抗加熱による蒸着法により膜
厚100 nmのAl薄膜より成る第1の層(1)を形
成し、この」二に同様に抵抗加熱による三原蒸着法を用
いて、カドミウム・セレンCdSe中にアンチモン・セ
レンSb2Se3を分散させた膜厚約150nmの第2
の層(2)を形成した。この時、第2の層(2)に含ま
れるSb2Se3の体積の割合(充填係数)をqとする
と、Q = 0.6である。この記録媒体の第2の層(
2)を有する側からの反射率は、熱処理前で10%を示
し、200℃の熱処理を行なった場合、すなわち半導体
レーザー光(波長820 nm )によって記録した後
では37%を示した。この記録前後の反射率の差を利用
して情報の読み出しを行なうことが可能である。次に、
上記の記録媒体をディスク状のガラス基板に作製し、1
50℃で40分間熱処理した後に、基板を180Orp
mで回転さ 7− せながら、波長820 nmの半導体レーザーを用いて
記録を行なった。その時のレーザーパワーは、媒体面]
−で15mW、スポット径は1.2μmに集光され、記
録周波数は5 MT(z、20%duty比で行なった
。その結果、良好な再生信号が得られ、バンド中30 
KHzでC/Nは51 dBであった。更に、このディ
スクの回転数を100Orpmに下げ、媒体面」二で出
力5 mWの連続発振するレーザースポットを用いて−
4−述の記録ビット部分をトレースしたところ、上述の
5MHzの記録信号が消失していることが確認され、記
録ビットが消去されていることが光学顕微鏡でも観察さ
れた。これらの記録・消去を繰り返したところ、102
回まで繰り返しが可能であった。」1記と同条件で作製
した未記録の媒体を、45℃、95%RHの雰囲気に1
0日間放置後、同様にして記録実験を行なったところ、
5 MHzでの記録再生信号のC/Nは46 dBであ
った。
EXAMPLE A first layer (1) consisting of a thin Al film having a thickness of 100 nm was formed on the glass substrate a by a vapor deposition method using resistance heating, and on the second layer, a Mihara vapor deposition method using resistance heating was similarly applied. A second film with a thickness of approximately 150 nm was prepared by dispersing antimony selenium Sb2Se3 in cadmium selenium CdSe.
A layer (2) was formed. At this time, if the volume ratio (filling coefficient) of Sb2Se3 contained in the second layer (2) is q, then Q = 0.6. The second layer of this recording medium (
The reflectance from the side having 2) was 10% before heat treatment, and 37% after heat treatment at 200° C., that is, after recording with semiconductor laser light (wavelength 820 nm). It is possible to read information using this difference in reflectance before and after recording. next,
The above recording medium was manufactured on a disk-shaped glass substrate, and 1
After heat treatment at 50°C for 40 minutes, the substrate was heated to 180Orp.
Recording was performed using a semiconductor laser with a wavelength of 820 nm while rotating at 7 m. The laser power at that time is the medium surface]
- at 15 mW, the spot diameter was focused to 1.2 μm, and the recording frequency was 5 MT (z, 20% duty ratio. As a result, a good reproduced signal was obtained, and 30% of the band
The C/N was 51 dB at KHz. Furthermore, the rotational speed of this disk was lowered to 100 rpm, and a continuous oscillation laser spot with an output of 5 mW was used at the medium surface.
4- When the recorded bit portion described above was traced, it was confirmed that the recorded signal of 5 MHz described above had disappeared, and it was also observed with an optical microscope that the recorded bit had been erased. After repeating these recordings and deletions, 102
It was possible to repeat up to three times. An unrecorded medium prepared under the same conditions as in 1. was placed in an atmosphere of 45°C and 95% RH for 1 hour.
After leaving it for 0 days, we conducted a recording experiment in the same way.
The C/N of the recording/reproduction signal at 5 MHz was 46 dB.

上記実施例と同様な方法で、他の実施例として基板aの
上にCuまたは他の材料を用いて同一膜厚の第1の層(
1)を形成し、この上に他の材料を 8− 用いて同一膜厚および光学的特性が変化する材料に関し
て同一充填係数(q = 0.6 )の第2の層(2)
を形成した記録媒体、および比較例として、ガラス基板
aの上にAIの同一膜厚の第1の層(1)を形成したの
ち、この上にSb2Se3のみを用いて同一膜厚の第2
の層(2)を形成した記録媒体について、上記実施例と
同様にテストした。
In another embodiment, using a method similar to the above embodiment, a first layer (
1) and on top of this another material 8- a second layer (2) of the same filling factor (q = 0.6) for the same film thickness and material of varying optical properties.
As a comparative example, a first layer (1) of AI with the same thickness was formed on a glass substrate a, and then a second layer (1) with the same thickness was formed using only Sb2Se3.
The recording medium on which layer (2) was formed was tested in the same manner as in the above example.

それらの結果を表1にまとめて示す。表1において、第
2の層Aは光吸収性が大きく、加熱に対して安定である
材料を示し、Bは主として加熱によって光学的特性が変
化する材料を示す。本発明の実施例は、比較例に比べて
、5MHzでの記録再生信号のC/Nは、45℃、95
%RHの雰囲気に放置した後でも低下しにくく、また、
記録・消去繰り返し可能回数は向上している。
The results are summarized in Table 1. In Table 1, the second layer A indicates a material that has high light absorption and is stable against heating, and B indicates a material whose optical properties change mainly by heating. In the example of the present invention, compared to the comparative example, the C/N of the recording/reproducing signal at 5 MHz was 45°C and 95°C.
%RH, and does not easily deteriorate even after being left in an atmosphere of %RH.
The number of times recording and erasing can be repeated has been improved.

上述したように、従来の情報記録媒体、つまり記録薄膜
の溶融、蒸発等によってピットを形成する方法に比べて
、本発明による光学的情報記録媒体は、光学的特性の変
化によって情報の記録を行なうため、記録パワーを低減
することが可能である。更に、情報の記録はピットの形
成によらないため、記録ピットの形状の不均一性を防止
でき、高密度記録を可能にするものである。また、第2
の層(2)は、光吸収性が大きく、且つ物理的、化学的
に安定な材料の中に、主として加熱によって光学的特性
の変化する材料を分散させた複合材料から構成されてい
るため、湿度等による劣化を防止でき、長期保存安定性
に優れている。
As described above, compared to conventional information recording media, that is, a method in which pits are formed by melting, evaporation, etc. of a recording thin film, the optical information recording medium according to the present invention records information by changing optical characteristics. Therefore, it is possible to reduce recording power. Furthermore, since information recording does not depend on the formation of pits, non-uniformity in the shape of recording pits can be prevented and high-density recording can be achieved. Also, the second
Layer (2) is composed of a composite material in which a material whose optical properties change mainly by heating is dispersed in a material that has high light absorption and is physically and chemically stable. It can prevent deterioration due to humidity, etc., and has excellent long-term storage stability.

また、物理的、化学的に安定な材料の中に光学的特性の
変化する材料を分散したマトリックス構造にすることに
より、金属の流動等を防止できるため安定な記録が可能
となり、可逆的な反応も可能である。
In addition, by creating a matrix structure in which a material with changing optical properties is dispersed in a physically and chemically stable material, stable recording is possible because metal flow is prevented, and reversible reactions are possible. is also possible.

更に、従来までは、光学的特性の変化する材料は照射光
に対して吸収が大きい材料に限定されて 11− いたが、光吸収性が大きく且つ加熱に対して安定な材料
を用いたことで、光学的特性の変化する材料に熱エネル
ギーを有効に与えることができるので光学的特性の変化
する材料は吸収が小さくても良い。
Furthermore, until now, materials whose optical properties could change were limited to materials that had high absorption of irradiated light.11- However, by using materials that have high light absorption and are stable against heating, Since thermal energy can be effectively applied to a material whose optical properties change, the absorption of the material whose optical properties change may be small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による光学的情報記録媒体の
実施例の断面図である。 a・・・基板 a/・・・貼り合わせ基板。 1・・・第1の層、 2・・・第2の層。 6・・・接着層。  12− 第2図
1 and 2 are cross-sectional views of an embodiment of an optical information recording medium according to the present invention. a... Substrate a/... Bonded substrate. 1...First layer, 2...Second layer. 6... Adhesive layer. 12- Figure 2

Claims (1)

【特許請求の範囲】[Claims] 書き込み、読み出し側から第2および第1の層が順次積
層されており、更に少くとも該第2層または該第1層の
外側に基板を有する光学的情報記録媒体であって、上記
第1の層は特定波長の記録光に対して単層のみでは反射
率が30%以」二を示す材料からなり、上記第2の層は
光吸収性が大きく、加熱に対して安定である材料の中に
、主として加熱によって光学的特性が変化する材料を分
散させた複合材料から構成され、該第2の層の該光学的
特性の変化によって情報を記録することを特徴とする光
学的情報記録媒体。
An optical information recording medium in which a second layer and a first layer are sequentially laminated from the write and read sides, and further has a substrate outside at least the second layer or the first layer, The layer is made of a material that exhibits a reflectance of 30% or more when used as a single layer for recording light of a specific wavelength, and the second layer is made of a material that has high light absorption and is stable against heating. An optical information recording medium characterized in that it is mainly composed of a composite material in which a material whose optical properties change upon heating is dispersed, and information is recorded by the change in the optical properties of the second layer.
JP58231561A 1983-12-09 1983-12-09 Optical information recording medium Pending JPS60124039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231561A JPS60124039A (en) 1983-12-09 1983-12-09 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231561A JPS60124039A (en) 1983-12-09 1983-12-09 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS60124039A true JPS60124039A (en) 1985-07-02

Family

ID=16925434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231561A Pending JPS60124039A (en) 1983-12-09 1983-12-09 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS60124039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377864A2 (en) * 1989-01-13 1990-07-18 International Business Machines Corporation Optical storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377864A2 (en) * 1989-01-13 1990-07-18 International Business Machines Corporation Optical storage device

Similar Documents

Publication Publication Date Title
JP2909913B2 (en) Optical information recording medium, method of manufacturing the same, and optical information recording method
JPH0429135B2 (en)
JPH08153339A (en) Optical disk
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
JPS61190734A (en) Information recording medium
JP3066088B2 (en) Optical information recording medium and information recording / reproducing method
JPS60124039A (en) Optical information recording medium
JP3199713B2 (en) How to record and play back information
JP3138661B2 (en) Phase change optical disk
JPS60109039A (en) Optical information recording medium
JPH04228126A (en) Optical information recording medium
JPS60112488A (en) Optical information recording medium
JP4637535B2 (en) Optical information recording medium, manufacturing method thereof, and recording / reproducing method
JPH10289478A (en) Optical information recording medium and its production
JPH0114039B2 (en)
JPS60226037A (en) Information recording medium
JP2002123977A (en) Write once read many optical recording medium
JPH0441293A (en) Medium for recording optical information
JPH02217289A (en) Optical recording medium
JP2004303350A (en) Information recording medium, and method and device of recording information to the medium
JPS61272190A (en) Optical recording medium
JPH0296941A (en) Optical information recording medium and optical information recording system using this medium
JP2000222776A (en) Optical recording medium
JP2003091873A (en) Optical information recording medium and recording method using the same
JPS60124036A (en) Optical recording medium