JPS625001A - Variable pressure operation method of once-through boiler - Google Patents

Variable pressure operation method of once-through boiler

Info

Publication number
JPS625001A
JPS625001A JP14148685A JP14148685A JPS625001A JP S625001 A JPS625001 A JP S625001A JP 14148685 A JP14148685 A JP 14148685A JP 14148685 A JP14148685 A JP 14148685A JP S625001 A JPS625001 A JP S625001A
Authority
JP
Japan
Prior art keywords
superheater
pressure
reducing valve
pressure reducing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14148685A
Other languages
Japanese (ja)
Other versions
JPH0566481B2 (en
Inventor
川瀬 隆世
光男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14148685A priority Critical patent/JPS625001A/en
Publication of JPS625001A publication Critical patent/JPS625001A/en
Publication of JPH0566481B2 publication Critical patent/JPH0566481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は貫流ボイラの運転方法に係り、特に過熱器部分
の変圧運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for operating a once-through boiler, and particularly to a method for operating a superheater portion under variable voltage.

〔発明の背景〕[Background of the invention]

本来1貫流ボイラは定圧ボイラであるが、近年。 Originally, a once-through boiler was a constant pressure boiler, but in recent years.

中間負荷用のボイラとして使用されるようになり。It began to be used as a medium-load boiler.

熱効率の向上から貫流ボイラが変圧運転されるような仕
様になっている。
Once-through boilers are designed to operate at variable pressure in order to improve thermal efficiency.

第3図は、既設の定圧貫流ボイラを変圧運転用に変更し
たものの概略系統図である。
FIG. 3 is a schematic system diagram of an existing constant pressure once-through boiler modified for variable pressure operation.

図中の1はボイラ給水ポンプ、2は高圧給水ヒータ、3
は節炭器、4は火炉、5は一次過熱器。
In the diagram, 1 is the boiler feed water pump, 2 is the high pressure water heater, and 3
is a coal saver, 4 is a furnace, and 5 is a primary superheater.

6は過熱器減圧弁、7は過熱器止弁、8は二次過熱器、
9はタービンバイパス弁、10はタービン加減弁、 1
1は一次過熱器バイパス弁、 12は二次過熱器バイパ
ス弁、13は過熱器通気弁、14はフラッシュタンク、
15は脱気器、16は高圧タービン、 17は再熱器、
18は中低圧タービン、19は復水器、 20は復水ポ
ンプである。
6 is a superheater pressure reducing valve, 7 is a superheater stop valve, 8 is a secondary superheater,
9 is a turbine bypass valve, 10 is a turbine control valve, 1
1 is a primary superheater bypass valve, 12 is a secondary superheater bypass valve, 13 is a superheater vent valve, 14 is a flash tank,
15 is a deaerator, 16 is a high pressure turbine, 17 is a reheater,
18 is a medium and low pressure turbine, 19 is a condenser, and 20 is a condensate pump.

この貫流ボイラにおいて変圧運転をするには。How to perform variable pressure operation in this once-through boiler.

火炉が定圧として設計されているから、同図忙示すよ’
5に一次過熱器5と二次過熱器8の間に減圧弁6を設置
して、二次過熱器8および高圧タービン16の入口側を
減圧する必要がある。
The furnace is designed to be at constant pressure, so the figure is busy.
5, it is necessary to install a pressure reducing valve 6 between the primary superheater 5 and the secondary superheater 8 to reduce the pressure on the inlet sides of the secondary superheater 8 and the high pressure turbine 16.

第4図は1貫流ボイラの変圧運転における変圧パターン
図である。従来は同図の直線■に示すように、負荷7%
から負荷25%までランピング操作と呼ばれる前記過熱
器減圧弁6の操作によりタービン入口蒸気圧(主蒸気圧
)を上昇させていた。
FIG. 4 is a pressure transformation pattern diagram in the variable pressure operation of a single once-through boiler. Conventionally, as shown in the straight line ■ in the same figure, the load was 7%.
The turbine inlet steam pressure (main steam pressure) was increased by operating the superheater pressure reducing valve 6, which is called a ramping operation, from to 25% load.

すなわち−次週熱器パイバス弁11が開いている起動バ
イパス運転中のみ前記減圧弁6を絞り込み。
That is, next week, the pressure reducing valve 6 is throttled only during startup bypass operation when the heating device piebus valve 11 is open.

負荷25%で起動バイパス運転から貫流運転に切替わる
と過熱器減圧弁6は全開し、定圧運転になると大容量の
過熱器止弁7も全開となる。
When switching from start-up bypass operation to once-through operation at a load of 25%, the superheater pressure reducing valve 6 is fully opened, and when constant pressure operation is achieved, the large capacity superheater stop valve 7 is also fully opened.

従来の過熱器変圧運転における問題点は、特に低負荷時
、過熱器減圧弁6により流体を減圧するため、減圧弁出
口流体(過熱器入口流体)が飽和域に近づくことになる
。この−例を第9図のエンタルピー圧力線図に示す。
The problem with conventional superheater transformer operation is that, especially at low load, since the pressure of the fluid is reduced by the superheater pressure reducing valve 6, the pressure reducing valve outlet fluid (superheater inlet fluid) approaches the saturation region. An example of this is shown in the enthalpy pressure diagram of FIG.

図中の曲線Xは飽和曲線、折線Yは25%の低負荷時に
おける各個所のエンタルピー圧力特性値を結んだ線で、
折線Y上の点Aは節炭器の入口1点Bは一次過熱器の出
口1点Cは二次過熱器の入口の特性点を示し1点Bから
点Cへの減圧が前記過熱器減圧弁6による減圧を示して
いる。
The curve X in the figure is a saturation curve, and the broken line Y is a line connecting the enthalpy pressure characteristic values at each location at a low load of 25%.
Point A on the broken line Y is the inlet point of the economizer, B is the outlet point of the primary superheater, and C is the characteristic point of the inlet of the secondary superheater, and the pressure reduction from point B to point C is the superheater pressure reduction. The pressure reduction by valve 6 is shown.

この図に示すように25%負荷において二次過熱器の入
口蒸気温度は飽和温度(曲線X)に対してほとんど余裕
がなく、負荷変化等を考慮すれば運転が制約される。す
なわち、気液混合流体が二次過熱器に流入する可能性が
高く、特に二次過熱器の管折曲部付近において気液混合
流体による管メタル温度の異常上昇が心配される、 また過熱器減圧弁6を一台用いて減圧した場合。
As shown in this figure, at 25% load, the inlet steam temperature of the secondary superheater has almost no margin with respect to the saturation temperature (curve X), and operation is restricted if load changes and the like are taken into account. In other words, there is a high possibility that the gas-liquid mixed fluid will flow into the secondary superheater, and there is a concern that the temperature of the pipe metal will rise abnormally due to the gas-liquid mixed fluid, especially near the pipe bends of the secondary superheater. When pressure is reduced using one pressure reducing valve 6.

特に低負荷時において、この過熱器減圧弁6に高差環が
かかり、弁のエロージョンが問題となる。
Especially when the load is low, the superheater pressure reducing valve 6 is subjected to a height difference ring, causing a problem of valve erosion.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来技術の欠点を解消し、
過熱器管メタルの異常上昇ならびに減圧弁のエロージョ
ンなどの問題のない安定した貫流ボイラの変圧運転方法
を提供するにある。
The purpose of the present invention is to eliminate such drawbacks of the prior art,
It is an object of the present invention to provide a method for stable variable voltage operation of a once-through boiler without problems such as abnormal rise of superheater tube metal and erosion of pressure reducing valve.

〔発明の概要〕[Summary of the invention]

前述の目的を達成するために1本発明は、少なくとも第
1の過熱器と第2の過熱器とが蒸気の流通方向に沿って
直列に配置され、前記第1の過熱器の前流側に第1の減
圧弁が設けられ、前記@2の過熱器の前流側に第2の減
圧弁が設けられて。
In order to achieve the above-mentioned object, one aspect of the present invention is that at least a first superheater and a second superheater are arranged in series along the flow direction of steam, and on the upstream side of the first superheater. A first pressure reducing valve is provided, and a second pressure reducing valve is provided on the upstream side of the @2 superheater.

前記第1の減圧弁により負荷に応じて予め定められた蒸
気圧になるように等エンタルピー減圧をしたのち前記第
1の過熱器で過熱し1次に第2の減圧弁によりタービン
側で要求される蒸気圧になるように等エンタルピー減圧
をしたのち前記第2の過熱器で過熱することを特徴とす
るものである。
The first pressure reducing valve performs isenthalpic pressure reduction to a predetermined steam pressure according to the load, the first superheater superheats the steam, and then the second pressure reducing valve demands steam pressure on the turbine side. It is characterized in that after isenthalpic reduction is carried out so that the vapor pressure reaches a vapor pressure of

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図とともに説明する。第1図は本
発明の第1実施例に係る貫流ボイラの変圧運転を説明す
るための概略系統図である。図中の1はボイラ給水ポン
プ、2は高圧給水ヒータ。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic system diagram for explaining variable pressure operation of a once-through boiler according to a first embodiment of the present invention. In the figure, 1 is the boiler feed water pump, and 2 is the high pressure water heater.

3は節炭器、4は火炉、5は一次過熱器、6aは第1の
過熱器減圧弁、6bは第2の過熱器減圧弁。
3 is a coal saver, 4 is a furnace, 5 is a primary superheater, 6a is a first superheater pressure reducing valve, and 6b is a second superheater pressure reducing valve.

7は過熱器止弁、8aは第1の二次過熱器、8bは第2
の二次過熱器、9はタービンバイパス弁。
7 is a superheater stop valve, 8a is a first secondary superheater, and 8b is a second
9 is a secondary superheater, and 9 is a turbine bypass valve.

10はタービン加減弁、12は二次過熱器バイパス弁。10 is a turbine control valve, and 12 is a secondary superheater bypass valve.

13は過熱器通気弁、14はフラッシュタンク、 15
は脱気器、16は高圧タービン、19は復水器である。
13 is a superheater vent valve, 14 is a flash tank, 15
1 is a deaerator, 16 is a high pressure turbine, and 19 is a condenser.

この図に示すように二次過熱器8が@1の二次過熱器8
aと第2の二次過熱器8bとに分割してこれらを直列に
接続し、しかも第1の二次過熱器8aの前流側に第1の
減圧弁6aを、m2の二次過熱器8bの前流側に第2の
減圧弁6bが配置されている。
As shown in this figure, the secondary superheater 8 is
a and a second secondary superheater 8b and connect them in series, and furthermore, the first pressure reducing valve 6a is installed on the upstream side of the first secondary superheater 8a, and the secondary superheater m2 is connected in series. A second pressure reducing valve 6b is arranged upstream of the pressure reducing valve 8b.

まずこの構成の貫流ボイラの起動時の操作につ   □
いて説明する。ボイラ給水ポンプ1で最低給水流量を確
保した後に点火する。そのとき流体温度が低いため過熱
器止弁7およびmlの過熱器減圧弁6aは全閉して、流
体は二次過熱器をバイパスしてフラッシュタンク14に
ダンプする。バイパス流体温度が上昇して(ると、フラ
ッシュタンク圧力が上昇し約85kg/cm”yに達す
る。この時第2の過熱器減圧弁6bを全開しておき、フ
ラッシュタンク14の飽和蒸気を過熱器通気弁13.第
2の過熱器減圧弁6bおよびタービンバイパス弁9を通
し二次過熱器8a、8bに通気するとともに主蒸気管の
   □ウオーミングを行なう。タービン通気の蒸気条
件カ整うと高圧タービン16に通気し、タービンバイバ
ス弁9を閉じる。タービン回転数が規定回転数まで昇速
すると発電機を系統に同期し負荷をとる。
First, let's talk about the operation when starting up a once-through boiler with this configuration □
I will explain. After securing the minimum water supply flow rate with the boiler feed water pump 1, ignition is performed. At that time, since the fluid temperature is low, the superheater stop valve 7 and the ml superheater pressure reducing valve 6a are fully closed, and the fluid bypasses the secondary superheater and is dumped into the flash tank 14. As the bypass fluid temperature rises, the flash tank pressure rises and reaches approximately 85 kg/cm"y. At this time, the second superheater pressure reducing valve 6b is fully opened to superheat the saturated steam in the flash tank 14. Vent valve 13. Ventilates the secondary superheaters 8a and 8b through the second superheater pressure reducing valve 6b and the turbine bypass valve 9, and also warms the main steam pipe.When the steam conditions for turbine ventilation are established, the high pressure turbine 16, and close the turbine bypass valve 9. When the turbine rotational speed increases to a specified rotational speed, the generator is synchronized with the grid and the load is taken.

タービン加減弁10を徐々に開き増負荷し、約25%負
荷に達するとフラッシュタンク14を通る蒸気はボイラ
の特性から過熱蒸気となる。
The turbine control valve 10 is gradually opened to increase the load, and when the load reaches about 25%, the steam passing through the flash tank 14 becomes superheated steam due to the characteristics of the boiler.

25%負荷に達した時点では第1の過熱器減圧弁6aは
全閉となっており、この弁6aの入口側圧力は約250
1j5.出口側圧力は約85ky/cm”yとなってお
り弁差圧は約165kiz’yである。一方、第2の過
熱器減圧弁6bは全開であるから弁差圧は略零の状態と
なっているが、前述のように第1の過熱器減圧弁6aが
全閉になっているため弁エロションの心配はない。
When the load reaches 25%, the first superheater pressure reducing valve 6a is fully closed, and the pressure on the inlet side of this valve 6a is about 250
1j5. The outlet side pressure is about 85 ky/cm"y, and the valve differential pressure is about 165 kiz'y. On the other hand, since the second superheater pressure reducing valve 6b is fully open, the valve differential pressure is approximately zero. However, as mentioned above, since the first superheater pressure reducing valve 6a is fully closed, there is no need to worry about valve erosion.

25%負荷から増負荷する場合、第1の過熱器減圧弁6
aを開くことKより、第4図に示す■の主蒸気圧力曲線
に従って昇圧することになるが、このとぎ第1の過熱器
減圧弁6aを開くと同時に第2の過熱器減圧弁6bを閉
方向に動作させ、それぞれの弁6a、6bの負担差圧を
ほぼ均等になるように制御しながら負荷上昇する。
When increasing the load from 25% load, the first superheater pressure reducing valve 6
By opening K, the pressure will increase according to the main steam pressure curve (3) shown in Fig. 4, but at this point, at the same time as opening the first superheater pressure reducing valve 6a, closing the second superheater pressure reducing valve 6b. The load is increased while controlling the differential pressures of the respective valves 6a and 6b to be approximately equal.

負荷降下のときはこれと逆動作とするが、このように弁
差圧が1台のみで減圧する場合に比べて半分となるため
、耐エロージヨンは大幅に強化されることKなり、弁、
の信頼性の向上につながる。
When the load is lowered, the operation is reversed, but the valve differential pressure is half that of when reducing pressure with only one valve, so erosion resistance is greatly strengthened, and the valve,
This leads to improved reliability.

前記第4図の主蒸気圧力曲線図において1曲線■は従来
のランピング操作による変圧曲線■〜■はボイラ効率を
考慮した変圧曲線で1曲線■は40%変圧曲線1曲線■
は75%変圧曲線1曲線■は95%変圧曲線をそれぞれ
示す。本発明の場合1例えば曲線■〜■に示すような変
圧運転が可能テ、それKよってボイラの効率を高めるこ
とができる。
In the main steam pressure curve shown in Fig. 4, curve 1 is the pressure transformation curve due to conventional ramping operation. Curve 1 - ■ is the transformation curve taking boiler efficiency into consideration, and curve 1 is the 40% pressure transformation curve.
1 shows a 75% transformation curve, and curve 1 shows a 95% transformation curve. In the case of the present invention, for example, variable pressure operation as shown in curves (1) to (2) is possible, thereby increasing the efficiency of the boiler.

25%負荷での各部のエンタルピー圧力線図を第2図に
示す。図中のXは飽和曲線1点Aは節炭器入口1点Bは
一次過熱器出口(第1の過熱器減圧弁の入口)1点Cは
第1の二次過熱器入口(第1の過熱器減圧弁の出口)1
点りは第1の二次過熱器出口(第2の過熱器減圧弁の入
口)1点Eは第2の二次過熱器入口(第2の過熱器減圧
弁の出口)。
Figure 2 shows the enthalpy pressure diagram of each part at 25% load. In the figure, X is the saturation curve. Point A is the energy saver inlet. Point B is the primary superheater outlet (the inlet of the first superheater pressure reducing valve). Point C is the first secondary superheater inlet (the first superheater pressure reducing valve inlet. Superheater pressure reducing valve outlet) 1
Point E is the second secondary superheater inlet (outlet of the second superheater pressure reducing valve).

点Fは第2の二次過熱器出口の特性値である。Point F is the characteristic value of the second secondary superheater outlet.

第1の過熱器減圧弁の入口(点B)から第1の過熱器減
圧弁で等エンタルピ減圧されて、第1の二次過熱器の入
口(点C)では主蒸気圧力は約165kp/cm”gと
なり、このときの飽和点より大きく余裕をとることがで
きる。、第2の二次過熱器の入口蒸気は、第1の二次過
熱器の収熱によりエンタルピが上昇するので(点Cがら
点D)、第2の過熱器減圧弁によって等エンタルピ減圧
されても飽和域に突入する心配がな(十分に余裕がある
The pressure is isenthalpiically reduced from the inlet of the first superheater pressure reducing valve (point B) to the first superheater pressure reducing valve, and the main steam pressure is approximately 165 kp/cm at the inlet of the first secondary superheater (point C). ``g, which allows a larger margin than the saturation point at this time.The enthalpy of the inlet steam of the second secondary superheater increases due to heat absorption in the first secondary superheater (point C Point D), even if the pressure is isenthalpic reduced by the second superheater pressure reducing valve, there is no fear of entering the saturation region (there is sufficient margin).

第5図は各過熱器減圧弁の圧力設定値を示す説明図で1
図中の■は主蒸気圧力設定値、■は第1の二次過熱器の
出口側圧力設定値、■は第1の過熱器減圧弁における負
担差圧値、■は第2の過熱器減圧弁における負担差圧値
である。この実施例では第1の過熱器減圧弁の負担差圧
値と第2の過熱器減圧弁の負担差圧値とを等分している
が、必ずしもそれに限定されるものではなく、ある定め
られた比率もしくは周囲のボイラ条件に応じて任意の比
率で分担することもできる。
Figure 5 is an explanatory diagram showing the pressure setting values of each superheater pressure reducing valve.
In the figure, ■ is the main steam pressure setting value, ■ is the outlet side pressure setting value of the first secondary superheater, ■ is the burden differential pressure value at the first superheater pressure reducing valve, and ■ is the second superheater pressure reduction value. This is the burden differential pressure value at the valve. In this embodiment, the differential pressure borne by the first superheater pressure reducing valve and the differential pressure borne by the second superheater pressure reducing valve are divided equally; however, this is not necessarily limited to this, and there is a certain predetermined value. It is also possible to share in any ratio depending on the ratio or the surrounding boiler conditions.

次に第3図に示す制御ブロック図を用いて、前記第1お
よび第2の過熱器減圧弁の制御方法について説明する− 図中の21は第1の二次過熱器入口側圧力検出器。
Next, a method of controlling the first and second superheater pressure reducing valves will be explained using the control block diagram shown in FIG. 3. Reference numeral 21 in the figure is a first secondary superheater inlet side pressure detector.

22は第1の二次過熱器入口側温度検出器、23は第1
の二次過熱器出口側圧力検出器、24は主蒸気圧力検出
器、25は負荷要求指令器、26は第2の二次過熱器入
口側温度検出器、27は第2の二次過熱器入口側圧力検
出器、28は関数発生器、29ならびに30は減算器、
 31はPI調節器、32は高信号選択器。
22 is the first secondary superheater inlet side temperature detector, 23 is the first
, 24 is the main steam pressure detector, 25 is the load request command device, 26 is the second secondary superheater inlet temperature detector, and 27 is the second secondary superheater. An inlet side pressure detector, 28 a function generator, 29 and 30 a subtractor,
31 is a PI regulator, and 32 is a high signal selector.

33ならびに34は関数発生器、35は減算器、36は
P工調節器、37は高信号選択器、38は減算器、39
は関数発生器、40は第1の二次過熱器入口側飽和温度
偏差値信号、41は第2の二次過熱器入口側飽和温度偏
差値信号、42は第1の過熱器減圧弁圧力設定値信号、
43は第2の過熱器減圧弁圧力設定値信号、44は主蒸
気圧力制御信号、45は第2の二次過熱器入口側飽和温
度偏差信号である。
33 and 34 are function generators, 35 is a subtracter, 36 is a P controller, 37 is a high signal selector, 38 is a subtracter, 39
is a function generator, 40 is a first secondary superheater inlet side saturation temperature deviation value signal, 41 is a second secondary superheater inlet side saturation temperature deviation value signal, and 42 is a first superheater pressure reducing valve pressure setting. value signal,
43 is a second superheater pressure reducing valve pressure setting value signal, 44 is a main steam pressure control signal, and 45 is a second secondary superheater inlet side saturation temperature deviation signal.

負荷要求指令器25からの負荷信号に対して関数発生器
23により求められた第1の二次過熱器出口側圧力設定
値信号42と、第1の二次過熱器出口側圧力検出器23
によって検出された実際の圧力信号との偏差を減算器3
0で演算し、PI調節器31を通して圧力制御信号とす
る。
A first secondary superheater outlet side pressure setting value signal 42 obtained by the function generator 23 in response to a load signal from the load request command device 25 and a first secondary superheater outlet side pressure detector 23
Subtractor 3 the deviation from the actual pressure signal detected by
It is calculated with 0 and passed through the PI regulator 31 as a pressure control signal.

一方、第1の二次過熱器入口側圧力検出器21によって
検出された入口側圧力にもとすいて関数発生器28によ
って演算された第1の二次過熱器入口側飽和温度偏差値
信号40と、第1の二次過熱器入口側温度検出器22に
よって検出された実際の入口側温度信号との偏差を減算
器29で求める。
On the other hand, the first secondary superheater inlet side saturation temperature deviation value signal 40 is calculated by the function generator 28 based on the inlet side pressure detected by the first secondary superheater inlet side pressure detector 21. A subtracter 29 calculates the deviation between the actual inlet temperature signal detected by the first secondary superheater inlet temperature detector 22 .

この偏差信号と前記圧力制御信号とを高信号選択器32
に入れ、それから出力される制御信号により第1の過熱
器減圧弁6aの開度調整して、第1の二次過熱器におけ
る入口側流体の過熱度を確保しながら、二次過熱器の圧
力制御を行なうことができる。
A high signal selector 32 selects this deviation signal and the pressure control signal.
The opening degree of the first superheater pressure reducing valve 6a is adjusted by the control signal outputted from the control signal, thereby maintaining the pressure of the secondary superheater while ensuring the degree of superheating of the inlet side fluid in the first secondary superheater. can be controlled.

また、第2の過熱器減圧弁6bもこれと同様に。The same applies to the second superheater pressure reducing valve 6b.

主蒸気圧力制御信号44と第2の二次過熱器入口側飽和
温度偏差信号45とを高信号選択器37に通して出力さ
れる制御信号により開度調整が行なわれる。
The opening degree is adjusted by a control signal outputted by passing the main steam pressure control signal 44 and the second secondary superheater inlet side saturation temperature deviation signal 45 through the high signal selector 37.

ここで飽和温度制御回路は、各二次過熱器入口側温度が
すべての負荷帯で過熱度が確保されるならば削除しても
よい。また、第1の二次過熱器出口側圧力の関数発生器
33ならびに主蒸気圧力の関数発生器34の設定値は、
各負荷において第1ならびに第2の過熱器減圧弁6a、
6bの負荷差圧分がほぼ均等になるように設定されてい
る(第5図参照)。
Here, the saturation temperature control circuit may be omitted if the inlet side temperature of each secondary superheater ensures the degree of superheating in all load zones. Further, the set values of the function generator 33 for the first secondary superheater outlet side pressure and the function generator 34 for the main steam pressure are as follows:
first and second superheater pressure reducing valves 6a at each load;
The load differential pressure of 6b is set to be approximately equal (see FIG. 5).

第6図は1本発明の第2実施例を説明するための系統図
である。この実施例の場合、前記第1実施例のものに追
加して一次過熱器5の前流側にも第3の過熱器減圧弁8
cが設置されている。そしてこの第3の過熱器減圧弁8
Cと第1の過熱器減圧弁8aと第2の過熱器減圧弁3b
との3台の減圧弁で多段減圧を行なうようなシステム尤
なっているから、減圧弁1台分の負担差圧はさらに軽減
できる。
FIG. 6 is a system diagram for explaining a second embodiment of the present invention. In this embodiment, in addition to the first embodiment, a third superheater pressure reducing valve 8 is also provided on the upstream side of the primary superheater 5.
c is installed. And this third superheater pressure reducing valve 8
C, the first superheater pressure reducing valve 8a, and the second superheater pressure reducing valve 3b
Since there is a system in which pressure is reduced in multiple stages using three pressure reducing valves, the differential pressure burden for one pressure reducing valve can be further reduced.

第7図は1本発明の第3実施例を説明するための系統図
である。この実施例において前記第2実施例と相違する
点は、第2の過熱器減圧弁6bと第2の二次過熱器8b
を省略した点である。
FIG. 7 is a system diagram for explaining a third embodiment of the present invention. This embodiment differs from the second embodiment in that it has a second superheater pressure reducing valve 6b and a second secondary superheater 8b.
is omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のような構成になっているから。 This is because the present invention has the configuration as described above.

複数設置さねた減圧弁の耐エロージヨンを向上すること
ができるとともに、第2図に示したように二次過熱器入
口側蒸気が飽和域に突入することがなく、そのため裕度
のあるボイラ変圧運転が可能である。
It is possible to improve the erosion resistance of multiple installed pressure reducing valves, and as shown in Figure 2, the steam on the inlet side of the secondary superheater does not enter the saturated region, which allows for boiler transformation with a margin. Able to drive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1 %を節制に係る貫流ボイラの変
圧運転を説明するための系統図、第2図は前記変圧運転
における蒸気圧力とエンタルピとの関係を示す特性図、
第3図は前記変圧運転のi11制御方法の一例を示すブ
ロック1m、第4図は変圧運転時における負荷と主蒸気
圧力との関係を示す特性図。 第5図は各過熱器減圧弁の圧力設定値を示す説明図、第
6図ならびIc@7図は第2実施例ならびにw、3実施
例を説明するための系統図、第8図は従来における貫流
ボイラの変圧運転を説明するための系統ゾ、第9図はそ
の変圧運転における蒸気圧力とエンタルピとの関係を示
す特性図である。 5・・・・・・−次週熱器、6a・・・・・・第1の過
熱器減圧弁、6b・・・・・・第2の過熱器減圧弁、6
C・・・・・・第3の過熱器減圧弁、8a・・・・・・
@1の二次過熱器、8b・・・・・・第2の二次過熱器
。 1””l、”、/ W’ +i’!+=− 第2図 圧力(atal 第3図 馬4図 負部(%) 第5図 第6図 第9図 圧力(ata)
FIG. 1 is a system diagram for explaining the variable pressure operation of a once-through boiler related to the 1% reduction of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between steam pressure and enthalpy in the variable pressure operation.
FIG. 3 is a block 1m showing an example of the i11 control method for variable pressure operation, and FIG. 4 is a characteristic diagram showing the relationship between load and main steam pressure during variable pressure operation. Fig. 5 is an explanatory diagram showing the pressure setting values of each superheater pressure reducing valve, Fig. 6 and Ic@7 are system diagrams for explaining the second embodiment, w, and third embodiment, and Fig. 8 is a conventional diagram. FIG. 9 is a characteristic diagram showing the relationship between steam pressure and enthalpy in the variable pressure operation of a once-through boiler. 5...-Next week's heater, 6a...First superheater pressure reducing valve, 6b...Second superheater pressure reducing valve, 6
C...Third superheater pressure reducing valve, 8a...
@1 secondary superheater, 8b...2nd secondary superheater. 1""l,", / W'+i'!+=- Fig. 2 Pressure (atal Fig. 3 Horse Fig. 4 Negative part (%) Fig. 5 Fig. 6 Fig. 9 Pressure (ata)

Claims (1)

【特許請求の範囲】[Claims] 少なくとも第1の過熱器と第2の過熱器とが蒸気の流通
方向に沿つて直列に配置され、前記第1の過熱器の前流
側に第1の減圧弁が設けられ、前記第2の過熱器の前流
側に第2の減圧弁が設けられて前記第1の減圧弁により
負荷に応じて予め定められた蒸気圧になるように等エン
タルピー減圧をしたのち前記第1の過熱器で過熱し、次
に前記第2の減圧弁によりタービン側で要求される蒸気
圧力になるように等エンタルピー減圧をしたのち前記第
2の過熱器で過熱することを特徴とする貫流ボイラの変
圧運転方法。
At least a first superheater and a second superheater are arranged in series along the flow direction of steam, a first pressure reducing valve is provided upstream of the first superheater, and a first pressure reducing valve is provided upstream of the first superheater, and a first pressure reducing valve is provided upstream of the first superheater. A second pressure reducing valve is provided on the upstream side of the superheater, and after the first pressure reducing valve performs isenthalpic reduction so that the steam pressure reaches a predetermined steam pressure according to the load, the first pressure reducing valve performs isenthalpic pressure reduction. A variable pressure operating method for a once-through boiler, characterized in that the steam is overheated, and then isenthalpic reduced by the second pressure reducing valve so that the steam pressure reaches the required steam pressure on the turbine side, and then superheated by the second superheater. .
JP14148685A 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler Granted JPS625001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14148685A JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14148685A JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Publications (2)

Publication Number Publication Date
JPS625001A true JPS625001A (en) 1987-01-12
JPH0566481B2 JPH0566481B2 (en) 1993-09-21

Family

ID=15293027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14148685A Granted JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Country Status (1)

Country Link
JP (1) JPS625001A (en)

Also Published As

Publication number Publication date
JPH0566481B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
EP0178617B1 (en) Steam turbine plant having a turbine bypass system
JPS625001A (en) Variable pressure operation method of once-through boiler
JP2686259B2 (en) Operating method of once-through boiler
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPS6291703A (en) Steaming preventive device for fuel economizer
JP2511400B2 (en) Steam temperature control method for once-through boiler
JP2971629B2 (en) Waste heat recovery boiler
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2686260B2 (en) Operating method of once-through boiler
JPS63194110A (en) Once-through boiler
JP3176435B2 (en) Steam generator
JPH09195718A (en) Main steam temperature control device
JPH01212802A (en) Steam temperature control device for boiler
JPH0330687B2 (en)
JP2708406B2 (en) Startup control method for thermal power plant
JPH06200709A (en) Combined cycle power generating plant
JPH01127806A (en) Boiler steam temperature controller
JP2645129B2 (en) Condensate recirculation flow control device
JPH0472962B2 (en)
JPS61164004A (en) Control method of steam turbine
JPH08145306A (en) Method and device for controlling feed water for variable pressure once-through boiler
JPH04311608A (en) Repowering system of previously provided steam power facility
JPS6334402A (en) Method of starting thermal power plant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term