JPH0566481B2 - - Google Patents

Info

Publication number
JPH0566481B2
JPH0566481B2 JP14148685A JP14148685A JPH0566481B2 JP H0566481 B2 JPH0566481 B2 JP H0566481B2 JP 14148685 A JP14148685 A JP 14148685A JP 14148685 A JP14148685 A JP 14148685A JP H0566481 B2 JPH0566481 B2 JP H0566481B2
Authority
JP
Japan
Prior art keywords
superheater
pressure
reducing valve
pressure reducing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14148685A
Other languages
Japanese (ja)
Other versions
JPS625001A (en
Inventor
Takayo Kawase
Mitsuo Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14148685A priority Critical patent/JPS625001A/en
Publication of JPS625001A publication Critical patent/JPS625001A/en
Publication of JPH0566481B2 publication Critical patent/JPH0566481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は貫流ボイラの運転方法に係り、特に過
熱器部分の変圧運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for operating a once-through boiler, and particularly to a method for operating a superheater portion under variable voltage.

〔発明の背景〕[Background of the invention]

本来、貫流ボイラは定圧ボイラであるが、近
年、中間負荷用のボイラとして使用されるように
なり、熱効率の向上から貫流ボイラが変圧運転さ
れるような仕様になつている。
Originally, a once-through boiler is a constant pressure boiler, but in recent years, it has come to be used as a boiler for intermediate loads, and in order to improve thermal efficiency, once-through boilers are designed to be operated at variable pressure.

第8図は、既設の定圧貫流ボイラを変圧運転用
に変更したものの概略系統図である。
FIG. 8 is a schematic system diagram of an existing constant pressure once-through boiler modified for variable pressure operation.

図中の1はボイラ給水ポンプ、2は高圧給水ヒ
ータ、3は節炭器、4は火炉、5は一次過熱器、
6は過熱器減圧弁、7は過熱器止弁、8は二次過
熱器、9はタービンバイパス弁、10はタービン
加減弁、11は一次過熱器バイパス弁、12は二
次過熱器バイパス弁、13は過熱器通気弁、14
はフラツシユタンク、15は脱気器、16は高圧
タービン、17は再熱器、18は中低圧タービ
ン、19は復水器、20は復水ポンプである。
In the figure, 1 is the boiler feed water pump, 2 is the high pressure water heater, 3 is the economizer, 4 is the furnace, 5 is the primary superheater,
6 is a superheater pressure reducing valve, 7 is a superheater stop valve, 8 is a secondary superheater, 9 is a turbine bypass valve, 10 is a turbine control valve, 11 is a primary superheater bypass valve, 12 is a secondary superheater bypass valve, 13 is a superheater vent valve, 14
15 is a flush tank, 15 is a deaerator, 16 is a high pressure turbine, 17 is a reheater, 18 is a medium and low pressure turbine, 19 is a condenser, and 20 is a condensate pump.

この貫流ボイラにおいて変圧運転をするには、
火炉が低圧として設計されているから、同図に示
すように一次過熱器5と二次過熱器8の間に減圧
弁6を設置して、二次過熱器8及び高圧タービン
16の入口側を減圧する必要がある。
To perform variable pressure operation in this once-through boiler,
Since the furnace is designed for low pressure, a pressure reducing valve 6 is installed between the primary superheater 5 and the secondary superheater 8 as shown in the figure, and the inlet side of the secondary superheater 8 and high pressure turbine 16 is It is necessary to depressurize.

第4図は、貫流ボイラの変圧運転における変圧
パターン図である。従来は同図の直線に示すよ
うに、負荷7%から負荷25%までランピング操作
と呼ばれる前記過熱器減圧弁6の操作によりター
ビン入口蒸気圧(主蒸気圧)を上昇させていた。
すなわち一次過熱器バイパス弁11が開いている
起動バイパス運転中のみ前記減圧弁6を絞り込
み、負荷25%で起動バイパス運転から貫流運転に
切替わると過熱器減圧弁6は全開し、定圧運転に
なると大容量の過熱器止弁7も全開となる。
FIG. 4 is a diagram of a pressure transformation pattern in the pressure variation operation of a once-through boiler. Conventionally, as shown by the straight line in the figure, the turbine inlet steam pressure (main steam pressure) was increased by operating the superheater pressure reducing valve 6, which is called a ramping operation, from a load of 7% to a load of 25%.
In other words, the pressure reducing valve 6 is throttled only during startup bypass operation when the primary superheater bypass valve 11 is open, and when the startup bypass operation is switched to once-through operation at 25% load, the superheater pressure reducing valve 6 is fully opened and constant pressure operation is achieved. The large capacity superheater stop valve 7 is also fully opened.

従来の過熱器変圧運転における問題点は、特に
低負荷時、過熱器減圧弁6により流体を減圧する
ため、減圧弁出口流体(過熱器入口流体)が飽和
域に近づくことになる。この一例を第9図のエン
タルピー圧力線図に示す。
The problem with conventional superheater transformer operation is that, especially at low load, since the pressure of the fluid is reduced by the superheater pressure reducing valve 6, the pressure reducing valve outlet fluid (superheater inlet fluid) approaches the saturation region. An example of this is shown in the enthalpy pressure diagram of FIG.

図中の曲線Xは飽和曲線、折線Yは25%の低負
荷時における各個所のエンタルピー圧力特性値を
結んだ線で、折線Y上の点Aは節炭器の入口、点
Bは一次過熱器の出口、点Cは二次過熱器の入口
の特性点を示し、点Bから点Cへの減圧が前記過
熱器減圧弁6による減圧を示している。
The curve X in the figure is a saturation curve, and the broken line Y is a line connecting the enthalpy pressure characteristic values at various locations at a low load of 25%. Point A on broken line Y is the entrance of the economizer, and point B is the primary superheating Point C at the outlet of the superheater indicates a characteristic point at the inlet of the secondary superheater, and the pressure reduction from point B to point C indicates the pressure reduction by the superheater pressure reducing valve 6.

この図に示すように25%負荷において二次過熱
器の入口蒸気温度は飽和温度(曲線X)に対して
ほとんど余裕がなく、負荷変化等を考慮すれば運
転が制約される。すなわち、気液混合流体が二次
過熱器に流入する可能性が高く、特に二次過熱器
の管折曲部付近において気液混合流体による管メ
タル温度の異常上昇が心配される。
As shown in this figure, at 25% load, the inlet steam temperature of the secondary superheater has almost no margin with respect to the saturation temperature (curve X), and operation is restricted if load changes are taken into consideration. That is, there is a high possibility that the gas-liquid mixed fluid will flow into the secondary superheater, and there is a concern that the temperature of the pipe metal will rise abnormally due to the gas-liquid mixed fluid, especially near the tube bend portion of the secondary superheater.

また過熱器減圧弁6を一台用いて減圧した場
合、特に低負荷時において、この過熱器減圧弁6
に高差圧がかかり、弁のエロージヨンが問題とな
る。
In addition, when pressure is reduced using one superheater pressure reducing valve 6, especially at low load, this superheater pressure reducing valve 6
A high differential pressure is applied to the valve, and valve erosion becomes a problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来技術の欠点を
解消し、過熱器管メタルの異常上昇ならびに減圧
弁のエロージヨンなどの問題のない安定した貫流
ボイラの変圧運転方法を提供するにある。
An object of the present invention is to eliminate such drawbacks of the prior art and to provide a method for stable variable pressure operation of a once-through boiler without problems such as abnormal rise of the superheater tube metal and erosion of the pressure reducing valve.

〔発明の概要〕[Summary of the invention]

前述の目的を達成するために、本発明は、少な
くとも第1の過熱器と第2の過熱器とが蒸気の流
通方向に沿つて直列に配置され、前記第1の過熱
器の前流側に第1の減圧弁が設けられ、前記第2
の過熱器の前流側に第2の減圧弁が設けられて、
前記第1の減圧弁により負荷に応じて予め定めら
れた蒸気圧になるように等エンタルピー減圧をし
たのち前記第1の過熱器で過熱し、次に第2の減
圧弁によりタービン側で要求される蒸気圧になる
ように等エンタルピー減圧をしたのち前記第2の
過熱器で過熱することを特徴とするものである。
In order to achieve the above-mentioned object, the present invention provides that at least a first superheater and a second superheater are arranged in series along the flow direction of steam, and on the upstream side of the first superheater. A first pressure reducing valve is provided, and the second pressure reducing valve is provided.
A second pressure reducing valve is provided on the upstream side of the superheater,
After the first pressure reducing valve performs isenthalpic pressure reduction to a predetermined steam pressure according to the load, the steam is superheated in the first superheater, and then the second pressure reducing valve performs isenthalpic pressure reduction to a predetermined steam pressure according to the load. It is characterized in that after isenthalpic reduction is carried out so that the vapor pressure reaches a vapor pressure of

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図とともに説明する。第
1図は本発明の第1実施例に係る貫流ボイラの変
圧運転を説明するための概略系統図である。図中
の1はボイラ給水ポンプ、2は高圧給水ヒータ、
3は節炭器、4は火炉、5は一次過熱器、6aは
第1の過熱器減圧弁、6bは第2の過熱器減圧
弁、7は過熱器止弁、8aは第1の二次過熱器、
8bは第2の二次過熱器、9はタービンバイパス
弁、10はタービン加減弁、12は二次過熱器バ
イパス弁、13は過熱器通気弁、14はフラツシ
ユタンク、15は脱気器、16は高圧タービン、
19は復水器である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic system diagram for explaining variable pressure operation of a once-through boiler according to a first embodiment of the present invention. In the diagram, 1 is the boiler feed water pump, 2 is the high pressure water heater,
3 is an economizer, 4 is a furnace, 5 is a primary superheater, 6a is a first superheater pressure reducing valve, 6b is a second superheater pressure reducing valve, 7 is a superheater stop valve, 8a is a first secondary superheater superheater,
8b is a second secondary superheater, 9 is a turbine bypass valve, 10 is a turbine control valve, 12 is a secondary superheater bypass valve, 13 is a superheater vent valve, 14 is a flash tank, 15 is a deaerator, 16 is a high pressure turbine;
19 is a condenser.

この図に示すように二次過熱器8が第1の二次
過熱器8aと第2の二次過熱器8bとに分割して
これらを直列に接続し、しかも第1の二次過熱器
8aの前流側に第1の減圧弁6aを、第2の二次
過熱器8bの前流側に第2の減圧弁6bが配置さ
れている。
As shown in this figure, the secondary superheater 8 is divided into a first secondary superheater 8a and a second secondary superheater 8b, which are connected in series, and the first secondary superheater 8a A first pressure reducing valve 6a is arranged upstream of the second secondary superheater 8b, and a second pressure reducing valve 6b is arranged upstream of the second secondary superheater 8b.

まずこの構成の貫流ボイラの起動時の操作につ
いて説明する。ボイラ給水ポンプ1で最低給水流
量を確保した後に点火する。そのとき流体温度が
低いため過熱器止弁7および第1の過熱器減圧弁
6aは全閉して、流体は二次過熱器をバイパスし
てフラツシユタンク14にダンプする。バイパス
流体温度が上昇してくると、フラツシユタンク圧
力が上昇し約85Kg/cm2gに達する。この時第2の
過熱器減圧弁6bを全開しておき、フラツシユタ
ンク14の飽和蒸気を過熱器通気弁13、第2の
過熱器減圧弁6bおよびタービンバイパス弁9を
通し二次過熱器8a,8bに通気するとともに主
蒸気管のウオーミングを行なう。タービン通気の
蒸気条件が整うと高圧タービン16に通気し、タ
ービンバイパス弁9を閉じる。タービン回転数が
規定回転数まで昇速すると発電機を系統に同期し
負荷をとる。タービン加減弁10を徐々に開き増
負荷し、約25%負荷に達するとフラツシユタンク
14を通る蒸気はボイラの特性から過熱蒸気とな
る。
First, the operation at the time of startup of the once-through boiler with this configuration will be explained. After securing the minimum water supply flow rate with the boiler feed water pump 1, ignition is performed. At that time, since the fluid temperature is low, the superheater stop valve 7 and the first superheater pressure reducing valve 6a are fully closed, and the fluid bypasses the secondary superheater and is dumped into the flash tank 14. As the bypass fluid temperature increases, the flash tank pressure increases and reaches approximately 85 kg/cm 2 g. At this time, the second superheater pressure reducing valve 6b is fully opened, and the saturated steam in the flash tank 14 is passed through the superheater ventilation valve 13, the second superheater pressure reducing valve 6b, and the turbine bypass valve 9 to the secondary superheater 8a. , 8b and warming the main steam pipe. When the steam conditions for turbine ventilation are established, the high pressure turbine 16 is vented and the turbine bypass valve 9 is closed. When the turbine speed increases to a specified speed, the generator is synchronized with the grid and the load is taken off. The turbine control valve 10 is gradually opened to increase the load, and when the load reaches about 25%, the steam passing through the flash tank 14 becomes superheated steam due to the characteristics of the boiler.

25%負荷に達した時点では第1の過熱器減圧弁
6aは全閉となつており、この弁6aの入口側圧
力は約250Kg/cm2g、出口側圧力は約85Kg/cm2
となつており弁差圧は約165Kg/cm2gである。一
方、第2の過熱器減圧弁6bは全開であるから弁
差圧は略零の状態となつているが、前述のように
第1の過熱器減圧弁6aが全閉になつているため
弁エロシヨンの心配はない。
When the load reaches 25%, the first superheater pressure reducing valve 6a is fully closed, and the pressure on the inlet side of this valve 6a is approximately 250 kg/cm 2 g, and the pressure on the outlet side is approximately 85 kg/cm 2 g.
The valve differential pressure is approximately 165 kg/cm 2 g. On the other hand, since the second superheater pressure reducing valve 6b is fully open, the valve differential pressure is approximately zero, but as mentioned above, the first superheater pressure reducing valve 6a is fully closed, so the valve differential pressure is approximately zero. There is no need to worry about eroticism.

25%負荷から増負荷する場合、第1の過熱器減
圧弁6aを開くことにより、第4図に示すの主
蒸気圧力曲線に従つて昇圧することになるが、こ
のとき第1の過熱器減圧弁6aを開くと同時に第
2の過熱器減圧弁6bを閉方向に動作させ、それ
ぞれの弁6a,6bの負担差圧をほぼ均等になる
ように制御しながら負荷上昇する。
When increasing the load from 25% load, opening the first superheater pressure reducing valve 6a will increase the pressure according to the main steam pressure curve shown in Figure 4. At the same time as opening the valve 6a, the second superheater pressure reducing valve 6b is operated in the closing direction, and the load is increased while controlling the differential pressures applied to the respective valves 6a and 6b to be approximately equal.

負荷降下のときはこれと逆動作とするが、この
ように弁差圧が1台のみで減圧する場合に比べて
半分となるため、耐エロージヨンは大幅に強化さ
れることになり、弁の信頼性の向上につながる。
When the load decreases, the operation is reversed, but the differential pressure of the valve is halved compared to when only one unit is used to decrease the pressure, which greatly improves erosion resistance and improves the reliability of the valve. It leads to improved sexual performance.

前記第4図の主蒸気圧力曲線図において、曲線
は従来のランピング操作による変圧曲線〜
はボイラ効率を考慮した変圧曲線で、曲線は40
%変圧曲線、曲線は75%変圧曲線、曲線は95
%変圧曲線をそれぞれ示す。本発明の場合、例え
ば曲線〜に示すような変圧運転が可能で、そ
れによつてボイラの効率を高めることができる。
In the main steam pressure curve shown in FIG. 4, the curve is the pressure transformation curve due to the conventional ramping operation.
is the transformation curve considering the boiler efficiency, and the curve is 40
% transformation curve, curve is 75% transformation curve, curve is 95
% transformation curves are shown respectively. In the case of the present invention, for example, variable pressure operation as shown in curves 1 to 3 is possible, thereby increasing the efficiency of the boiler.

25%負荷での各部のエンタルピー圧力線図を第
2図に示す。図中のXは飽和曲線、点Aは節炭器
入口、点Bは一次過熱器出口(第1の過熱器減圧
弁の入口)、点Cは第1の二次過熱器入口(第1
の過熱器減圧弁の出口)、点Dは第1の二次過熱
器出口(第2の過熱器減圧弁の入口)、点Eは第
2の二次過熱器入口(第2の過熱器減圧弁の出
口)、点Fは第2の二次過熱器出口の特性値であ
る。
Figure 2 shows the enthalpy pressure diagram of each part at 25% load. In the figure, X is the saturation curve, point A is the inlet of the economizer, point B is the outlet of the primary superheater (the inlet of the first superheater pressure reducing valve), and point C is the inlet of the first secondary superheater (the inlet of the first superheater pressure reducing valve).
point D is the first secondary superheater outlet (the inlet of the second superheater pressure reducing valve), point E is the second secondary superheater inlet (the second superheater pressure reducing valve point F is the characteristic value of the second secondary superheater outlet.

第1の過熱器減圧弁の入口(点B)から第1の
過熱器減圧弁で等エンタルピ減圧されて、第1の
二次過熱器の入口(点C)では主蒸気圧力は約
165Kg/cm2gとなり、このときの飽和点より大き
く余裕をとることができる。第2の二次過熱器の
入口蒸気は、第1の二次過熱器の収熱によりエン
タルピが上昇するので(点Cから点D)、第2の
過熱器減圧弁によつて等エンタルピ減圧されても
飽和域に突入する心配がなく十分に余裕がある。
The main steam pressure is isenthalpically reduced from the inlet of the first superheater pressure reducing valve (point B) at the first superheater pressure reducing valve, and the main steam pressure at the inlet of the first secondary superheater (point C) is approximately
The weight is 165Kg/cm 2 g, which provides a larger margin than the saturation point. The enthalpy of the inlet steam of the second secondary superheater increases due to heat absorption in the first secondary superheater (from point C to point D), so it is isenthalpy reduced in pressure by the second superheater pressure reducing valve. There is plenty of leeway without worrying about entering the saturation range.

第5図は各過熱器減圧弁の圧力設定値を示す説
明図で、図中のは主蒸気圧力設定値、は第1
の二次過熱器の出口側圧力設定値、は第1の過
熱器減圧弁における負担差圧値、は第2の過熱
器減圧弁における負担差圧値である。この実施例
では第1の過熱器減圧弁の負担差圧値と第2の過
熱器減圧弁の負担差圧値とを等分しているが、必
ずしもそれに限定されるものではなく、ある定め
られた比率もしくは周囲のボイラ条件に応じて任
意の比率で分担することもできる。
Figure 5 is an explanatory diagram showing the pressure setting values of each superheater pressure reducing valve.
is the secondary superheater outlet side pressure setting value, is the burden differential pressure value at the first superheater pressure reducing valve, and is the burden differential pressure value at the second superheater pressure reducing valve. In this embodiment, the differential pressure borne by the first superheater pressure reducing valve and the differential pressure borne by the second superheater pressure reducing valve are divided equally; however, this is not necessarily limited to this, and there is a certain predetermined value. It is also possible to share in any ratio depending on the ratio or the surrounding boiler conditions.

次に第3図に示す制御ブロツク図を用いて、前
記第1および第2の過熱器減圧弁の制御方法につ
いて説明する。
Next, a method of controlling the first and second superheater pressure reducing valves will be explained using the control block diagram shown in FIG.

図中の21は第1の二次過熱器入口側圧力検出
器、22は第1の二次過熱器入口側温度検出器、
23は第1の二次過熱器出口側圧力検出器、24
は主蒸気圧力検出器、25は負荷要求指令器、2
6は第2の二次過熱器入口側温度検出器、27は
第2の二次過熱器入口側圧力検出器、28は関数
発生器、29ならびに30は減算器、31はPI
調節器、32は高信号選択器、33ならびに34
は関数発生器、35は減算器、36はPI調節器、
37は高信号選択器、38は減算器、39は関数
発生器、40は第1の二次過熱器入口側飽和温度
偏差値信号、41は第2の二次過熱器入口側飽和
温度偏差値信号、42は第1の過熱器減圧弁圧力
設定値信号、43は第2の過熱器減圧弁圧力設定
値信号、44は主蒸気圧力制御信号、45は第2
の二次過熱器入口側飽和温度偏差信号である。
21 in the figure is the first secondary superheater inlet side pressure detector, 22 is the first secondary superheater inlet side temperature detector,
23 is a first secondary superheater outlet side pressure detector; 24
is the main steam pressure detector, 25 is the load request controller, 2
6 is a second secondary superheater inlet side temperature detector, 27 is a second secondary superheater inlet side pressure detector, 28 is a function generator, 29 and 30 are subtractors, 31 is PI
regulator, 32, high signal selector, 33 and 34;
is a function generator, 35 is a subtractor, 36 is a PI adjuster,
37 is a high signal selector, 38 is a subtracter, 39 is a function generator, 40 is a first secondary superheater inlet side saturation temperature deviation value signal, and 41 is a second secondary superheater inlet side saturation temperature deviation value 42 is the first superheater pressure reducing valve pressure set value signal, 43 is the second superheater pressure reducing valve pressure set value signal, 44 is the main steam pressure control signal, 45 is the second
This is the saturation temperature deviation signal on the inlet side of the secondary superheater.

負荷要求指令器25からの負荷信号に対して関
数発生器23により求められた第1の二次過熱器
出口側圧力設定値信号42と、第1の二次過熱器
出口側圧力検出器23によつて検出された実際の
圧力信号との偏差を減算器30で演算し、PI調
節器31を通して圧力制御信号とする。
The first secondary superheater outlet side pressure setting value signal 42 obtained by the function generator 23 in response to the load signal from the load request command device 25 and the first secondary superheater outlet side pressure detector 23 Therefore, the deviation from the detected actual pressure signal is calculated by a subtracter 30 and passed through a PI regulator 31 as a pressure control signal.

一方、第1の二次過熱器入口側圧力検出器21
によつて検出された入口側圧力にもどずいて関数
発生器28によつて演算された第1の二次過熱器
入口側飽和温度偏差値信号40と、第1の二次過
熱器入口側温度検出器22によつて検出された実
際の入口側温度信号との偏差を減算器29で求め
る。
On the other hand, the first secondary superheater inlet side pressure detector 21
The first secondary superheater inlet side saturation temperature deviation value signal 40 calculated by the function generator 28 based on the inlet side pressure detected by the first secondary superheater inlet side temperature A subtractor 29 calculates the deviation from the actual inlet temperature signal detected by the detector 22.

この偏差信号と前記圧力制御信号とを高信号選
択器32に入れ、それから出力される制御信号に
より第1の過熱器減圧弁6aの開度調整して、第
1の二次過熱器における入口側流体の過熱度を確
保しながら、二次過熱器の圧力制御を行なうこと
ができる。
This deviation signal and the pressure control signal are input to the high signal selector 32, and the opening degree of the first superheater pressure reducing valve 6a is adjusted based on the control signal outputted from the high signal selector 32, and the inlet side of the first secondary superheater is adjusted. The pressure of the secondary superheater can be controlled while ensuring the degree of superheating of the fluid.

また、第2の過熱器減圧弁6bもこれと同様
に、主蒸気圧力制御信号44と第2の二次過熱器
入口側飽和温度偏差信号45とを高信号選択器3
7に通して出力される制御信号により開度調整が
行なわれる。
Similarly, the second superheater pressure reducing valve 6b also outputs the main steam pressure control signal 44 and the second secondary superheater inlet side saturation temperature deviation signal 45 to the high signal selector 3.
The opening degree is adjusted by a control signal output through 7.

ここで飽和温度制御回路は、各二次過熱器入口
側温度がすべての負荷帯で過熱度が確保されるな
らば削除してもよい。また、第1の二次過熱器出
口側圧力の関数発生器33ならびに主蒸気圧力の
関数発生器34の設定値は、各負荷において第1
ならびに第2の過熱器減圧弁6a,6bの負荷差
圧分がほぼ均等になるように設定されている(第
5図参照)。
Here, the saturation temperature control circuit may be omitted if the inlet side temperature of each secondary superheater ensures the degree of superheating in all load zones. Further, the set values of the function generator 33 for the first secondary superheater outlet side pressure and the function generator 34 for the main steam pressure are set to the first
In addition, the load pressure difference between the second superheater pressure reducing valves 6a and 6b is set to be approximately equal (see FIG. 5).

第6図は、本発明の第2実施例を説明するため
の系統図である。この実施例の場合、前記第1実
施例のものに追加して一次過熱器5の前流側にも
第3の過熱器減圧弁8cが設置されている。そし
てこの第3の過熱器減圧弁8cと第1の過熱器減
圧弁8aと第2の過熱器減圧弁3bとの3台の減
圧弁で多段減圧を行なうようなシステムになつて
いるから、減圧弁1台分の負担差圧はさらに軽減
できる。
FIG. 6 is a system diagram for explaining a second embodiment of the present invention. In the case of this embodiment, a third superheater pressure reducing valve 8c is installed on the upstream side of the primary superheater 5 in addition to that of the first embodiment. Since the system is such that multi-stage pressure reduction is performed using three pressure reducing valves, the third superheater pressure reducing valve 8c, the first superheater pressure reducing valve 8a, and the second superheater pressure reducing valve 3b, the pressure is reduced. The differential pressure burden for one valve can be further reduced.

第7図は、本発明の第3実施例を説明するため
の系統図である。この実施例において前記第2実
施例と相違する点は、第2の過熱器減圧弁6bと
第2の二次過熱器8bを省略した点である。
FIG. 7 is a system diagram for explaining a third embodiment of the present invention. This embodiment differs from the second embodiment in that the second superheater pressure reducing valve 6b and the second secondary superheater 8b are omitted.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のような構成になつているから、
複数設置された減圧弁の耐エロージヨンを向上す
ることができるとともに、第2図に示したように
二次過熱器入口側蒸気が飽和域に突入することが
なく、そのため裕度のあるボイラ変圧運転が可能
である。
Since the present invention is configured as described above,
It is possible to improve the erosion resistance of multiple installed pressure reducing valves, and as shown in Figure 2, the steam on the inlet side of the secondary superheater does not enter the saturated region, which allows boiler transformer operation with margin. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る貫流ボイラ
の変圧運転を説明するための系統図、第2図は前
記変圧運転における蒸気圧力とエンタルピとの関
係を示す特性図、第3図は前記変圧運転の制御方
法の一例を示すブロツク図、第4図は変圧運転時
における負荷と主蒸気圧力との関係を示す特性
図、第5図は各過熱器減圧弁の圧力設定値を示す
説明図、第6図ならびに第7図は第2実施例なら
びに第3実施例を説明するための系統図、第8図
は従来における貫流ボイラの変圧運転を説明する
ための系統図、第9図はその変圧運転における蒸
気圧力とエンタルピとの関係を示す特性図であ
る。 5……一次過熱器、6a……第1の過熱器減圧
弁、6b……第2の過熱器減圧弁、6c……第3
の過熱器減圧弁、8a……第1の二次過熱器、8
b……第2の二次過熱器。
FIG. 1 is a system diagram for explaining the variable pressure operation of the once-through boiler according to the first embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between steam pressure and enthalpy in the variable pressure operation, and FIG. A block diagram showing an example of the control method for the variable pressure operation, FIG. 4 is a characteristic diagram showing the relationship between load and main steam pressure during variable pressure operation, and FIG. 5 is an explanation showing the pressure setting values of each superheater pressure reducing valve. Figures 6 and 7 are system diagrams for explaining the second and third embodiments, Figure 8 is a system diagram for explaining variable pressure operation of a conventional once-through boiler, and Figure 9 is a system diagram for explaining the variable pressure operation of a conventional once-through boiler. It is a characteristic diagram showing the relationship between steam pressure and enthalpy in the variable pressure operation. 5... Primary superheater, 6a... First superheater pressure reducing valve, 6b... Second superheater pressure reducing valve, 6c... Third
superheater pressure reducing valve, 8a...first secondary superheater, 8
b...Second secondary superheater.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも第1の過熱器と第2の過熱器とが
蒸気の流通方向に沿つて直列に配置され、前記第
1の過熱器の前流側に第1の減圧弁が設けられ、
前記第2の過熱器の前流側に第2の減圧弁が設け
られて前記第1の減圧弁により負荷に応じて予め
定められた蒸気圧になるように等エンタルピー減
圧をしたのち前記第1の過熱器で過熱し、次に前
記第2の減圧弁によりタービン側で要求される蒸
気圧力になるように等エンタルピー減圧をしたの
ち前記第2の過熱器で過熱することを特徴とする
貫流ボイラの変圧運転方法。
1 At least a first superheater and a second superheater are arranged in series along the flow direction of steam, and a first pressure reducing valve is provided on the upstream side of the first superheater,
A second pressure reducing valve is provided on the upstream side of the second superheater, and after the first pressure reducing valve performs isenthalpic pressure reduction so that the steam pressure reaches a predetermined steam pressure depending on the load, the first pressure reducing valve A once-through boiler characterized in that the boiler is heated in the superheater, isenthalpic reduced by the second pressure reducing valve so that the steam pressure reaches the required steam pressure on the turbine side, and then superheated in the second superheater. Transforming voltage operation method.
JP14148685A 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler Granted JPS625001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14148685A JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14148685A JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Publications (2)

Publication Number Publication Date
JPS625001A JPS625001A (en) 1987-01-12
JPH0566481B2 true JPH0566481B2 (en) 1993-09-21

Family

ID=15293027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14148685A Granted JPS625001A (en) 1985-06-29 1985-06-29 Variable pressure operation method of once-through boiler

Country Status (1)

Country Link
JP (1) JPS625001A (en)

Also Published As

Publication number Publication date
JPS625001A (en) 1987-01-12

Similar Documents

Publication Publication Date Title
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
MXPA96002485A (en) Method and conversion apparatus of a water vapor turbine energy plant with thermal regeneration cycle to a combined cycle power plant without regeneration
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
US4487166A (en) Start-up system for once-through boilers
JPS6224608B2 (en)
JPH0942606A (en) Once-through boiler steam temperature control device
JPH0417324B2 (en)
JPH0566481B2 (en)
JP2686259B2 (en) Operating method of once-through boiler
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPS6291703A (en) Steaming preventive device for fuel economizer
EP0065408B1 (en) Control systems for boilers
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2955085B2 (en) Transformer once-through boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
US3261332A (en) Vapor generator vapor temperature control
JP2894118B2 (en) Boiler steam temperature control method
JP2686260B2 (en) Operating method of once-through boiler
JPH0722563Y2 (en) Boiler equipment
JP3176435B2 (en) Steam generator
US3349756A (en) Steam generating, superheating and reheating apparatus
JPH01212802A (en) Steam temperature control device for boiler
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term