JPS6247164A - Junction type field effect transistor - Google Patents

Junction type field effect transistor

Info

Publication number
JPS6247164A
JPS6247164A JP18792285A JP18792285A JPS6247164A JP S6247164 A JPS6247164 A JP S6247164A JP 18792285 A JP18792285 A JP 18792285A JP 18792285 A JP18792285 A JP 18792285A JP S6247164 A JPS6247164 A JP S6247164A
Authority
JP
Japan
Prior art keywords
layer
type
field effect
substrate
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18792285A
Other languages
Japanese (ja)
Inventor
Takuji Keno
毛野 拓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18792285A priority Critical patent/JPS6247164A/en
Publication of JPS6247164A publication Critical patent/JPS6247164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To accurately obtain a channel length by forming a channel region of 2-layer structure of the first and second conductivity types when forming a channel interposed between a source and a drain in J-FET, and forming source and drain regions at both end sides. CONSTITUTION:An oxide film 2 is coated on the surface of a P-type Si substrate 1, a window is opened, an Si layer made of N-type layer 3 and P-type layer 4 to partly become a channel region later is laminated on the exposed substrate 1 and epitaxially grown. Then, N<+> type source and drain regions 5 are diffused at both ends of the laminate while intruding to the lower layer 3, and the laminated disposed between the regions is used as a channel region. Thus, the channel length can be accurately formed in the desired length, and the manufacture can be simplified without double diffusion.

Description

【発明の詳細な説明】 〔技術分野〕 この発明はジャンクション型電界効果トランジスタに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a junction field effect transistor.

〔背景技術〕[Background technology]

従来より、第6図のように、P基板■上に順次N層■及
びP層■を二重拡散構造に形成し、P基板■及びP層■
をグー1.とし、N層■の両端部をソース■及びドレイ
ン■としてなるジャンフシボン型電界効果]・ランジス
タや、第7図のようにP基板■上にN型のエピタキシャ
ル成長によるN層■を形成し、該N層■の表面よりP層
■を拡散形成し、P基板■とP層■をゲートとし、N層
■の両端をソース■及びドレイン■としてなるジャンク
ション型電界効果トランジスタはしられている。
Conventionally, as shown in Fig. 6, an N layer (■) and a P layer (■) are sequentially formed on a P substrate (■) in a double diffusion structure, and then the P substrate (■) and the P layer (■) are formed.
Goo 1. The N layer (2) is formed by epitaxial growth of the N type on the P substrate (2), as shown in FIG. A junction type field effect transistor is known in which a P layer (2) is diffused from the surface of the layer (2), the P substrate (2) and the P layer (2) serve as gates, and both ends of the N layer (2) serve as a source (2) and a drain (3).

これらのジャンクション型電界効果トランジスタでは、
上部のゲートとなるP層■の形成にボロンの不純物拡散
を用いており、このようなノーマリ−オンタイプのもの
では、スレショールド電圧Vth(オフするのに必要な
ゲート電圧)を決定するチャンネル[11hの形成がむ
ずかしいという欠点があった。
In these junction field effect transistors,
Boron impurity diffusion is used to form the P layer (2) which becomes the upper gate, and in normally-on type devices, the channel which determines the threshold voltage Vth (gate voltage required to turn off) [There was a drawback that formation of 11h was difficult.

〔発明の目的〕[Purpose of the invention]

この発明はゲート間のチャネル中の形成が精度よくでき
るジャンクション型電界効果トランジスタを提供するこ
とを目的とする。
An object of the present invention is to provide a junction field effect transistor in which a channel between gates can be formed with high precision.

〔発明の開示〕[Disclosure of the invention]

この発明の要旨とするところは第1導電型の基板上にエ
ピタキシャル成長により形成したチャネルとなる第2導
電型の第2層とゲートとなる第1導電型の第3層を順次
積層し7、第3層の両端部において第2層に至るコンタ
クト用の高濃度の第2導電型の第4層を形成して成るこ
とを特徴とするジャンクション型電界効果I−ランジス
タである。
The gist of this invention is that a second layer of a second conductivity type, which is formed by epitaxial growth on a substrate of a first conductivity type, and a third layer of a first conductivity type, which is a gate, are sequentially laminated. This is a junction type field effect I-transistor characterized by forming a highly doped fourth layer of the second conductivity type for contact to the second layer at both ends of the three layers.

以下この発明によるジャンクション型電界効果トランジ
スタの一実施例を第1図乃至第5図に示す製造工程及び
完成図に尽づき説明する。
An embodiment of a junction type field effect transistor according to the present invention will be described below with reference to the manufacturing process and completed drawings shown in FIGS. 1 to 5.

この実施例では、第1導電型の基板としてシリコンのP
型基板(1)を用いている。また第2導電型の第2層と
してN型シリコン層(3)を、第1導電型の第3層とし
て■)型シリコン層(4)を、高濃度の第2導電型の第
4層としてN゛層(5)を用いている。
In this example, silicon P is used as the substrate of the first conductivity type.
A mold substrate (1) is used. Further, an N-type silicon layer (3) is used as the second layer of the second conductivity type, a ■) type silicon layer (4) is used as the third layer of the first conductivity type, and a fourth layer of the high concentration second conductivity type is used. N layer (5) is used.

第1図の如く、一般に市販されているシリコンのP型基
板臼)の表面酸化膜(2)に窓(6)をあける。
As shown in FIG. 1, a window (6) is opened in the surface oxide film (2) of a commercially available silicon P-type substrate die.

この窓(6)をあけた部分にN型シリコン層(3)をエ
ピタキシャル成長さゼる。第2図はこの状態を示す。
An N-type silicon layer (3) is epitaxially grown in the area where this window (6) is opened. FIG. 2 shows this state.

N 型シリコン層(3)上にP型シリコン層(4)をさ
らにエピタキシャル成長さセる。第3図IIこの状態を
示す。
A P-type silicon layer (4) is further epitaxially grown on the N-type silicon layer (3). FIG. 3 II shows this situation.

第2図及び第3図に示す工程は選択エピタキシャル成長
の技術を用いておこなう。
The steps shown in FIGS. 2 and 3 are performed using selective epitaxial growth technology.

P型シリコン層(4)の両端部にN型シリコン層(3)
に至るようにN“を拡散してN1層(5)を形成する。
N-type silicon layer (3) on both ends of P-type silicon layer (4)
An N1 layer (5) is formed by diffusing N'' so as to reach .

第4図はごの状態を示す。Figure 4 shows the condition of the car.

このようにして形成された各N1層(5)は、ソースま
たは1゛レインのコンタクト用に用いられる。最後に全
表面を酸化膜(7)で被覆すると共に各N゛層(5)」
−及びP型シリコン層(4)の中央部に開「1を設けて
ソース、F’ L−イン、ゲートの各電極(8)、(9
)、(10)を形成する。
Each N1 layer (5) thus formed is used for a source or 1'-rain contact. Finally, the entire surface is covered with an oxide film (7), and each N layer (5)
An opening 1 is provided in the center of the - and P-type silicon layer (4) to connect the source, F' L-in, and gate electrodes (8) and (9).
), (10) are formed.

ゲート電極(10)の対となるゲート電極(11)はP
型基板(1)の裏面に形成する、以りの如くしてノーマ
リ−オンタイプのジャンクション型電界効果トランジス
タが形成される。
The gate electrode (11) that is a pair of the gate electrode (10) is P
A normally-on type junction field effect transistor is formed on the back surface of the mold substrate (1) in the following manner.

1?シトの如く形成されるジャンクション型電界効果ト
ランジスタにおいては、チャネル高さは、[)型シリコ
ン基板(1)にエピタキシャル成長させたN型シリコン
層(3)の成長高さのみによって定まる。
1? In a junction field effect transistor formed like a silicon substrate, the channel height is determined only by the growth height of an N-type silicon layer (3) epitaxially grown on a [ )-type silicon substrate (1).

尚、N“の拡散をおこなっても、これは温度が900℃
程度の条件でおこなうものであるので、p型シリコン層
(4)よりの拡散はN型シリコン層(3)の高さ、即ち
チャネル高さに比べ無視できるのである。
Furthermore, even if N" is diffused, the temperature remains at 900℃.
Since this is carried out under certain conditions, the diffusion from the p-type silicon layer (4) can be ignored compared to the height of the n-type silicon layer (3), that is, the channel height.

尚、」1記実施例と異なり、第1導電型としてN型基板
を用い、また第2導電型の第2層としてP型シリコン層
を用い、第1導電型の第3層としてN型シリコン層を用
い、高濃度の第2導電型の第4層としてP層を用いても
よいことはもちろんである。
Note that, unlike Example 1, an N-type substrate is used as the first conductivity type, a P-type silicon layer is used as the second layer of the second conductivity type, and an N-type silicon layer is used as the third layer of the first conductivity type. Of course, a P layer may be used as the fourth layer of the second conductivity type with high concentration.

〔発明の効果〕〔Effect of the invention〕

以−Lのようにこの発明によるジャンクション型電界効
果l・ランジスタのチャネル高さは、第1導電型の基板
の上に二重に選択エピタキシャル成長させる第2導電型
の第2層の高さによって決まるので、ゲート間のチャネ
ル中(チャネル高さ)の形成が精度よくできるのである
As shown in FIG. 3, the channel height of the junction field effect transistor according to the present invention is determined by the height of the second layer of the second conductivity type, which is selectively epitaxially grown on the substrate of the first conductivity type. Therefore, the inside of the channel (channel height) between the gates can be formed with high precision.

また、この発明によるジャンクション型電界効果トラン
ジスタでは、製造時に従来の如き二重拡散法を用いてい
ないので、製造にあたって熱拡散の工程が少くなくて製
造できるという利点がある。
Further, since the junction type field effect transistor according to the present invention does not use the conventional double diffusion method during manufacturing, it has the advantage that it can be manufactured with fewer thermal diffusion steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図はこの発明の一実施例を示す断面図、
第6図及び第7図は各々従来例を示す断面図である。 (1)・・・P型基板、(3)・・・N型シリコン層、
(4)・・・P型シリコン層、(5)・・・N゛層、(
7)・・・酸化膜、(8)・・・(9)・・・(10)
・・・(11)・・・電極。
1 to 5 are cross-sectional views showing one embodiment of the present invention,
FIGS. 6 and 7 are sectional views showing conventional examples, respectively. (1)...P-type substrate, (3)...N-type silicon layer,
(4)...P-type silicon layer, (5)...N゛ layer, (
7)...Oxide film, (8)...(9)...(10)
...(11)...electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の基板上にエピタキシャル成長により
形成したチャネルとなる第2導電型の第2層とゲートと
なる第1導電型の第3層を順次積層し、第3層の両端部
において第2層に至るコンタクト用の高濃度の第2導電
型の第4層を形成して成ることを特徴とするジャンクシ
ョン型電界効果トランジスタ。
(1) A second layer of the second conductivity type that will become a channel and a third layer of the first conductivity type that will become a gate are formed by epitaxial growth on a substrate of the first conductivity type, and at both ends of the third layer, A junction type field effect transistor characterized in that a fourth layer of a second conductivity type with a high concentration is formed for contact reaching the second layer.
JP18792285A 1985-08-27 1985-08-27 Junction type field effect transistor Pending JPS6247164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18792285A JPS6247164A (en) 1985-08-27 1985-08-27 Junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18792285A JPS6247164A (en) 1985-08-27 1985-08-27 Junction type field effect transistor

Publications (1)

Publication Number Publication Date
JPS6247164A true JPS6247164A (en) 1987-02-28

Family

ID=16214549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18792285A Pending JPS6247164A (en) 1985-08-27 1985-08-27 Junction type field effect transistor

Country Status (1)

Country Link
JP (1) JPS6247164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003828A (en) * 2014-06-06 2014-08-27 天津师范大学 Preparation method of amine and aromaticnitrile coupling reaction catalyzed by copper complex under visible light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003828A (en) * 2014-06-06 2014-08-27 天津师范大学 Preparation method of amine and aromaticnitrile coupling reaction catalyzed by copper complex under visible light

Similar Documents

Publication Publication Date Title
JPH05299658A (en) Semiconductor device and manufacture thereof
JPS6247164A (en) Junction type field effect transistor
JPS63133678A (en) Manufacture of vertical field effect transistor
JPS6380561A (en) Manufacture of complementary semiconductor device
JPS6238869B2 (en)
JPS55140262A (en) Semiconductor device
JPS643065B2 (en)
JPS61125084A (en) Semiconductor integrated circuit device
KR960015929B1 (en) Method for manufacturing bipolar transistor
JPS59214263A (en) Double diffusion type insulated gate field-effect transistor
JPS6177373A (en) Manufacture of semiconductor device
JPH02125474A (en) Manufacture of field effect transistor
KR930022563A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS61100975A (en) Junction type field-effect transistor
JPS5861673A (en) Preparation of semiconductor device
JPS61222249A (en) Manufacture of semiconductor integrated circuit device
JPH02207534A (en) Semiconductor device
JPS6177371A (en) Manufacture of semiconductor device
JPH0240965A (en) Manufacture of semiconductor device
JPH0350743A (en) Semiconductor device
JPS5753958A (en) Semiconductor device
JPH02102576A (en) Semiconductor device
JPS58108772A (en) Manufacture of transistor
JPH02135779A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH01112778A (en) Manufacture of semiconductor device