JPS61125084A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPS61125084A JPS61125084A JP59246000A JP24600084A JPS61125084A JP S61125084 A JPS61125084 A JP S61125084A JP 59246000 A JP59246000 A JP 59246000A JP 24600084 A JP24600084 A JP 24600084A JP S61125084 A JPS61125084 A JP S61125084A
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor
- main surface
- insulating film
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 93
- 239000011148 porous material Substances 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 6
- 230000005669 field effect Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 25
- 230000010354 integration Effects 0.000 abstract description 8
- 108010075750 P-Type Calcium Channels Proteins 0.000 abstract description 3
- 108091006146 Channels Proteins 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- -1 arsenic ions Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 229910016006 MoSi Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910004217 TaSi2 Inorganic materials 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7834—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66621—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
本発明は、半導体集積回路装置に関するものであり、特
に、絶縁ゲート型電界効果トランジスタ(以下1MrS
FETという)を備えた半導体集積回路装置に適用して
有効な技術に関するものである。Detailed Description of the Invention [Technical Field] The present invention relates to a semiconductor integrated circuit device, and in particular to an insulated gate field effect transistor (hereinafter referred to as 1MrS).
The present invention relates to a technique that is effective when applied to a semiconductor integrated circuit device equipped with a FET (FET).
[背景技術]
半導体集積回路装置を構成するMISFETは、高集積
化による短チヤネル効果を抑制するために、所謂、L
D D (L ight、ly旦oped旦rain)
構造を採用する傾向にある。このMISFETは、実質
的なソース領域又はドレイン領域とチャネルが形成され
る領域との間に、それ、らよりも低い不純物濃度の半導
体領域(LDD部)を設けたものである。[Background Art] In order to suppress the short channel effect caused by high integration, MISFETs constituting semiconductor integrated circuit devices are
D D (Light, lydan opedan rain)
structure. This MISFET is provided with a semiconductor region (LDD region) having a lower impurity concentration than the substantial source or drain region and the region where the channel is formed.
前記半導体領域は、ソース領域又はドレイン領域の一部
となり、チャネルが形成される領域への不純物の拡散距
離が小さいので、実効チャネル長を充分に保持できる特
徴がある。また、半導体領域は、半導体基板又はウェル
領域との低い不純物濃度のpn接合を形成しているので
、ドレイン領域近傍における電界強度を緩和し、ホット
キャリアを抑制することができる。The semiconductor region becomes a part of the source region or the drain region, and the diffusion distance of impurities to the region where the channel is formed is small, so that the effective channel length can be sufficiently maintained. Further, since the semiconductor region forms a pn junction with a low impurity concentration with the semiconductor substrate or well region, the electric field strength near the drain region can be relaxed and hot carriers can be suppressed.
しかしながら、かかる技術における検討の結果、本発明
者は、LDD構造のM I S FETを形成するため
にゲート電極の両側部に不純物導入用マスクを形成する
必要があるので、チャネル長方向の面積が増大し、集積
度の妨またげになるという問題点を見出した。However, as a result of studies on this technology, the present inventor found that in order to form an MIS FET with an LDD structure, it is necessary to form impurity introduction masks on both sides of the gate electrode, so that the area in the channel length direction is It has been found that the problem is that this increases the density and hinders the degree of integration.
また1本発明者は、半導体領域の不純物濃度が低く、ト
ランスコンダクタンス(gm)を低下させるので、MI
SFETの駆動能力を低下させるという問題点を見出し
た。In addition, the present inventor believes that since the impurity concentration in the semiconductor region is low and reduces the transconductance (gm), the MI
We have discovered a problem in that the driving ability of SFET is reduced.
なお、LDD構造のM I S FETを備えた半導体
集積回路装置の製造方法は、例えば、特開昭57−97
676号公報に記載されている。Note that a method for manufacturing a semiconductor integrated circuit device equipped with an MI S FET having an LDD structure is disclosed in, for example, Japanese Patent Laid-Open No. 57-97.
It is described in Publication No. 676.
[発明の目的]
本発明の目的は、M r S FETを備えた半導体集
積回路装置において、その集積度を向上することが可能
な技術を提供することにある。[Object of the Invention] An object of the present invention is to provide a technique that can improve the degree of integration in a semiconductor integrated circuit device equipped with an M r S FET.
本発明の他の目的は、M I S FETを備えた半導
体集積回路装置において、前記M I S FETの駆
動能力を向上することが可能な技術を提供することにあ
る。Another object of the present invention is to provide a technique capable of improving the driving ability of the MI S FET in a semiconductor integrated circuit device equipped with the MI S FET.
本発明の前記ならびにその他の目的と新規な特徴は、本
明Ra書の記述及び添付図面によって明らかになるであ
ろう。The above and other objects and novel features of the present invention will become clear from the description in Book Ra and the accompanying drawings.
[発明の概要]
□
本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。[Summary of the Invention] □ A brief overview of typical inventions disclosed in this application is as follows.
すなわち、半導体基板に細孔又は細溝を設け。That is, pores or narrow grooves are provided in the semiconductor substrate.
該細孔又は細溝にゲート電極を設け、該ゲート電極の両
側部の半導体基板主面部に、実質的なソース領域又はド
レイン領域と、それらの下部の半導体基板の主面部に、
LDD部となるソース領域又はドレイン領域を設けてL
DD構造のMTSFETを構成する。A gate electrode is provided in the pore or narrow groove, and a substantial source region or drain region is provided on the main surface of the semiconductor substrate on both sides of the gate electrode, and on the main surface of the semiconductor substrate below the source region or drain region,
A source region or a drain region that becomes an LDD section is provided to
A DD structure MTSFET is constructed.
これによって、実質的なソース領域又はドレイン領域に
要する面積内でLDD部を構成することができるので、
MISFETの占有面積を縮小し、半導体集積回路装置
の集積度を向上することができる。As a result, the LDD section can be configured within the area required for a substantial source region or drain region.
The area occupied by the MISFET can be reduced and the degree of integration of the semiconductor integrated circuit device can be improved.
また、前記ゲート電極によってLDD部の主面部にチャ
ネルを形成することができるので、ソース領域とドレイ
ン領域との間のトランスコンダクタンスの低下を抑制し
、MISFETの駆動能力を向上することができる。Furthermore, since a channel can be formed in the main surface of the LDD section by the gate electrode, a decrease in transconductance between the source region and the drain region can be suppressed, and the driving ability of the MISFET can be improved.
以下、本発明の構成について、一実施例とともに説明す
る。Hereinafter, the configuration of the present invention will be explained along with one embodiment.
[実施例]
第1図は1本発明の一実施例を説明するためのLDD構
造のM I S FETを備えた半導体集積回路装置の
要部平面図、第2図は、第1図の■−■切断線における
断面図である。第1図は、その構成をわかり易すくする
ために、各導電層間に設けられるフィールド絶縁膜以外
の絶縁膜は図示しない。[Embodiment] FIG. 1 is a plan view of a main part of a semiconductor integrated circuit device equipped with an MI S FET of an LDD structure for explaining an embodiment of the present invention, and FIG. It is a sectional view taken along the -■ cutting line. In FIG. 1, insulating films other than the field insulating film provided between each conductive layer are not shown in order to make the structure easier to understand.
なお、実施例の全図において、同一機能を有するものは
同一符号を付け、そのくり返しの説明は省略する。In addition, in all the figures of the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.
第1図及び第2図において、1は単結晶シリコンからな
るp−型の半導体基板(又はP″′型のウェル領域)、
2はフィールド絶縁膜、3はフィールド絶縁膜3の下部
に設けられたp型のチャネルストッパ領域である=
4は細孔(又は細溝)であり、M I S FET形成
領域の半導体基板lの主面部に設けられている。In FIGS. 1 and 2, 1 is a p-type semiconductor substrate (or P'' type well region) made of single crystal silicon;
2 is a field insulating film, 3 is a p-type channel stopper region provided under the field insulating film 3; 4 is a pore (or narrow groove) in the semiconductor substrate l in the MI S FET formation region; It is provided on the main surface.
細孔4は、主として、M I S FETのゲート電極
を埋め込むためのものである。The pore 4 is mainly for burying the gate electrode of the MI S FET.
5は絶縁膜であり、少なくとも細孔4にそった半導体基
板1の主面上部に設けられている。この絶#C膜5は、
MISFETのゲート絶縁膜を構成するためのものであ
る。Reference numeral 5 denotes an insulating film, which is provided at least along the pores 4 and above the main surface of the semiconductor substrate 1 . This absolute #C film 5 is
This is for configuring the gate insulating film of MISFET.
6は導電層であり、細孔4にそった半導体基板1の主面
上部に、絶縁膜5を介在して設けられている。この導電
層6は、M I S FETのゲート電極を構成するた
めのものである。A conductive layer 6 is provided on the upper main surface of the semiconductor substrate 1 along the pore 4 with an insulating film 5 interposed therebetween. This conductive layer 6 is for configuring the gate electrode of the MI S FET.
7はn+型の半導体領域であり、導電層6の両・・側部
の半導体基板lの主面部に設けられている。Reference numeral 7 denotes an n+ type semiconductor region, which is provided on the main surface of the semiconductor substrate l on both sides of the conductive layer 6.
″この半導体領域7は、MrSFETの実質的なソース
領域又はドレイン領域を構成するためのものである。``This semiconductor region 7 is for forming a substantial source region or drain region of MrSFET.
8はロー型の半導体領域であり、導電層6の両側部の半
導体基板1の主面部であって、半導体領域7と電気的に
接続され、その下部に設けられている。この半導体領域
8は、チャネルが形成される領域と接続して設けられ、
MISFETのソース領域又はドレイン領域の一部とし
て使用されるLDD部を構成するためのもである。Reference numeral 8 denotes a low-type semiconductor region, which is located on the main surface of the semiconductor substrate 1 on both sides of the conductive layer 6, electrically connected to the semiconductor region 7, and provided under the semiconductor region 7. This semiconductor region 8 is provided in connection with a region where a channel is formed,
This is for configuring an LDD section used as a part of the source region or drain region of the MISFET.
LDDJit造のM I S FETは、主として、半
導体基板1、細孔4、絶縁膜5.導電層6、一対の半導
体領域7及び一対の半導体領域8によって構成されてい
る。The MI S FET manufactured by LDDJit mainly consists of a semiconductor substrate 1, a pore 4, an insulating film 5. It is composed of a conductive layer 6, a pair of semiconductor regions 7, and a pair of semiconductor regions 8.
このM [S FETは、実質的なソース領域又はドレ
イン領域となる半導体°領域7の下部に、LDD部とな
る半導体領域8が設けられているので、前者に要する面
積内で後者を構成することができるにのため、特に、チ
ャネル長方向におけるMISFETの占有面積を縮小す
ることができるので、半導体集積回路装置の集積度を向
上することができる。In this M [S FET, a semiconductor region 8 which becomes an LDD section is provided below a semiconductor region 7 which becomes a substantial source region or a drain region, so the latter can be constructed within the area required for the former. In particular, since the area occupied by the MISFET in the channel length direction can be reduced, the degree of integration of the semiconductor integrated circuit device can be improved.
さらに、LDD部となる半導体領域8は、絶縁膜5を介
在させて導電層6′が設けられたMIS構造を構成して
いるので、導電層6によって半導体領域8の主面部にチ
ャネルを形成することができる。これによって、半導体
領域8の抵抗値を小さくすることができるので、ソース
領域とドレイン領域との間のトランスコンダクタンスの
低下を抑制し、MISFETの駆動能力を向上すること
ができる。Furthermore, since the semiconductor region 8 serving as the LDD section has an MIS structure in which a conductive layer 6' is provided with an insulating film 5 interposed therebetween, a channel is formed on the main surface of the semiconductor region 8 by the conductive layer 6. be able to. This makes it possible to reduce the resistance value of the semiconductor region 8, thereby suppressing a decrease in transconductance between the source region and the drain region, and improving the driving ability of the MISFET.
さらに、半導体領域7間又は半導体領域8間は。Furthermore, between the semiconductor regions 7 or between the semiconductor regions 8.
細孔4に埋め込まれた導電層6を介在して設けてあり、
半導体基板1内におけるそれらの離隔する距離を長く設
けである。これによって、ソース領域又はドレイン領域
から半導体基板1内部に形成される空乏領域間の不要な
結合を抑制することができるので、パンチスルーを防止
することができる。A conductive layer 6 embedded in the pores 4 is provided with an intervening conductive layer 6,
The distance between them within the semiconductor substrate 1 is set to be long. Thereby, unnecessary coupling between the depletion regions formed inside the semiconductor substrate 1 from the source region or the drain region can be suppressed, and punch-through can be prevented.
9は絶縁膜であり、MISFET等の半導体素子を覆う
ように設けられている。lOは接続孔であり、所定の半
導体領域7の上部の絶縁膜9.5を除去して設けられて
いる。Reference numeral 9 denotes an insulating film, which is provided to cover semiconductor elements such as MISFETs. 1O is a connection hole, which is provided by removing the insulating film 9.5 above the predetermined semiconductor region 7.
11は導電層であり、接続孔loを通して半導体領域7
と電気的に接続し、絶縁膜11上部を延在するように設
けられている。11 is a conductive layer, which connects the semiconductor region 7 through the connection hole lo.
It is provided so as to be electrically connected to and extend over the insulating film 11.
次に、本実施例の具体的な製造方法について、簡単に説
明する。Next, the specific manufacturing method of this example will be briefly explained.
第3図乃至第5図は1本発明の一実施例の製造方法を説
明するための各製造工程におけるLDD構造のM t
S FETを備えた半導体集積回路装置の要部断面図で
ある。FIGS. 3 to 5 show M t of the LDD structure in each manufacturing process for explaining the manufacturing method of one embodiment of the present invention.
1 is a sectional view of a main part of a semiconductor integrated circuit device including an S FET.
まず、P−型の半導体基板lを用意し、第3図に示すよ
うに、フィールド絶縁膜2及びP型のチャネルストッパ
領域3を形成する。First, a P-type semiconductor substrate 1 is prepared, and as shown in FIG. 3, a field insulating film 2 and a P-type channel stopper region 3 are formed.
第3図に示すフィールド絶縁膜2及びチャネルストッパ
領域3を形成する工程の後に、細孔4を形成する。この
細孔4は1例えば、異方性エツチング技術によって、ゲ
ート長方向における幅寸法を0.8〜1.5[μm]程
度、その深さを0.7〜1.0[μmコ程度に形成する
。After the step of forming field insulating film 2 and channel stopper region 3 shown in FIG. 3, pores 4 are formed. The pores 4 are formed by, for example, using anisotropic etching technology to have a width in the gate length direction of about 0.8 to 1.5 [μm] and a depth of about 0.7 to 1.0 [μm]. Form.
この後、半導体素子形成領域となる半導体基板lの主面
上部に、絶縁膜5を形成する。この絶縁膜5は1例えば
、熱酸化技術によって形成した酸化シリコン膜を用いる
。Thereafter, an insulating film 5 is formed on the upper main surface of the semiconductor substrate l, which will be a semiconductor element formation region. This insulating film 5 is, for example, a silicon oxide film formed by thermal oxidation technology.
そして、第4図に示すように、1a孔4にそった(又は
埋め込むように)半導体基板1の主面上部に、絶縁膜5
を介在して導電層6を形成する。この導電層6は、例え
ば、CVD技術によって形成した多結晶シリコン膜に抵
抗値を低減するためのリンを拡散したものを使用する。As shown in FIG.
A conductive layer 6 is formed with the conductive layer 6 interposed therebetween. This conductive layer 6 is made of, for example, a polycrystalline silicon film formed by a CVD technique in which phosphorus is diffused in order to reduce the resistance value.
また、導電M6は、高融点金属膜(M o 、 T i
、 T a 、 W ) 、シリサイド膜(MoSi
2.TiSi2.TaSi2.WSi2)又は多結晶シ
リコン膜上部にシリサイド膜が設けられたポリサイド膜
を用いてもよい。Moreover, the conductive M6 is a high melting point metal film (M o , T i
, T a , W ), silicide film (MoSi
2. TiSi2. TaSi2. WSi2) or a polycide film in which a silicide film is provided on top of a polycrystalline silicon film may be used.
第4図に示す導電層6を形成する工程の後に、導電層6
両側部の半導体基板1の主面部に、LDD部を形成する
ために、n−型の半導体領域8を形成する。この半導体
領域8は1例えば、所定のドース量のヒ素イオンをイオ
ン注入技術で導入し、引き伸し拡散を施してその接合深
さくx j )を0.6〜0.8[μm]程度に形成す
る。After the step of forming the conductive layer 6 shown in FIG.
On both sides of the main surface of the semiconductor substrate 1, n-type semiconductor regions 8 are formed to form an LDD section. In this semiconductor region 8, for example, a predetermined dose of arsenic ions is introduced by ion implantation technology, and stretched and diffused to a junction depth x j ) of about 0.6 to 0.8 [μm]. Form.
そして、第5図に示すように、半導体領域8の主面部に
、実質的なソース領域又はドレイン領域を形成するため
に、n゛型の半導体領域7を形成する。この半導体領域
7は1例えば、所定のドース量のヒ素イオン又はリンイ
オンをイオン注入技術で導入し、引き伸し拡散を施して
その接合深さくxj)を0.3〜0.5[μm]程度に
形成する。Then, as shown in FIG. 5, an n-type semiconductor region 7 is formed on the main surface of the semiconductor region 8 in order to form a substantial source or drain region. This semiconductor region 7 is made by introducing, for example, a predetermined dose of arsenic ions or phosphorus ions using ion implantation technology, and then performing stretching diffusion to achieve a junction depth xj) of approximately 0.3 to 0.5 [μm]. to form.
第5図に示す半導体領域7を形成する工程の後に、前記
第1図及び第2図に示すように、絶縁膜9、接続孔10
及び導電層11を形成することによって、本実施例の半
導体集積回路装置は完成する。なお、この後に、保護膜
等の処理工程を施してもよい。After the step of forming the semiconductor region 7 shown in FIG. 5, as shown in FIGS.
By forming the conductive layer 11, the semiconductor integrated circuit device of this embodiment is completed. Note that, after this, a treatment process such as a protective film may be performed.
[効果]
以上説明したように、本願において開示された新規な技
術によれば、以下に述べるような効果を得ることができ
る。[Effects] As explained above, according to the novel technology disclosed in this application, the following effects can be obtained.
(1)半導体基板に細孔又は細溝を設け、該細孔又は細
溝にゲート電極を設け、該ゲート電極の両側部の半導体
基板主面部に、実質的なソース領域及びドレイン領域と
、それらの下部の半導体基板の主面部に、LDD部とな
るソース領域及びドレイン領域を設けてLDD構造のM
ISFETを構成したことにより、実質的なソース領域
又はドレイン領域に要する面積内でLDD部を構成する
ことができる。(1) A pore or a narrow groove is provided in a semiconductor substrate, a gate electrode is provided in the pore or narrow groove, and a substantial source region and a drain region are formed on the main surface of the semiconductor substrate on both sides of the gate electrode. A source region and a drain region which will become an LDD part are provided on the main surface of the semiconductor substrate under the
By configuring the ISFET, it is possible to configure the LDD portion within the area substantially required for the source region or drain region.
(2)前記(1)により、MISFETの占有面積を縮
小することができるので、半導体集積回路装置の集積度
を向上することができる。(2) According to (1) above, the area occupied by the MISFET can be reduced, so the degree of integration of the semiconductor integrated circuit device can be improved.
(3)前記(1)により、LDD部は絶縁膜を介在させ
てゲート電極が設けられたMIS構造を構成しているの
で、ゲート電極によってLDD部の主面部にチャネルを
形成することができる。(3) According to (1) above, since the LDD section has an MIS structure in which the gate electrode is provided with an insulating film interposed therebetween, a channel can be formed on the main surface of the LDD section by the gate electrode.
(4)前記(3)により、LDD部の抵抗値を小さくす
ることができるので、ソース領域とドレイン領域との間
のトランスコンダクタンスの低下を抑制し、M I S
FETの駆動能力を向上することができる。(4) According to (3) above, the resistance value of the LDD section can be reduced, suppressing the decrease in transconductance between the source region and the drain region, and increasing the M I S
The driving ability of the FET can be improved.
(5)前記(2)及び(4)により、LDD構造のMI
SFETを備えた半導体集積回路装置において、その集
積度を向上し、かつ、前記MISFETの駆動能力を向
上することができる。(5) According to (2) and (4) above, MI of LDD structure
In a semiconductor integrated circuit device including an SFET, the degree of integration thereof can be improved, and the driving ability of the MISFET can be improved.
以上、本発明者によってなされた発明を、前記実施例に
もとすき具体的に説明したが1本発明は。The invention made by the present inventor has been specifically explained in the above embodiments, but one aspect of the present invention is as follows.
前記実施例に限定されるものではなく、その要旨を逸脱
しない範囲において、種々変形し得ることは勿論である
。It goes without saying that the invention is not limited to the embodiments described above, and that various modifications may be made without departing from the spirit thereof.
例えば、前記実施例のMISFETは、実質的なソース
領域又はドレイン領域の下部の略全面にLDD部となる
ソース領域又はドレイン領域を設けた例について説明し
たが、グー1−電極の近傍部分だけに設けてもよい。For example, in the MISFET of the above embodiment, an example has been described in which the source region or the drain region which becomes the LDD section is provided substantially over the entire lower part of the source region or the drain region. It may be provided.
第1図は1本発明の一実施例を説明するためのLDD構
造のM I S FETを備えた半導体集積回路装置の
要部平面図、
第2図は、第1図の■−■切断線における断面図。
第3図乃至第5図は1本発明の一実施例の製造方法を説
明するための各製造工程におけるLDD構造のM I
S FETを備えた半導体集積回路装置の要部断面図で
ある。
図中、l・・・半導体基板、2・・・フィールド絶縁膜
、3・・・チャネルストッパ領域、4・・・細孔、5.
9・・−絶縁膜、6.11・・・導電層、7,8・・・
半導体領域、10・・・接続孔である。
第 1 図
第 2 図
第 4 図
第 5 図FIG. 1 is a plan view of a main part of a semiconductor integrated circuit device equipped with an LDD structure MI S FET for explaining one embodiment of the present invention. FIG. A cross-sectional view. FIGS. 3 to 5 show the M I of the LDD structure in each manufacturing process for explaining the manufacturing method of one embodiment of the present invention.
1 is a sectional view of a main part of a semiconductor integrated circuit device including an S FET. In the figure, l: semiconductor substrate, 2: field insulating film, 3: channel stopper region, 4: pore, 5.
9...-insulating film, 6.11... conductive layer, 7,8...
Semiconductor region, 10... Connection hole. Figure 1 Figure 2 Figure 4 Figure 5
Claims (1)
半導体領域の主面部に、細孔又は細溝を設け、該細孔又
は細溝にそって前記第1の半導体領域の主面上部に、絶
縁膜を介して導電層を設け、該導電層の両側部の第1の
半導体領域の主面部に、第2導電型の第2の半導体領域
を設け、該第2の半導体領域の下部の第1の半導体領域
の主面部に、第2の半導体領域と同一導電型で電気的に
接続され、かつ第2の半導体領域よりも不純物濃度が低
い第3の半導体領域を設けて絶縁ゲート型電界効果トラ
ンジスタを構成してなることを特徴する半導体集積回路
装置。 2、前記第2の半導体領域及び第3の半導体領域は、ソ
ース領域又はドレイン領域として使用され、前記導電層
は、ゲート電極として使用されることを特徴とする特許
請求の範囲第1項に記載の半導体集積回路装置。 3、前記第3の半導体領域は、チャネルが形成される領
域と接続されてなることを特徴とする特許請求の範囲第
1項に記載の半導体集積回路装置。 4、前記導電層は、前記第3の半導体領域間に介在する
ように設けられていることを特徴とする特許請求の範囲
第1項に記載の半導体集積回路装置。[Claims] 1. A pore or a narrow groove is provided in the main surface of a first semiconductor region of a first conductivity type that is electrically isolated from other regions, and a pore or a narrow groove is provided along the pore or narrow groove. A conductive layer is provided above the main surface of the first semiconductor region via an insulating film, and second semiconductor regions of a second conductivity type are provided on the main surface of the first semiconductor region on both sides of the conductive layer. A second semiconductor region is provided, and is electrically connected to the main surface of the first semiconductor region under the second semiconductor region and has the same conductivity type as the second semiconductor region, and has a lower impurity concentration than the second semiconductor region. What is claimed is: 1. A semiconductor integrated circuit device comprising three semiconductor regions forming an insulated gate field effect transistor. 2. The second semiconductor region and the third semiconductor region are used as a source region or a drain region, and the conductive layer is used as a gate electrode, according to claim 1. semiconductor integrated circuit devices. 3. The semiconductor integrated circuit device according to claim 1, wherein the third semiconductor region is connected to a region where a channel is formed. 4. The semiconductor integrated circuit device according to claim 1, wherein the conductive layer is provided to be interposed between the third semiconductor regions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246000A JPS61125084A (en) | 1984-11-22 | 1984-11-22 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246000A JPS61125084A (en) | 1984-11-22 | 1984-11-22 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61125084A true JPS61125084A (en) | 1986-06-12 |
Family
ID=17141971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59246000A Pending JPS61125084A (en) | 1984-11-22 | 1984-11-22 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61125084A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284847A (en) * | 1987-05-16 | 1988-11-22 | Oki Electric Ind Co Ltd | Semiconductor memory device and its manufacture |
JPH0482272A (en) * | 1990-07-25 | 1992-03-16 | Semiconductor Energy Lab Co Ltd | Insulated-gate field-effect semiconductor device |
JP2007526651A (en) * | 2004-03-02 | 2007-09-13 | タエ−ボク リー | High breakdown voltage semiconductor device and manufacturing method thereof |
-
1984
- 1984-11-22 JP JP59246000A patent/JPS61125084A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284847A (en) * | 1987-05-16 | 1988-11-22 | Oki Electric Ind Co Ltd | Semiconductor memory device and its manufacture |
JPH0482272A (en) * | 1990-07-25 | 1992-03-16 | Semiconductor Energy Lab Co Ltd | Insulated-gate field-effect semiconductor device |
JP2007526651A (en) * | 2004-03-02 | 2007-09-13 | タエ−ボク リー | High breakdown voltage semiconductor device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3448546B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS61125084A (en) | Semiconductor integrated circuit device | |
JPS61190983A (en) | Semiconductor integrated circuit device | |
JPH07321327A (en) | Semiconductor device and its manufacturing method | |
JPH02178965A (en) | Insulated isolation type field-effect semiconductor device | |
JPH06177376A (en) | Manufacture of mos field-effect semiconductor device | |
JP2004063918A (en) | Lateral mos transistor | |
JP3071615B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS61119078A (en) | Mos semiconductor device | |
JPH06105715B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH07193235A (en) | Semiconductor device and its manufacture | |
JPH0321074A (en) | Semiconductor integrated circuit device | |
JP3147374B2 (en) | Semiconductor device | |
JPS6038878A (en) | Mis-type semiconductor device | |
JPS61166154A (en) | Manufacture of mis type semiconductor device | |
JPH0456280A (en) | Semiconductor device and manufacture thereof | |
JPH11251240A (en) | Semiconductor device and manufacture of the same | |
JPS6254959A (en) | Manufacture of mis semiconductor device | |
JPH05198665A (en) | Manufacture of semiconductor integrated circuit device | |
JPH08204192A (en) | Mos semiconductor device and its manufacture | |
JPS62169479A (en) | Manufacture of semiconductor integrated circuit device | |
JPH01191478A (en) | Manufacture of semiconductor device | |
JPS60242666A (en) | Semiconductor device and manufacture thereof | |
JPH0496234A (en) | Manufacture of semiconductor device | |
JPH01122154A (en) | Semiconductor device |