JPS6380561A - Manufacture of complementary semiconductor device - Google Patents

Manufacture of complementary semiconductor device

Info

Publication number
JPS6380561A
JPS6380561A JP61223732A JP22373286A JPS6380561A JP S6380561 A JPS6380561 A JP S6380561A JP 61223732 A JP61223732 A JP 61223732A JP 22373286 A JP22373286 A JP 22373286A JP S6380561 A JPS6380561 A JP S6380561A
Authority
JP
Japan
Prior art keywords
groove
plane
vertical
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61223732A
Other languages
Japanese (ja)
Inventor
Naoki Kasai
直記 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61223732A priority Critical patent/JPS6380561A/en
Priority to EP19870113917 priority patent/EP0261666B1/en
Priority to DE19873780895 priority patent/DE3780895T2/en
Publication of JPS6380561A publication Critical patent/JPS6380561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • H01L21/2815Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects part or whole of the electrode is a sidewall spacer or made by a similar technique, e.g. transformation under mask, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the density of a complementary semiconductor device by a vertical n-channel field effect transistor on the side of a groove in which a crystal surface of the side formed on a silicon substrate is in a plane (100) and a vertical p-channel field effect transistor on the side of the groove in which a crystal surface of the side is in a plane (110). CONSTITUTION:An SiO2 layer 2 is formed to divide an element on a p-type silicon substrate 1 of plane azimuth (110) to form an n-well 3. Then, a vertical- shaped groove is so formed that the plane azimuth of the sidewall of the groove of the n-well region becomes a plane (110) 4 and the plane azimuth of the sidewall of the groove becomes a plane (110) 5. Then, after a gate insulating film is formed on the sidewall of the groove, gate electrodes 6 are formed on the side of the groove and desired surface, a high concentration p-type diffused layer 7 is formed on the Si surface of the n-well region, and a high concentration n-type diffused layer 8 is formed on the Si surface of the p-type substrate region. A vertical n-channel field effect transistor is formed on the side 5, and a vertical p-channel field effect transistor is formed on the side 4. Thus, the operation can be accelerated, and the elements are formed in high density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン基板に高密度に形成される相補型半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing complementary semiconductor devices formed in high density on a silicon substrate.

〔従来の技術〕[Conventional technology]

近来、半導体デバイスにおける高集積化が進み、低消費
電力かつ高速動作の期待できる相補型半導体装置の構造
に関して多くの提案がなされている。
2. Description of the Related Art In recent years, as semiconductor devices have become more highly integrated, many proposals have been made regarding the structure of complementary semiconductor devices that can be expected to have low power consumption and high-speed operation.

従来、基板平面のみを利用して形成されていた半導体素
子も、縮小化の限界から、基板に溝を掘り、側壁を用い
て素子を縦型構造とする報告がある。
Conventionally, semiconductor devices have been formed using only the flat surface of a substrate, but due to the limitations of miniaturization, there are reports of trenches being dug in the substrate and sidewalls being used to form the device into a vertical structure.

たとえば、衣用らにより、第33回応用物理学関係連合
講演会講演予稿集の549ページ3p−Q−11に発表
された論文において、次の方法が紹介されている。すな
わち、第3図に示すように、n型シリコン基板21にn
ウェル22とpウェル23を形成し、nウェル領域に側
壁の結晶面が(110)面となるようにシリコンの溝を
形成する。pウェル上には通常用いられている平面型の
nチャネル電界効果トランジスタを、nウェル上には側
壁をチャネルとして用いる縦型のpチャネル電界効果ト
ランジスタを形成し、相補型半導体装置を構成するもの
である。なお図中、24は素子を分離するためのS 1
025.25はpチャネル電界効果トランジスタのゲー
ト電極、26はp型拡散層であり、28はnチャネル電
界効果トランジスタのゲート電極、27はn型拡散眉で
ある。
For example, the following method is introduced by Kinyo et al. in a paper published on page 549, 3p-Q-11 of the 33rd Applied Physics Conference Proceedings. That is, as shown in FIG.
A well 22 and a p-well 23 are formed, and a silicon trench is formed in the n-well region so that the crystal plane of the sidewall is the (110) plane. A commonly used planar n-channel field effect transistor is formed on the p-well, and a vertical p-channel field-effect transistor using the sidewall as a channel is formed on the n-well, forming a complementary semiconductor device. It is. In the figure, 24 is S 1 for separating the elements.
025.25 is a gate electrode of a p-channel field effect transistor, 26 is a p-type diffusion layer, 28 is a gate electrode of an n-channel field effect transistor, and 27 is an n-type diffusion layer.

本構造の特徴は、pチャネル電界効果トランジスタの電
流駆動能力が(100)面より (110)面の方が大
きいことを利用して相補型半導体装置の動作の高速化を
図るものである。また、nチャネル電界効果トランジス
タを縦型とすることで素子の高密度化が可能となる。
The feature of this structure is to utilize the fact that the current driving capability of the p-channel field effect transistor is larger in the (110) plane than in the (100) plane to increase the operation speed of the complementary semiconductor device. Further, by making the n-channel field effect transistor vertical, it becomes possible to increase the density of the device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の構造の相補型半導体装置において、nチ
ャネル電界効果トランジスタを縦型とすることで高密度
化が図られているが、nチャネル電界効果トランジスタ
は平面に形成されているために、高密度化を行う余地が
残されている。また縦型と横型を合わせ持つために、製
造工程中のリソグラフィー工程において問題点がある。
In the complementary semiconductor device with the conventional structure described above, high density is achieved by making the n-channel field effect transistor vertical. However, since the n-channel field effect transistor is formed in a plane, high density There is still room for densification. Furthermore, since it has both vertical and horizontal types, there are problems in the lithography process during the manufacturing process.

本発明の目的は、このような問題点を解決した相補型半
導体装置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a complementary semiconductor device that solves these problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の相補型半導体装置の製造方法は、シリコン基板
に、側面の結晶面が(100)である第1の溝と、側面
の結晶面が(110)である第2の溝とを形成し、第1
の溝の前記側面に縦型のnチャネル電界効果トランジス
タを、第2の溝の前記側面に縦型のnチャネル電界効果
トランジスタを形成することを特徴としている。
The method for manufacturing a complementary semiconductor device of the present invention includes forming in a silicon substrate a first groove whose side surface has a (100) crystal plane and a second groove whose side surface has a (110) crystal plane. , 1st
A vertical n-channel field effect transistor is formed on the side surface of the groove, and a vertical n-channel field effect transistor is formed on the side surface of the second groove.

〔実施例〕〔Example〕

以下、本発明の第1の実施例について図面を用いて詳細
に説明する。
Hereinafter, a first embodiment of the present invention will be described in detail using the drawings.

第1図は、本発明の第1の実施例を説明するための試料
の構造を、主な製造工程における断面および表面を示す
斜視図である。第1図(a)において、面方位(110
)p型シリコン基板1に、素子を分離するための5i0
2層2を形成し、イオン注入法と熱アニール工程により
nウェル3を形成する。
FIG. 1 is a perspective view showing the cross section and surface of the structure of a sample in the main manufacturing steps for explaining the first embodiment of the present invention. In Fig. 1(a), the plane orientation (110
) 5i0 for separating elements on p-type silicon substrate 1
Two layers 2 are formed, and an n-well 3 is formed by ion implantation and a thermal annealing process.

次にnウェル領域では溝側壁の面方位が(110)面4
となるように、p型基板領域では溝側壁の面方位が(1
00)面5となるように、深さ約1μmの垂直形状の溝
を形成すると第1図(b)となる。
Next, in the n-well region, the plane orientation of the trench sidewall is (110) plane 4
In the p-type substrate region, the plane orientation of the trench sidewall is (1
When a vertical groove with a depth of about 1 μm is formed so as to form the surface 5 (00), the result is as shown in FIG. 1(b).

次に、溝側壁にゲート絶縁膜を形成した後、溝側面と所
望の表面にゲート電極6を形成し、続いてイオン注入法
によりnウェル領域のSi表面に高濃度p型拡散層7を
、p型基板領域のSi表面に高濃度n型拡散層8を形成
すると第1図(c)となる。
Next, after forming a gate insulating film on the sidewalls of the trench, a gate electrode 6 is formed on the sidewalls of the trench and a desired surface, and then a highly concentrated p-type diffusion layer 7 is formed on the Si surface of the n-well region by ion implantation. When a high concentration n-type diffusion layer 8 is formed on the Si surface of the p-type substrate region, the result is as shown in FIG. 1(c).

以後は、通常用いられる眉間絶縁膜堆積工程およびアル
ミニウム配線工程等を経て、溝側面の結晶面が(100
)である側面5に縦型のnチャネル電界効果トランジス
タが、溝側面の結晶面が(110)である側面4に縦型
のnチャネル電界効果トランジスタが形成され、相補型
半導体装置が構成される。
Thereafter, the crystal planes on the side surfaces of the grooves are (100
), a vertical n-channel field effect transistor is formed on the side surface 5 whose crystal plane is (110), and a vertical n-channel field effect transistor is formed on the side surface 4 whose crystal plane is (110), forming a complementary semiconductor device. .

次に、本発明の第2の実施例について図面を用いて詳細
に説明する。
Next, a second embodiment of the present invention will be described in detail using the drawings.

第2図は、本発明の第2の実施例を説明するための試料
の構造を、主な製造工程における断面および表面を示す
斜視図である。第2図(a)において、面方位(100
)p型シリコン基板11に、素子を分離するためのS 
i 02 層12を形成し、イオン注入法と熱アニール
工程によりnウェル13を形成する。
FIG. 2 is a perspective view showing the cross section and surface of the main manufacturing process of the structure of a sample for explaining the second embodiment of the present invention. In Fig. 2(a), the surface orientation (100
) S on the p-type silicon substrate 11 to separate the elements.
An i 02 layer 12 is formed, and an n-well 13 is formed by ion implantation and thermal annealing.

次にnウェル領域では溝側壁の面方位が(110)面1
4となるように、p型基板領域では溝側壁の面方位が(
100)面15となるように、深さ約1μmの垂直形状
の溝を形成すると第2図(b)となる。
Next, in the n-well region, the plane orientation of the trench sidewall is (110) plane 1
4, the plane orientation of the trench sidewall in the p-type substrate region is (
100) When a vertical groove with a depth of about 1 μm is formed so as to form a surface 15, the result is as shown in FIG. 2(b).

次に、溝側壁にゲート絶縁膜を形成した後、溝側面と所
望の表面にゲート電極16を形成し、続いてイオン注入
法によりnウェル領域のSi表面に高濃度p型拡散層1
7を、p型基板領域の3i表面に高濃度n型拡散層18
を形成すると第2図<c>となる。
Next, after forming a gate insulating film on the sidewalls of the trench, a gate electrode 16 is formed on the sidewalls of the trench and a desired surface, and then a highly concentrated p-type diffusion layer 1 is formed on the Si surface of the n-well region by ion implantation.
7, and a high concentration n-type diffusion layer 18 on the surface of 3i of the p-type substrate region.
When formed, the result is as shown in Fig. 2 <c>.

以後は、通常用いられろ眉間絶縁膜堆積工程およびアル
ミニウム配線工程等を経て、溝側面の結晶面が(100
)である(!1.11面15に本型のnチャネル電界効
果トランジスタが、溝側面の結晶が(110)である側
面14に縦型のnチャネル電界効果トランジスタが形成
され、相補型半導体装置が構成される。
After that, the crystal planes on the side surfaces of the grooves are (100
) (!1.11 An n-channel field effect transistor of this type is formed on the surface 15, and a vertical n-channel field effect transistor is formed on the side surface 14 where the crystal on the side surface of the groove is (110), thereby forming a complementary semiconductor device. is configured.

以上節1および第2の実施例においては、p型基板でn
ウェルを形成したが、n型基板を用いてnウェルを形成
したものでもかまわない。また、溝の深さを1μmとし
たが、これに限定するものでなく、また溝の形状は側面
にゲート電界で制御できるチャネルが形成される形状で
あればよい。
In Section 1 and the second embodiment above, the p-type substrate is n
Although a well is formed in the above example, an n-well may be formed using an n-type substrate. Further, although the depth of the groove is 1 μm, the present invention is not limited to this, and the shape of the groove may be any shape as long as a channel that can be controlled by a gate electric field is formed on the side surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、両導電型電界効果トランジスタともに
縦型とし、しかも素子の駆動能力が大きく、かつ高密度
の相補型半導体装置を製造することができる。
According to the present invention, it is possible to manufacture a complementary semiconductor device in which both conductivity type field effect transistors are vertically typed, the element driving capability is large, and the device density is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の主な製造工程における
断面および表面を示す斜視図、第2図は本発明の第2の
実施例の主な製造工程における断面および表面を示す斜
視図、第3図は従来構造の相補型半導体装置の断面構造
を示す模式図である。 1・・・・・ (110)p型Si基板2.12.24
・・5SO2層 3.13.22 ・・nウェル 4.14 ・・・ (110)側面 5.15 ・・・ (100)側面 6.16.25・・ゲート電極 7.17 ・・・高濃度p型拡散眉 8.18 ・・・高濃度n型拡散層 11・・・・・ (100)p型Si基板23・・・・
・nウェル 26・・・・・p型拡散層 27・・・・・n型拡散層
FIG. 1 is a perspective view showing the cross section and surface of the main manufacturing process of the first embodiment of the present invention, and FIG. 2 is a perspective view showing the cross section and surface of the main manufacturing process of the second embodiment of the present invention. 3 are schematic diagrams showing the cross-sectional structure of a complementary semiconductor device having a conventional structure. 1... (110) p-type Si substrate 2.12.24
... 5SO2 layer 3.13.22 ... N well 4.14 ... (110) Side surface 5.15 ... (100) Side surface 6.16.25 ... Gate electrode 7.17 ... High concentration P-type diffusion layer 8.18...High concentration n-type diffusion layer 11... (100) P-type Si substrate 23...
・N-well 26...P-type diffusion layer 27...N-type diffusion layer

Claims (1)

【特許請求の範囲】[Claims] (1)シリコン基板に、側面の結晶面が(100)であ
る第1の溝と、側面の結晶面が(110)である第2の
溝とを形成し、第1の溝の前記側面に縦型のnチャネル
電界効果トランジスタを、第2の溝の前記側面に縦型の
pチャネル電界効果トランジスタを形成することを特徴
とする相補型半導体装置の製造方法。
(1) A first groove whose side surface has a (100) crystal plane and a second groove whose side surface has a (110) crystal plane are formed in a silicon substrate, and the side surface of the first groove is A method for manufacturing a complementary semiconductor device, comprising forming a vertical n-channel field effect transistor and a vertical p-channel field effect transistor on the side surface of the second groove.
JP61223732A 1986-09-24 1986-09-24 Manufacture of complementary semiconductor device Pending JPS6380561A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61223732A JPS6380561A (en) 1986-09-24 1986-09-24 Manufacture of complementary semiconductor device
EP19870113917 EP0261666B1 (en) 1986-09-24 1987-09-23 Complementary type insulated gate field effect transistor
DE19873780895 DE3780895T2 (en) 1986-09-24 1987-09-23 COMPLEMENTARY FIELD EFFECT TRANSISTOR WITH ISOLATED GATE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223732A JPS6380561A (en) 1986-09-24 1986-09-24 Manufacture of complementary semiconductor device

Publications (1)

Publication Number Publication Date
JPS6380561A true JPS6380561A (en) 1988-04-11

Family

ID=16802822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223732A Pending JPS6380561A (en) 1986-09-24 1986-09-24 Manufacture of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS6380561A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971926A (en) * 1984-08-28 1990-11-20 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
JP2005019978A (en) * 2003-06-04 2005-01-20 Tadahiro Omi Semiconductor device and its manufacturing method
WO2005022637A1 (en) * 2003-08-28 2005-03-10 Nec Corporation Semiconductor device having fin-type field effect transistors
US7473946B2 (en) 2006-02-22 2009-01-06 International Business Machines Corporation CMOS structure and method including multiple crystallographic planes
US7649243B2 (en) 2006-11-06 2010-01-19 International Business Machines Corporation Semiconductor structures incorporating multiple crystallographic planes and methods for fabrication thereof
US7652353B2 (en) 2006-03-24 2010-01-26 Sanyo Electric Co., Ltd. Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971926A (en) * 1984-08-28 1990-11-20 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
JP2005019978A (en) * 2003-06-04 2005-01-20 Tadahiro Omi Semiconductor device and its manufacturing method
WO2005022637A1 (en) * 2003-08-28 2005-03-10 Nec Corporation Semiconductor device having fin-type field effect transistors
US7473946B2 (en) 2006-02-22 2009-01-06 International Business Machines Corporation CMOS structure and method including multiple crystallographic planes
US7785955B2 (en) 2006-02-22 2010-08-31 International Business Machines Corporation CMOS structure and method including multiple crystallographic planes
US7652353B2 (en) 2006-03-24 2010-01-26 Sanyo Electric Co., Ltd. Semiconductor device
US7649243B2 (en) 2006-11-06 2010-01-19 International Business Machines Corporation Semiconductor structures incorporating multiple crystallographic planes and methods for fabrication thereof
US7888780B2 (en) 2006-11-06 2011-02-15 International Business Machines Corporation Semiconductor structures incorporating multiple crystallographic planes and methods for fabrication thereof

Similar Documents

Publication Publication Date Title
US4013484A (en) High density CMOS process
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH0447988B2 (en)
CN1956221A (en) Transistor with medium stress generation region and manufacturing method thereof
JP2002299620A (en) Method for manufacturing silicon carbide semiconductor device
US4788158A (en) Method of making vertical inverter
JPS6380561A (en) Manufacture of complementary semiconductor device
JPH01268061A (en) Semiconductor device
JPS6380562A (en) Complementary semiconductor device
JPH0350771A (en) Semiconductor device
JPS60105247A (en) Manufacture of semiconductor device
JPS5986241A (en) Semiconductor device and manufacture thereof
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPH02192168A (en) Semiconductor integrated circuit device
JPS6039868A (en) Manufacture of semiconductor device
JPS60226168A (en) Complementary mos semiconductor device
JPS5861673A (en) Preparation of semiconductor device
JPH0334378A (en) Mos type field effect transistor
JPS6122476B2 (en)
JPH0330307B2 (en)
JPH0282576A (en) Semiconductor device and its manufacture
JPH01189173A (en) Semiconductor device
JPS61214457A (en) Semiconductor device and manufacture thereof
JPH05335329A (en) Semiconductor device and its manufacture
JPS6177373A (en) Manufacture of semiconductor device