JPS61214457A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61214457A
JPS61214457A JP60055156A JP5515685A JPS61214457A JP S61214457 A JPS61214457 A JP S61214457A JP 60055156 A JP60055156 A JP 60055156A JP 5515685 A JP5515685 A JP 5515685A JP S61214457 A JPS61214457 A JP S61214457A
Authority
JP
Japan
Prior art keywords
substrate
depth
ion implantation
layer
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055156A
Other languages
Japanese (ja)
Inventor
Koji Matsuki
松木 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60055156A priority Critical patent/JPS61214457A/en
Publication of JPS61214457A publication Critical patent/JPS61214457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To inhibit a diffused junction capacitance between source-drain and a substrate at a small value by implanting ions in order to increase substrate concentration while counter-doping ions so that only an ion implanting layer under a gate region is left. CONSTITUTION:Oxide films (SiO2) 12 having trench structure deeply penetrating in the vertical direction in the surface of a substrate 11 are formed to the substrate 11 in order to isolate each element. The substrate 11 is thermally oxidized to shape a thermal oxide film 13, and the ions of pentavalent atoms such as phosphorus are implanted to the whole surface twice. The ions are implanted by changing over acceleration voltage to a high value for the first time and to a low value for the second time at that time. An ion implanting layer 14 having low concentration (N<->) through the first ion implantation is shaped in depth in the same extent as the bottom of an oxide film 11 for isolating elements, and the depth of ion implanting layers 15 having low concentration (N<->) through the second ion implantation is brought to depth in the same extent as the bottoms of source-drain, 18, 18 formed in a post-process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法に関するもので、
特に微細MOSデバイスにおいて動作速度をより高速に
しようとするものに適用される。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same.
It is particularly applied to fine MOS devices that are intended to operate at higher speeds.

(発明の技術的前Fl) MOSデバイスは微細化が著しく進行しており、最近で
はヂVネル艮2μm程度のものが実用化されている。以
下、添付図面の第2図を参照して従来技術を説明する。
(Technical Priority of the Invention) MOS devices have been significantly miniaturized, and recently devices with a diameter of about 2 μm have been put into practical use. The prior art will be described below with reference to FIG. 2 of the accompanying drawings.

なお、第2図の説明において同一の要素は同一の符号で
示しである。
In the explanation of FIG. 2, the same elements are indicated by the same reference numerals.

第2図はチ11ネル長が2μm程麿0CMOSデバイス
におけるPチ1!ネルトランジスタの製造工程を示す断
面図である。
Figure 2 shows a Pchi 1 in a CMOS device with a channel length of approximately 2 μm. FIG. 3 is a cross-sectional view showing the manufacturing process of a channel transistor.

まず、例えばシリコン等のN型半導体基板1を熱酸化し
て表面に熱酸化膜2を形成する。次いで、熱酸化膜2上
に窒化膜を堆積し、トランジスタ形成領域の窒化膜3を
残して他領[(以下、フィールド領域と呼ぶ)の窒化膜
を除去する。その後、全面に5価原子、例えば* (P
)を低1度にイオン注入し、フィールド領域の酸化膜2
の内側にN”のフィールドイオン注入層4を設ける。以
上の工程により、第2図(A)の状態となる。ここで、
フィールドイオン注入層4は寄生トランジスタの形成を
防止するため設けられでいるものである。
First, an N-type semiconductor substrate 1 made of, for example, silicon is thermally oxidized to form a thermal oxide film 2 on its surface. Next, a nitride film is deposited on the thermal oxide film 2, and the nitride film in other regions (hereinafter referred to as field regions) is removed, leaving the nitride film 3 in the transistor formation region. Then, the entire surface is covered with pentavalent atoms, for example * (P
) is ion-implanted at a low temperature of 1°C to form an oxide film 2 in the field area.
A field ion implantation layer 4 of N'' is provided inside the layer.The above steps result in the state shown in FIG. 2(A).Here,
The field ion implantation layer 4 is provided to prevent the formation of parasitic transistors.

第2図(A)の状態から、次に、例えば水蒸気中で熱酸
化する。このとき、窒化lI3の被覆のためフィールド
領域だけが酸化され、そこに厚い酸化膜5が形成される
。このフィールド酸化膜5は基板1のトランジスタ形成
面に比べて深い位置まで形成され、これにより他素子と
このトランジスタとを分1lIIvるようになっている
。次いで、トランジスタ形成領域の窒化膜3及び酸化膜
2を順次除去づる。このようにりると、第2図(B)示
すようにトランジスタ形成領域だけに基板1が露呈する
Next, from the state shown in FIG. 2(A), thermal oxidation is performed in, for example, steam. At this time, only the field region is oxidized to cover the nitride lI3, and a thick oxide film 5 is formed there. This field oxide film 5 is formed to a deeper position than the surface of the substrate 1 on which the transistor is formed, so that this transistor is separated from other elements by a distance of 1lIIv. Next, the nitride film 3 and oxide film 2 in the transistor formation region are sequentially removed. In this case, the substrate 1 is exposed only in the transistor formation region, as shown in FIG. 2(B).

次に、トランジスタ形成領域の基板1の表面に薄く酸化
膜6を形成し、その後全面に5価原子、例えば燐をイオ
ン注入する。このイオン注入層7を、はぼフィールドイ
オン注入114が設けられている深さと同程度の深さに
設けるようにし、トランジスタ形成領域下の基板1の不
純物濃度を高める。この状態を第2図(C)に示す。こ
こでイオン注入層7は、第1にトランジスタが形成され
たときソース、ドレイン間のバンチスルーを防止するた
め、第2に微細構造に起因するショートチャネル効果を
低減するため、第3にトランジスタのスレッショルド電
圧を適正値にするために設けられている。
Next, a thin oxide film 6 is formed on the surface of the substrate 1 in the transistor formation region, and then pentavalent atoms, such as phosphorus, are ion-implanted into the entire surface. This ion implantation layer 7 is provided at a depth comparable to that of the field ion implantation 114 to increase the impurity concentration of the substrate 1 under the transistor formation region. This state is shown in FIG. 2(C). Here, the ion implantation layer 7 is used firstly to prevent bunch-through between the source and drain when the transistor is formed, secondly to reduce the short channel effect caused by the fine structure, and thirdly to prevent the formation of the transistor. It is provided to set the threshold voltage to an appropriate value.

この第2図(C)の状態が得られると、次に、全面に例
えば多結晶シリコン層8を堆積した模に、トランジスタ
形成領域の中央部の多結晶シリコン118だけを残し、
他の多結晶シリコン層8を除去する。このとき、残存す
る多結晶シリコン層8がゲートとなる。その俊、ゲート
用の多結晶シリコン層8と左右の各フィールド酸化膜5
,5との間のトランジスタ形成領域におのおの3価原子
、例えばホウ素(B)を熱拡散させてP+層9,9を形
成する。口れらのP+層9,9がそれぞれソース、ドレ
インとなり、かくして第2図(D)に示すようなトラン
ジスタの基本構造が得られる。
Once the state shown in FIG. 2(C) is obtained, next, for example, a polycrystalline silicon layer 8 is deposited on the entire surface, leaving only the polycrystalline silicon layer 118 in the center of the transistor formation region.
Other polycrystalline silicon layer 8 is removed. At this time, the remaining polycrystalline silicon layer 8 becomes the gate. The reason for this is the polycrystalline silicon layer 8 for the gate and the left and right field oxide films 5.
, 5, respectively, by thermally diffusing trivalent atoms, such as boron (B), to form P+ layers 9, 9. These P+ layers 9 and 9 serve as the source and drain, respectively, and thus the basic structure of the transistor as shown in FIG. 2(D) is obtained.

〔背景技術の問題点〕[Problems with background technology]

以上のように、従来の半導体装置は微細化による効果を
得るためスケーリング則に従って微細化を行い、第2図
に示すように基板1にイオン注入3.7を設【プて基板
1の濃度を増大させている。
As described above, conventional semiconductor devices are miniaturized according to the scaling law in order to obtain the effects of miniaturization, and as shown in FIG. It is increasing.

そしてこれにより、奇生l・ランジスタの発生防止、シ
ョートチャネル効果の低減及びソース、ドレイン間のバ
ンチスルー防止を図っている。
This is intended to prevent the occurrence of anomalous transistors, reduce short channel effects, and prevent bunch-through between the source and drain.

しかしながら、イオン注入層3.7がない場合に比べて
ソース、ドレイン9.9の底部がイオン注入層7と接し
ているため、これにより生じる拡散接合容ff1(奇生
容量)が増大する。また、ソース、ドレイン9,9の端
部がフィールドイオン注入層3と接しているため、これ
により生じる拡散接合容量とが増える。このため、全体
の拡散接合容量の値は大きくなる。かかる大きな拡散接
合容ffi埴のため、微細化に伴う動作速度の向上が妨
げられる。そしてこの欠点は、より微細化しようとして
スケーリング則に従い基板濃度を高めれば高める程大き
なものとなる。
However, since the bottoms of the source and drain 9.9 are in contact with the ion implantation layer 7, the resulting diffusion junction capacitance ff1 (parasitic capacitance) increases compared to the case where the ion implantation layer 3.7 is not present. Furthermore, since the ends of the sources and drains 9, 9 are in contact with the field ion implantation layer 3, the resulting diffusion junction capacitance increases. Therefore, the value of the entire diffusion junction capacitance becomes large. Such a large diffusion bonding volume ffi-cell impedes improvement in operating speed accompanying miniaturization. This drawback becomes more significant as the substrate concentration increases in accordance with the scaling law in an attempt to achieve further miniaturization.

(発明の目的) 本発明は上記の従来技術の欠点を克服するためになされ
たもので、素子全体の接合容量を減少さU、6って高速
動作を可能にする半導体装置及びその製造方法を提供す
ることを目的とする。
(Objective of the Invention) The present invention has been made to overcome the drawbacks of the above-mentioned prior art, and provides a semiconductor device and a method for manufacturing the same that enable high-speed operation by reducing the junction capacitance of the entire device. The purpose is to provide.

〔発明の概要〕 上記の目的を達成するため本発明は、トランジスタの分
離(素子分離)をトレンチ構造の絶縁物によって実現し
、素子分離用絶縁物の底部と同程度の深さの領域に低濃
度の不純物の拡散層を形成し、かつゲート下方の所定の
深さの領域に低濃度の不純物拡散層を形成した半導体装
置およびその製造方法を提供1″るものである。
[Summary of the Invention] In order to achieve the above object, the present invention realizes transistor isolation (element isolation) using a trench-structured insulator, and insulates a region with a depth similar to the bottom of the element isolation insulator. The present invention provides a semiconductor device in which a high concentration impurity diffusion layer is formed and a low concentration impurity diffusion layer is formed in a region of a predetermined depth below a gate, and a method for manufacturing the same.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面の第1図を参照して本発明の一実施例を
説明する。第1図はCMOSデバイスのPチャネルトラ
ンジスタに本発明を適用した一実施例の製造工程を示す
断面図である。なお、第2図の説明において同一要素は
同一符号で示しである。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings. FIG. 1 is a cross-sectional view showing the manufacturing process of an embodiment in which the present invention is applied to a P-channel transistor of a CMOS device. In the explanation of FIG. 2, the same elements are indicated by the same reference numerals.

この実施例に−3いては、まず、例えばシリコン基板1
1に第1図(A)に示すように、各素子を分1111づ
るため基板表面の垂直方向に深く入り込むようにしたト
レンチ構造の酸化膜(S i O2)12を形成する。
In this embodiment, first, for example, a silicon substrate 1
1, as shown in FIG. 1A, an oxide film (S i O 2 ) 12 having a trench structure is formed deeply in the vertical direction of the substrate surface in order to separate each element.

このようなトレンチ構造の分離溝形成は周知の技術によ
り行うことができる。
Formation of isolation grooves in such a trench structure can be performed using well-known techniques.

この後、基板11を熱酸化し、基板表面にゲート酸化膜
となる熱酸化膜13を形成する。次いで、全面に5価原
子、例えば燐を2度イオン注入する。
Thereafter, the substrate 11 is thermally oxidized to form a thermal oxide film 13 that will become a gate oxide film on the surface of the substrate. Next, pentavalent atoms such as phosphorus are ion-implanted twice over the entire surface.

その際、加速電圧を1度目は高く、2度目は低く切換え
て行なう。1度目のイオン注入による低濃度(N−)の
イオン注入層14は、素子分離用酸化膜11の底部と同
程度の深さに形成される。2度目のイオン11人による
低濃度(N−)のイオン11人層15の深さは、後の工
程で形成されるソース、ドレイン18.18(第1図(
D))の底部と同程度の深さになるようにする。このよ
うにして、イオン注入後の状態は第1図(B)に示すよ
うになる。なお、イオン注入層14は寄生トランジスタ
を防止するためのものである。
At this time, the acceleration voltage is switched high the first time and low the second time. The low concentration (N-) ion implantation layer 14 obtained by the first ion implantation is formed to a depth comparable to the bottom of the element isolation oxide film 11. The depth of the low concentration (N-) layer 15 of 11 ions formed by the second 11 ions is the same as the source and drain 18.18 (Fig.
D) The depth should be about the same as the bottom of (D)). In this way, the state after ion implantation becomes as shown in FIG. 1(B). Note that the ion implantation layer 14 is for preventing parasitic transistors.

次に、全面に多結晶シリコン16を堆積し、トランジス
タ形成領域中央部分すなわちゲート部分の多結晶シリコ
ン16を残して、他はフォトレジスト17をマスクにし
て例えばフォトエツチングによりバターニングする。そ
の後、残存する多結晶シリコン(ゲートとなる)16上
に塗布されているフォトレジスト17を残した状態で、
全面に3価原子、例えばホウ素をイオン注入する。この
ホ1り索のイオン注入は上述のイオン注入層15の深さ
にイオン注入すると共に、イオン注入層15と同程度の
低濃度(P−)に行なう。この際、レジスト17がイオ
ン注入を阻止するので、ゲート16の下部イオン注入層
15が残り、他の部分のイオン注入層15はこのカウン
タドープにより濃度が大幅に低下する。かくして、第1
図(C)に示1゛状態が得られる。
Next, polycrystalline silicon 16 is deposited over the entire surface, and except for the polycrystalline silicon 16 in the central part of the transistor forming region, that is, the gate part, the rest is patterned by, for example, photoetching using photoresist 17 as a mask. After that, with the photoresist 17 coated on the remaining polycrystalline silicon 16 (which will become the gate) remaining,
Trivalent atoms, such as boron, are ion-implanted over the entire surface. The ion implantation for this hollow line is performed by implanting ions to the depth of the ion implantation layer 15 described above, and at a low concentration (P-) comparable to that of the ion implantation layer 15. At this time, since the resist 17 blocks ion implantation, the lower ion implantation layer 15 of the gate 16 remains, and the concentration of the other portions of the ion implantation layer 15 is significantly reduced due to this counter doping. Thus, the first
The state 1' shown in Figure (C) is obtained.

その後、ゲート16を除く領域に3価原子、例えばホウ
素をイオン注入してから熱拡散してソース、ドレインと
なるP+層18.18を形成する。
Thereafter, trivalent atoms, such as boron, are ion-implanted into the region excluding the gate 16 and then thermally diffused to form P+ layers 18.18 that will become the source and drain.

このようにして、第1図(D)に示すように1〜ランジ
スタの基本構造が得られる。
In this way, the basic structure of transistors 1 to 1 is obtained as shown in FIG. 1(D).

この第1図の実施例によれば、グーi・下方にイオン注
入層15が設けられているので、基板11を微細化する
際にはスケーリング則に従って不純物を高濃度にするこ
とができる。しかもそのとき、ソース、ドレイン18.
18の底部近傍にはイオン注入層15を設けず、基板1
1のa度を低くしているので拡散接合容量を小さい値に
下げることができる。また、この実施例によれば、素子
分離をi−レンチ構造の絶縁物で行うようにしたので、
フィールドイオン注入li?i4(第2図)を設けずに
寄生トランジスタの発生を防止でき、そのため、従来a
置のようなフィードルイオン注入層4及びソース、ドレ
イン9,9間の大きな拡散接合容量の発生を防止1゛る
ことができる。このようにして、全体としての拡散接合
容量を格段に減少でき、従ってV」作速度を向上させる
ことができる。
According to the embodiment shown in FIG. 1, since the ion implantation layer 15 is provided below the substrate 11, when the substrate 11 is miniaturized, the impurity concentration can be increased according to the scaling law. Moreover, at that time, source, drain 18.
The ion implantation layer 15 is not provided near the bottom of the substrate 1 .
Since the a degree of 1 is made low, the diffusion junction capacitance can be reduced to a small value. Furthermore, according to this embodiment, element isolation is performed using an insulator having an i-wrench structure.
Field ion implantation li? It is possible to prevent the generation of parasitic transistors without providing i4 (Fig. 2).
It is possible to prevent the occurrence of a large diffusion junction capacitance between the field ion-implanted layer 4 and the sources and drains 9, 9, as shown in FIG. In this way, the overall diffusion junction capacitance can be significantly reduced, thus increasing the V'' operation speed.

なお、上記の実施例はPチレネルトランジスタに関する
ものであるが、Nチャネルトランジスタに本発明を適用
できることは言うまでもない。また、上記の実施例は3
価原子のカウンタドープをレジスト17をマスクにして
実行しているが、多結晶シリコン層16の低抵抗化のた
めに例えばモリブデン等の金属を多結晶シリコン層16
上に形成する場合には、その金fi層をマスクとして実
行することかできる。
Although the above embodiments relate to P-channel transistors, it goes without saying that the present invention can be applied to N-channel transistors. In addition, the above example is 3
Counter-doping of valence atoms is performed using the resist 17 as a mask, but in order to lower the resistance of the polycrystalline silicon layer 16, a metal such as molybdenum is added to the polycrystalline silicon layer 16.
If formed on top, the gold fi layer can be used as a mask.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明では、基板濃度を高めるためのイオン
注入を行なうと共に、グー!・領域下のイオン注入層だ
けがIA存するようにカウンタドーブを行なうようにし
たので、ソース、ドレインと基板との拡散接合容量を小
さい値に抑えることができ、また素子分離をトレンチ構
造の絶縁物で行うようにしたので従来のフィードイオン
注入層による拡散容量を少なくでき、従って全体として
の拡散接合容量を減少させて動作速度を向上させること
ができる半導体装置およびその製造方法を提供すること
ができる。ちなみに、カウンタドープにより基板濃度を
1/10低下させると接合容量の値は約173になる。
As described above, in the present invention, ion implantation is performed to increase the substrate concentration, and Goo! - Counterdoping is performed so that only the ion-implanted layer under the region has IA, so the diffusion junction capacitance between the source, drain and substrate can be suppressed to a small value, and device isolation can be achieved using trench-structured insulators. Since the diffusion capacitance caused by the conventional feed ion implantation layer can be reduced, it is possible to provide a semiconductor device and its manufacturing method that can reduce the overall diffusion junction capacitance and improve the operating speed. . Incidentally, if the substrate concentration is reduced by 1/10 by counter-doping, the value of the junction capacitance becomes approximately 173.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る半導体装置の製造工程
を示す断面図、第2図は従来の半導体装置の製造工程の
一例を示寸断面図である。 11・・・半導体基板、12・・・素子分離用酸化膜、
13・・・ゲート酸化膜、14・・・寄生トランジスタ
防止用イオン注入層、15・・・イオン注入層(高a度
基板領域)、16・・・ゲート多結晶シリコン、18゜
18・・・ソース、ドレイン。 第1図
FIG. 1 is a sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a conventional manufacturing process of a semiconductor device. 11... Semiconductor substrate, 12... Oxide film for element isolation,
13... Gate oxide film, 14... Ion implantation layer for preventing parasitic transistors, 15... Ion implantation layer (high a substrate region), 16... Gate polycrystalline silicon, 18° 18... source, drain. Figure 1

Claims (1)

【特許請求の範囲】 1、半導体基板上の個々のMOSトランジスタを分離す
るため所定の深さに形成されたトレンチ構造の素子分離
溝と、この素子分離溝の底部と同程度の深さに形成され
た第1導電型の低濃度不純物層と、ソースおよびドレイ
ンになるべき第2導電型の高濃度不純物領域と、この高
濃度不純物領域の底部と同程度の深さであってゲートの
下方の領域に形成された第1導電型の低濃度不純物層と
を備える半導体装置。 2、半導体基板上の個々のMOSトランジスタを分離す
るため所定の深さにトレンチ構造の素子分離溝を形成す
る第1の工程と、前記素子分離溝の底部と同程度の深さ
の位置と、前記MOSトランジスタのソース、ドレイン
領域の底部と同程度の深さの位置にそれぞれ第1導電型
の低濃度不純物層をイオン注入により形成する第2の工
程と、前記低濃度不純物層のより浅い層のうちの前記M
OSトランジスタのゲート領域以外の領域に第2導電型
の低濃度不純物をイオン注入によりカウンタドープする
第3の工程とを備える半導体装置の製造方法。
[Scope of Claims] 1. An element isolation groove having a trench structure formed to a predetermined depth to isolate individual MOS transistors on a semiconductor substrate, and a trench structure formed at a depth comparable to the bottom of the element isolation groove. a lightly doped impurity layer of the first conductivity type, a high concentration impurity region of the second conductivity type that is to become the source and drain, and a layer below the gate that is approximately the same depth as the bottom of the high concentration impurity region. A semiconductor device comprising a first conductivity type low concentration impurity layer formed in a region. 2. A first step of forming an element isolation groove in a trench structure at a predetermined depth to isolate individual MOS transistors on a semiconductor substrate, and a position at a depth comparable to the bottom of the element isolation groove; a second step of forming, by ion implantation, a first conductivity type low concentration impurity layer at the same depth as the bottom of the source and drain regions of the MOS transistor; and a shallower layer of the low concentration impurity layer. The above M
a third step of counter-doping a region other than a gate region of an OS transistor with a second conductivity type low concentration impurity by ion implantation.
JP60055156A 1985-03-19 1985-03-19 Semiconductor device and manufacture thereof Pending JPS61214457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055156A JPS61214457A (en) 1985-03-19 1985-03-19 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055156A JPS61214457A (en) 1985-03-19 1985-03-19 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61214457A true JPS61214457A (en) 1986-09-24

Family

ID=12990884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055156A Pending JPS61214457A (en) 1985-03-19 1985-03-19 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61214457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889820A (en) * 1988-03-14 1989-12-26 Fujitsu Limited Method of producing a semiconductor device
US5548148A (en) * 1994-04-15 1996-08-20 International Business Machines Corporation MOS channel device with counterdoping of ion implant for reduced substrate sensitivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889820A (en) * 1988-03-14 1989-12-26 Fujitsu Limited Method of producing a semiconductor device
US5548148A (en) * 1994-04-15 1996-08-20 International Business Machines Corporation MOS channel device with counterdoping of ion implant for reduced substrate sensitivity

Similar Documents

Publication Publication Date Title
KR870006676A (en) Process for fabricating bipolar transistors and complementary MOS transistors on shared substrates
JPH0355984B2 (en)
JPH0481337B2 (en)
US4488348A (en) Method for making a self-aligned vertically stacked gate MOS device
JP2509690B2 (en) Semiconductor device
JPH0193159A (en) Manufacture of bicmos element
JPS61214457A (en) Semiconductor device and manufacture thereof
JPH09172062A (en) Semiconductor device and its manufacture
JP2575876B2 (en) Semiconductor device
JP2658027B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JP2734434B2 (en) Semiconductor device and manufacturing method thereof
JP2830267B2 (en) Method for manufacturing semiconductor device
JPH0491481A (en) Mis field effect transistor
JPH056961A (en) Manufacture of semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0469433B2 (en)
JPS5940563A (en) Manufacture of semiconductor device
JPS61134073A (en) Manufacture of semiconductor device
JPS60226168A (en) Complementary mos semiconductor device
JPH06196495A (en) Semiconductor device, complementary semiconductor device, and manufacture thereof
JPH0479336A (en) Production of semiconductor device
JPS6255310B2 (en)
JP3216289B2 (en) Semiconductor device and method of manufacturing the same