JPS61222249A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS61222249A
JPS61222249A JP6437485A JP6437485A JPS61222249A JP S61222249 A JPS61222249 A JP S61222249A JP 6437485 A JP6437485 A JP 6437485A JP 6437485 A JP6437485 A JP 6437485A JP S61222249 A JPS61222249 A JP S61222249A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
insulating film
bipolar transistor
transistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6437485A
Other languages
Japanese (ja)
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6437485A priority Critical patent/JPS61222249A/en
Publication of JPS61222249A publication Critical patent/JPS61222249A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to manufacture an integrated circuit device having excellent performance readily, by simultaneously forming a semiconductor layer for an SOI structure and a semiconductor layer used for a bipolar transistor element on a semiconductor substrate. CONSTITUTION:A semiconductor layer 4 used for an FET element on an insulating film 2 and a semiconductor layer 4 used for a bipolar transistor element on a semiconductor substrate 1 at an opening part 3 in the insulating film 2 are simultaneously deposited. Both layers are made to be a single crystal. Before the deposition of the semiconductor layer 4, impurities are introduced through the opening part 3 of the insulating film. Thus an embedded and diffused layer 11 of the bipolar transistor element is formed. Therefore, the deep embedded and diffused layer 11 of the bipolar element can be readily formed. At the same time the semiconductor layer 4 on the layer 11 is dissolved and recrystallized, impurities are diffused in the semiconductor layer 4, and a collector region can be formed. By using this substrate, the impurity diffused regions of FETs 20, 30 and 40, a bipolar element 10 and the like can be performed in parallel. The integrated circuit device, in which characteristics of both elements are fully utilized can be readily manufactured.

Description

【発明の詳細な説明】 〔概要〕 この発明は、バイポーラトランジスタ素子と、SOI構
造の電界効果トランジスタ素子とを備える半導体集積回
路装置を製造するに際して、SOI構造のための半導体
層と同時に、バイポーラトランジスタ素子に用いる半導
体層を半導体基板上に形成することにより、 優れた性能の集積回路装置を容易に製造することを可能
にするものである。
Detailed Description of the Invention [Summary] The present invention provides a method for manufacturing a semiconductor integrated circuit device that includes a bipolar transistor element and a field effect transistor element with an SOI structure. By forming a semiconductor layer used in an element on a semiconductor substrate, it is possible to easily manufacture an integrated circuit device with excellent performance.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体集積回路装置、特にバイポーラトランジ
スタ素子と、SOI構造の電界効果トランジスタ素子と
を備える集積回路装置を、優れた性能をもって容易に実
現する製造方法に関する。
The present invention relates to a manufacturing method for easily realizing a semiconductor integrated circuit device, particularly an integrated circuit device including a bipolar transistor element and a field effect transistor element having an SOI structure, with excellent performance.

絶縁物上のシリコン(Si)層を用いて半導体装置を形
成する5OI(Silicon On In5ulat
or)技術の開発が進められている。このSOI技術は
相補型MO3電界効果トランジスタ(C−MOS FE
T)回路等について、半導体基板に形成される通常のF
ETより動作速度、集積度などを向上することを当初の
目的としていた。
5OI (Silicon On In5ulat), which forms semiconductor devices using a silicon (Si) layer on an insulator
or) The technology is being developed. This SOI technology is a complementary MO3 field effect transistor (C-MOS FE).
T) For circuits, etc., normal F formed on a semiconductor substrate
The original objective was to improve operating speed and integration compared to ET.

しかしながら集積回路装置にはFET素子とバイポーラ
トランジスタ素子とを各々その特徴を活かして用いるこ
とが希望される場合が多く、SO■構造のFET素子と
バイポーラトランジスタ素子とを同一基板上に集積する
製造方法の確立が更に要望されている。
However, in many cases, it is desired to use FET elements and bipolar transistor elements in integrated circuit devices by taking advantage of their respective characteristics, and a manufacturing method in which SO■ structure FET elements and bipolar transistor elements are integrated on the same substrate. There is a further demand for the establishment of

〔従来の技術〕[Conventional technology]

sor構造のMOS PETは例えば第3図の模式側断
面図の如き構造で下記の様に製造されている。
A MOS PET having a sor structure has a structure as shown in the schematic side sectional view of FIG. 3, and is manufactured as follows.

すなわち、シリコン(Si)基板51上に二酸化シリコ
ン(SiO□)膜52を例えば厚さ1−程度に形成し、
このSiO□膜52上に多結晶状態のSi層53を例え
ば厚さ0.3〜0.5J1a+程度に堆積して、例えば
レーザ光の走査によりこれを単結晶化する。この単結晶
化の前又は後にSi層53を所要のFET素子を形成す
る大きさにパターニングする。
That is, a silicon dioxide (SiO□) film 52 is formed on a silicon (Si) substrate 51 to a thickness of, for example, about 1-
A polycrystalline Si layer 53 is deposited on this SiO□ film 52 to a thickness of, for example, about 0.3 to 0.5 J1a+, and is converted into a single crystal by scanning with a laser beam, for example. Before or after this single crystallization, the Si layer 53 is patterned to a size that forms a required FET element.

Si層53にFETのチャネル形成に必要な不純物を導
入する。この不純物導入の前後にS4層53上にSiO
□膜54膜形4して、その上にゲート電極55を設ける
。このゲート電極55をマスクとして不純物を導入しソ
ース及びドレイン領域56を形成する。
Impurities necessary for forming a channel of the FET are introduced into the Si layer 53. Before and after introducing this impurity, SiO is formed on the S4 layer 53.
□Membrane 54 is formed into a membrane shape 4, and a gate electrode 55 is provided thereon. Using this gate electrode 55 as a mask, impurities are introduced to form source and drain regions 56.

バイポーラトランジスタ素子をFET素子と同様にSO
I化するとすれば、一つのSi層にエミッタ、ベース及
びコレクタを配列する横形構造が製造上−見容易である
。しかしながら横形バイポーラトランジスタ素子では、
不純物導入パターン幅で定まるベース幅を高速化のため
に狭くし、Si層の縦断面で制約されるエミッタ接合等
の面積を電流容量増大のために拡大することなどが困難
であり、バイポーラトランジスタ素子を用いる主目的で
ある高駆動力、高速度を高集積密度で実現するのに適当
ではない。
The bipolar transistor element is SO like the FET element.
If it is made into an I, a horizontal structure in which an emitter, base, and collector are arranged in one Si layer is easy to manufacture. However, in lateral bipolar transistor elements,
It is difficult to narrow the base width, which is determined by the impurity doping pattern width, to increase speed, and to expand the area of the emitter junction, etc., which is restricted by the vertical cross section of the Si layer, to increase current capacity. It is not suitable for achieving high driving force and high speed with high integration density, which is the main purpose of using this method.

これに対して縦形バイポーラトランジスタ素子とSol
構造のFET素子とを集積化するには、S01層に縦形
バイポーラトランジスタ素子を形成する構造と、絶縁膜
の開口部でSi基板を利用する構造とが考えられる。
On the other hand, vertical bipolar transistor elements and Sol
In order to integrate the FET elements in this structure, two possible structures are a structure in which a vertical bipolar transistor element is formed in the SO1 layer and a structure in which a Si substrate is used in the opening of the insulating film.

しかしながら前記2種の構造のうち、801層に縦形バ
イポーラトランジスタ素子を形成した構造はバイポーラ
素子の特徴を活かすものではない。
However, of the above two types of structures, the structure in which the vertical bipolar transistor element is formed in the 801st layer does not take advantage of the characteristics of the bipolar element.

これに対して絶縁膜に開口部を設けてSi基板を利用す
る構造はバイポーラ素子の効果を得るに適しており、特
にSi基板上にSi層を設ければブレーナ構造とするこ
とが可能となる。
On the other hand, a structure in which an opening is provided in the insulating film and a Si substrate is used is suitable for obtaining the effect of a bipolar element, and in particular, if a Si layer is provided on the Si substrate, it is possible to create a brainer structure. .

〔[ゾーンメルティング再結晶5OIliを用いるC−
MOS /バイポーラ併合技術とマイクロウェーブME
SFETJ  (”Merged CMOS/bipo
lar technologiesand micro
wave MESFETs utilizing zo
ne−melting−recrystallzed 
SOI fi1ms″) B、Y、Tsaur et 
al、;Technical Digest of I
nternational ElectronDevi
ces Meeting 1984+ San Fra
ncisco+ pp、812−815〕 〔発明が解決しようとする問題点〕 SOI構造のFET素子とバイポーラトランジスタ素子
とを集積した集積回路装置として、縦形バイポーラ素子
を絶縁膜の開口部に設ける構造が前述の如く望ましいが
、例えば前記文献では、バイポーラ素子にはSi基板上
に選択的にエピタキシャル成長したSi層を用いており
、このエピタキシャル成長に先立ってSiO□iO□上
に多結晶Siの堆積、再結晶化を行っている。
[[C- using zone melting recrystallization 5OIli
MOS/bipolar merging technology and microwave ME
SFETJ (“Merged CMOS/bipo
lar technology and micro
wave MESFETs utilizing zo
ne-melting-recrystallzed
SOI fi1ms'') B, Y, Tsaur et
al, ;Technical Digest of I
international ElectronDevi
ces Meeting 1984+ San Fra
ncisco+ pp, 812-815] [Problems to be Solved by the Invention] As an integrated circuit device in which an FET element of an SOI structure and a bipolar transistor element are integrated, a structure in which a vertical bipolar element is provided in an opening of an insulating film is proposed. However, for example, in the above-mentioned document, a bipolar device uses a Si layer selectively epitaxially grown on a Si substrate, and prior to this epitaxial growth, polycrystalline Si is deposited and recrystallized on SiO□iO□. Is going.

集積回路装置の実用化を進めるにあたって上述の如き製
造プロセスは煩雑であり、更に合理的な製造方法が要望
される。
In promoting the practical use of integrated circuit devices, the above-mentioned manufacturing process is complicated, and a more rational manufacturing method is desired.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、本発明の実施例の工程順模式側断面図を
示す第1図に見られる如く、 半導体基板1上に絶縁膜2を選択的に形成し、該絶縁膜
2の開口部3から該半導体基板1にバイポーラトランジ
スタ素子の埋没拡散Ji’llを形成する不純物を導入
し、 該絶縁膜開口部3の該半導体基板1上及び該絶縁膜3上
に半導体層4を積層して該半導体層4を単結晶化し、 該絶縁膜開口部3の該半導体層4及び該半導体基板1に
バイポーラトランジスタ素子を、該絶縁膜3上の該半導
体層4に電界効果トランジスタ素子を形成する半導体集
積回路装置の製造方法により解決される。
As shown in FIG. 1, which is a schematic side sectional view of the process order of the embodiment of the present invention, the above problem is solved by selectively forming an insulating film 2 on a semiconductor substrate 1, and opening 3 of the insulating film 2. An impurity for forming a buried diffusion Ji'll of a bipolar transistor element is introduced into the semiconductor substrate 1, and a semiconductor layer 4 is laminated on the semiconductor substrate 1 in the insulating film opening 3 and on the insulating film 3. Semiconductor integration in which the semiconductor layer 4 is made into a single crystal, a bipolar transistor element is formed in the semiconductor layer 4 in the insulating film opening 3 and the semiconductor substrate 1, and a field effect transistor element is formed in the semiconductor layer 4 on the insulating film 3. The problem is solved by a method for manufacturing a circuit device.

〔作 用〕[For production]

本発明によれば、絶縁膜2上のFET素子に用いる半導
体層4と、絶縁膜2の開口部3の半導体基板1上のバイ
ポーラトランジスタ素子に用いる半導体層4とを同時に
堆積し、単結晶化する。
According to the present invention, the semiconductor layer 4 used for the FET element on the insulating film 2 and the semiconductor layer 4 used for the bipolar transistor element on the semiconductor substrate 1 in the opening 3 of the insulating film 2 are deposited simultaneously, and the semiconductor layer 4 used for the bipolar transistor element is formed into a single crystal. do.

また半導体層4の堆積に先立って絶縁膜開口部3から不
純物を導入して、バイポーラトランジスタ素子の埋没拡
散層11を形成する。これによりバイポーラ素子の深い
埋没拡散層11が容易に形成されるばかりでなく、その
上の半導体層4の融解、再結晶化と同時に半導体層4に
不純物が拡散して、コレクタ領域を形成することが可能
となる。
Further, prior to depositing the semiconductor layer 4, impurities are introduced through the insulating film opening 3 to form the buried diffusion layer 11 of the bipolar transistor element. As a result, not only the deep buried diffusion layer 11 of the bipolar element is easily formed, but also impurities are diffused into the semiconductor layer 4 at the same time as the semiconductor layer 4 thereon is melted and recrystallized to form a collector region. becomes possible.

この基体を用いることにより、FET素子とバイポーラ
素子との不純物拡散領域の形成等を並行して実施するこ
とが可能となり、画素子の特徴を十分に活かした集積回
路装置を容易に製造することができる。
By using this substrate, it is possible to form impurity diffusion regions for FET elements and bipolar elements in parallel, and it is possible to easily manufacture integrated circuit devices that fully utilize the characteristics of pixel elements. can.

〔実施例〕〔Example〕

以下本発明を第1図に工程順模式側断面図を示す実施例
により具体的に説明する。
The present invention will be specifically explained below with reference to an embodiment shown in FIG. 1, which is a schematic side sectional view of the process order.

第1図(al参照 p型St半導体基板1上に、バイポーラトランジスタ素
子を形成する領域を被覆するマスク(図示されない)を
例えば窒化シリコン(SiJa)によって設け、例えば
温度1050℃程度のウェット酸化法によりSiO□絶
縁膜2を厚さ例えば1μm程度に形成する。
FIG. 1 (see al) A mask (not shown) covering a region where a bipolar transistor element is to be formed is provided on a p-type St semiconductor substrate 1 using, for example, silicon nitride (SiJa), and a wet oxidation method is performed at a temperature of about 1050° C. A SiO□ insulating film 2 is formed to a thickness of, for example, about 1 μm.

このSiO□膜2の開口部3からSi基板1に例えば砒
素(^S)を拡散して、濃度I XIO”cm−”程度
の♂型埋没拡散N11を形成する。
For example, arsenic (^S) is diffused into the Si substrate 1 through the opening 3 of the SiO□ film 2 to form a male-type buried diffusion N11 having a concentration of about IXIO cm-.

第1図(b)参照 例えば低圧化学気相成長方法等により、シラン(SiH
i)或いはジクロロシラン(Si基板1上)などを熱分
解して、ノンドープのSt半導体層4を厚さ例えば1−
程度に、stozmZ上及びその開口部3のSi基板1
上に堆積させる。このSi層4は一般に多結晶状態とな
っている。
See FIG. 1(b) For example, silane (SiH) is
i) Alternatively, dichlorosilane (on the Si substrate 1) or the like is thermally decomposed to form a non-doped St semiconductor layer 4 with a thickness of, for example, 1-
Si substrate 1 on stozmZ and its opening 3
deposit on top. This Si layer 4 is generally in a polycrystalline state.

例えばC−波、約10−のアルゴン(Ar)レーザ光を
用い、Si層4を速度10mm/sec、、オーバーラ
ツプ50%程度で走査してこれを融解、再結晶し、単結
晶とする。
For example, the Si layer 4 is scanned at a speed of 10 mm/sec and an overlap of about 50% using a C-wave, about 10 - argon (Ar) laser beam, and is melted and recrystallized to form a single crystal.

この融解、再結晶を先に形成したn十型埋没拡散層11
の一部に及ぼし、Si層4のこれに接する領域12を濃
度例えばl XIO”ell−’程度のn型としてコレ
クタ領域に用いる。この後に必要ならばエツチング等に
よるSi層層上上面平坦化を行う。
This melted and recrystallized n-type buried diffusion layer 11 was formed first.
The region 12 of the Si layer 4 in contact with this is used as the collector region with an n-type concentration of, for example, about 1 conduct.

第1図(C)参照 5i02膜2の開口部3にnpnバイポーラトランジス
タ素子10.5iOz膜2上のSi層4にnチャネル形
MOS FET素子20、pチャネル形MOS FET
素子30及びnチャネル形MO3FET素子40をそれ
ぞれ形成する。このプロセスは従来技術によって実施す
ることができる。
Refer to FIG. 1(C). An npn bipolar transistor element is placed in the opening 3 of the 5i02 film 2. An n-channel MOS FET element 20 and a p-channel MOS FET are placed in the Si layer 4 on the 5iOz film 2.
A device 30 and an n-channel MO3FET device 40 are respectively formed. This process can be performed by conventional techniques.

すなわち、Si層4に各?lO5FET素子のチャネル
領域とするn型N域3■、41及びp型領域21、並び
にバイポーラトランジスタ素・子のベース領域とする濃
度例えば2XIQ”cm−3程度のp型頭域13を、同
一導電型領域は通常同時に形成する。次いでゲートSi
O□膜22.32.42を熱酸化法により形成して、多
結晶Siにより各MOS FET素子のゲート電極23
.33.43をそれぞれ設ける。
That is, each ? The n-type N regions 3 and 41 and the p-type region 21, which serve as the channel region of the lO5FET element, and the p-type head region 13, which has a concentration of, for example, about 2XIQ"cm-3, which serves as the base region of the bipolar transistor element/device, are made of the same conductivity. The mold region is usually formed at the same time.Then the gate Si
O□ films 22, 32, 42 are formed by a thermal oxidation method, and gate electrodes 23 of each MOS FET element are formed using polycrystalline Si.
.. 33 and 43 respectively.

次ぎにMOS FET素子20.40のソース、ドレイ
ン領域24.44及びゲート電極23.43にAsイオ
ン注入を行って1型とし、MOS FET素子30のソ
ース、ドレイン領域34及びゲート電極33に硼素(B
)イオン注入を行ってp+型とするが、これと同時にバ
イポーラトランジスタ素子のエミッタ領域16、コレク
タ・コンタクト領域14を1型とし、ベース・コンタク
ト領域15をp+型とする。
Next, As ions are implanted into the source, drain regions 24.44 and gate electrodes 23.43 of the MOS FET element 20.40 to form type 1, and boron ( B
) Ion implantation is performed to make it p+ type, and at the same time, the emitter region 16 and collector contact region 14 of the bipolar transistor element are made to be type 1, and the base contact region 15 is made to be p+ type.

バイポーラトランジスタ素子のコレクタ・コンタクト領
域14とベース・コンタクト領域15間に分離領域17
を設け、各電極及び配線を形成する。
Isolation region 17 between collector contact region 14 and base contact region 15 of the bipolar transistor element
are provided, and each electrode and wiring are formed.

本実施例では第2図に等価回路図を示すエミッタフォロ
ワー・バイポーラ・CMOSゲート回路を構成している
ために、バイポーラトランジスタ素子ノヘース電極15
E1エミッタ電極16E、 MOS FET素子40の
ソース、ドレイン電極44E及びMOS FET素子2
0の1電極24Eは独立して形成されているが、MOS
 FET素子30の1電極はバイポーラトランジスタ素
子のコレクタ電極と共通の電極18、他の1電極はMO
S FET素子20の1電極と共通の電極25となって
いる。
In this embodiment, since an emitter follower bipolar CMOS gate circuit whose equivalent circuit diagram is shown in FIG.
E1 emitter electrode 16E, source and drain electrodes 44E of MOS FET element 40, and MOS FET element 2
1 electrode 24E of 0 is formed independently, but the MOS
One electrode of the FET element 30 is the common electrode 18 with the collector electrode of the bipolar transistor element, and the other electrode is the MO
This electrode 25 is common to one electrode of the S FET element 20.

以上の如く製造された本実施例ではFET素子はSol
構造の特徴を発揮し、バイポーラトランジスタ素子もま
た目的を十分に果たして、高速度、高駆動力でしかも高
集積度の集積回路装置が実現された。
In this example manufactured as described above, the FET element is Sol.
Taking full advantage of its structural features, the bipolar transistor element also satisfactorily served its purpose, and an integrated circuit device with high speed, high driving force, and high degree of integration was realized.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、SOI構造のFET
素子とバイポーラトランジスタ素子とを高密度に集積し
、各素子の特徴をそれぞれ活かした高速度、高駆動力の
プレーナ形集積回路装置を、容易に製造することが可能
となり、半導体集積回路装置の進歩に大きく寄与する。
As explained above, according to the present invention, the SOI structure FET
It has become possible to easily manufacture planar integrated circuit devices with high speed and high drive power by integrating elements and bipolar transistor elements at high density and taking advantage of the characteristics of each element, and this has led to advances in semiconductor integrated circuit devices. greatly contributes to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す工程順模式側断面図、 第2図はその等価回路図。 第3図はSOI構造のMOS FIETを示す模式側断
面図である。 図において、 1はp型Si半導体基板、 2はSi0g絶縁膜、   3は絶縁膜の開口部、4は
Si半導体層、 10はバイポーラトランジスタ素子、 11はn十型埋没拡散層、 12はコレクタ領域、13
はベース領域、 14はコレクタ・コンタクト領域、 15はベース・コンタクト領域、 16はエミッタ領域、  17は分離領域、20.30
及び40はFET素子、 21.31及び41はチャネル領域、 22.32及び42はゲートSiO□膜、23.33及
び43はゲート電極、 24.34及び44はソース、ドレイン領域、18.2
5及び添字Eは電極を示す。 草 1 回
FIG. 1 is a schematic side sectional view showing the process order of an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram thereof. FIG. 3 is a schematic side sectional view showing a MOS FIET having an SOI structure. In the figure, 1 is a p-type Si semiconductor substrate, 2 is a SiOg insulating film, 3 is an opening in the insulating film, 4 is a Si semiconductor layer, 10 is a bipolar transistor element, 11 is an n+ type buried diffusion layer, 12 is a collector region , 13
is a base region, 14 is a collector contact region, 15 is a base contact region, 16 is an emitter region, 17 is an isolation region, 20.30
and 40 are FET elements, 21.31 and 41 are channel regions, 22.32 and 42 are gate SiO□ films, 23.33 and 43 are gate electrodes, 24.34 and 44 are source and drain regions, 18.2
5 and the subscript E indicate electrodes. Grass once

Claims (1)

【特許請求の範囲】 半導体基板(1)上に絶縁膜(2)を選択的に形成し、
該絶縁膜(2)の開口部(3)から該半導体基板(1)
にバイポーラトランジスタ素子の埋没拡散層(11)を
形成する不純物を導入し、 該絶縁膜開口部(3)の該半導体基板(1)上及び該絶
縁膜(2)上に半導体層(4)を積層して該半導体層(
4)を単結晶化し、 該絶縁膜開口部(3)の該半導体層(4)及び該半導体
基板(1)にバイポーラトランジスタ素子を、該絶縁膜
(2)上の該半導体層(4)に電界効果トランジスタ素
子を形成することを特徴とする半導体集積回路装置の製
造方法。
[Claims] An insulating film (2) is selectively formed on a semiconductor substrate (1),
The semiconductor substrate (1) from the opening (3) of the insulating film (2)
An impurity to form a buried diffusion layer (11) of a bipolar transistor element is introduced into the semiconductor layer (4) on the semiconductor substrate (1) in the insulating film opening (3) and on the insulating film (2). The semiconductor layer (
4) is made into a single crystal, a bipolar transistor element is formed on the semiconductor layer (4) in the insulating film opening (3) and the semiconductor substrate (1), and a bipolar transistor element is formed on the semiconductor layer (4) on the insulating film (2). A method of manufacturing a semiconductor integrated circuit device, comprising forming a field effect transistor element.
JP6437485A 1985-03-28 1985-03-28 Manufacture of semiconductor integrated circuit device Pending JPS61222249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6437485A JPS61222249A (en) 1985-03-28 1985-03-28 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6437485A JPS61222249A (en) 1985-03-28 1985-03-28 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61222249A true JPS61222249A (en) 1986-10-02

Family

ID=13256454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6437485A Pending JPS61222249A (en) 1985-03-28 1985-03-28 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61222249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570043A2 (en) * 1992-05-15 1993-11-18 International Business Machines Corporation Bicmos SOI wafer having thin and thick SOI regions of silicon
US5750000A (en) * 1990-08-03 1998-05-12 Canon Kabushiki Kaisha Semiconductor member, and process for preparing same and semiconductor device formed by use of same
US9331097B2 (en) 2014-03-03 2016-05-03 International Business Machines Corporation High speed bipolar junction transistor for high voltage applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199365A (en) * 1984-09-26 1986-05-17 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199365A (en) * 1984-09-26 1986-05-17 Hitachi Ltd Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750000A (en) * 1990-08-03 1998-05-12 Canon Kabushiki Kaisha Semiconductor member, and process for preparing same and semiconductor device formed by use of same
EP0570043A2 (en) * 1992-05-15 1993-11-18 International Business Machines Corporation Bicmos SOI wafer having thin and thick SOI regions of silicon
US9331097B2 (en) 2014-03-03 2016-05-03 International Business Machines Corporation High speed bipolar junction transistor for high voltage applications

Similar Documents

Publication Publication Date Title
JPH0365025B2 (en)
JPS6159853A (en) Structure of silicon crystalline body
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPH11163343A (en) Semiconductor device and its manufacture
JPS61222249A (en) Manufacture of semiconductor integrated circuit device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPS6161540B2 (en)
JPH0468565A (en) Semiconductor device and manufacture thereof
JPH02207534A (en) Semiconductor device
JPH0728043B2 (en) Semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPS59103380A (en) Laminated mos transistor
JPS6094778A (en) Field effect transistor and manufacture thereof
JPS59138367A (en) Semiconductor device
JPH06181312A (en) Manufacture of semiconductor device
JPH08111423A (en) Semiconductor device and fabrication thereof
JPH11307541A (en) Semiconductor device and producing method therefor
JPH01155651A (en) Semiconductor integrated circuit device
JPH067582B2 (en) Semiconductor integrated circuit
JPS63216370A (en) Semiconductor device
JP2001135850A (en) Optical mosfet and its manufacturing method
JPS6091663A (en) Bi-mos element
JPH077793B2 (en) Method for manufacturing semiconductor device
JPH023556B2 (en)
JPH02202032A (en) Semiconductor device and manufacture thereof