JPH023556B2 - - Google Patents

Info

Publication number
JPH023556B2
JPH023556B2 JP56076530A JP7653081A JPH023556B2 JP H023556 B2 JPH023556 B2 JP H023556B2 JP 56076530 A JP56076530 A JP 56076530A JP 7653081 A JP7653081 A JP 7653081A JP H023556 B2 JPH023556 B2 JP H023556B2
Authority
JP
Japan
Prior art keywords
type
film
insulating film
gate insulating
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56076530A
Other languages
Japanese (ja)
Other versions
JPS57192077A (en
Inventor
Katsuhiko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56076530A priority Critical patent/JPS57192077A/en
Publication of JPS57192077A publication Critical patent/JPS57192077A/en
Publication of JPH023556B2 publication Critical patent/JPH023556B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Description

【発明の詳細な説明】 本発明は、特にMOS型電界効果トランジスタ
等のMIS型(絶縁ゲート型)電界効果半導体素子
からなる半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a semiconductor device comprising an MIS type (insulated gate type) field effect semiconductor element such as a MOS type field effect transistor.

MOSFETにおいては、ソース・ドレイン間の
電流を多くとるためにチヤネル面積又はチヤネル
幅を大きくすることが考えられる。しかしなが
ら、そのように構成した場合には素子サイズが必
然的に増えるから、素子の微細パターン化に不利
であり、ICとしての集積度が低下してしまう。
In MOSFETs, it is conceivable to increase the channel area or channel width in order to increase the current between the source and drain. However, such a configuration inevitably increases the element size, which is disadvantageous for fine patterning of the element and reduces the degree of integration as an IC.

本発明は、こうした状況を考慮してなされたも
のであつて、電流量が多くとれる上に微細パター
ン化が可能であるMIS型FETを提供することを
目的としている。
The present invention has been made in consideration of these circumstances, and an object of the present invention is to provide a MIS type FET that can handle a large amount of current and can be patterned finely.

以下、本発明の実施例を図面参照下に詳細に述
べる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本例によるMIS型FETの構成は第1図〜第3
図に示されている。これによれば、P型シリコン
基板1の一主面に周知の選択酸化技術によつてフ
イールドSiO2膜2が成長せしめられ、このSiO2
膜で分離された1素子領域に薄いゲート絶縁膜3
を介してポリシリコンゲート電極4が設けられ、
更にこのゲート電極の両側において基板1にN+
型ソース領域5及びドレイン領域6が拡散によつ
て形成されている。ゲート電極4とゲート絶縁膜
3とこの直下のP型チヤネル部7とN+型領域5,
6とによつて、従来公知のNチヤネル絶縁ゲート
型FETが構成されている。
The configuration of the MIS type FET in this example is shown in Figures 1 to 3.
As shown in the figure. According to this, a field SiO 2 film 2 is grown on one principal surface of a P-type silicon substrate 1 by a well-known selective oxidation technique, and this SiO 2
A thin gate insulating film 3 is placed in one element region separated by a film.
A polysilicon gate electrode 4 is provided through the
Furthermore, N + is applied to the substrate 1 on both sides of this gate electrode.
A type source region 5 and a drain region 6 are formed by diffusion. The gate electrode 4, the gate insulating film 3, the P-type channel portion 7 directly below this, and the N + -type region 5,
6 constitutes a conventionally known N-channel insulated gate FET.

本例では更に、その公知のFET上に重ねて同
じNチヤネル絶縁ゲート型FETが設けられ、し
かもこれらの両FETの各ソース、ドレイン領域
は夫々共通になつていることが特徴的である。即
ち、上記ゲート電極4の上面に熱酸化法による第
2のゲート絶縁膜8がゲート絶縁膜3に連設して
形成され、このゲート絶縁膜3上から上記N+
領域5,6上にかけてシリコン膜9が被着されて
いる。このシリコン膜の中間部分はP型化された
チヤネル10となつており、ゲート電極4とゲー
ト絶縁膜8とチヤネル部10とで第2のPチヤネ
ル絶縁ゲート型FETが構成されている。この第
2のFETのN+型ソース領域11及びドレイン領
域12はシリコン膜9の両側部分をN型化するこ
とによつて形成されたものであつて、上述の第1
のFETのソース領域5及びドレイン領域6に対
し一体にオーバーラツプしている。図面では便宜
上、N+型領域11−5間、12−6間を破線で
区分して示したが、実質的にはそれらの間は一体
化していて夫々1つのN+型領域としてとらえら
れるべきである。従つて、上記の第1及び第2の
FETのソース及びドレイン領域を夫々共通にし
ていて、第3図に示す如き等価回路で表わされる
デバイスとなつている。
This example is further characterized in that the same N-channel insulated gate FET is provided over the known FET, and the source and drain regions of both of these FETs are common. That is, a second gate insulating film 8 is formed by a thermal oxidation method on the upper surface of the gate electrode 4 so as to be continuous with the gate insulating film 3, and from above the gate insulating film 3 to above the N + type regions 5 and 6 is formed. A silicon film 9 is deposited. The middle portion of this silicon film is a P-type channel 10, and the gate electrode 4, gate insulating film 8, and channel portion 10 constitute a second P-channel insulated gate FET. The N + type source region 11 and drain region 12 of this second FET are formed by converting both sides of the silicon film 9 to N type, and are formed by making both sides of the silicon film 9 N type.
It integrally overlaps the source region 5 and drain region 6 of the FET. In the drawing, for convenience, the N + type regions 11-5 and 12-6 are shown separated by broken lines, but in reality, they are integrated and should be regarded as one N + type region. It is. Therefore, the above first and second
The source and drain regions of the FETs are common, and the device is represented by an equivalent circuit as shown in FIG.

上記した構成から理解されるように、本例によ
るMISFETは、上下に同じNチヤネル絶縁ゲー
ト型FETを重ねた構造としているから、全体と
してNチヤネルFETのソース・ドレイン間の電
流量が1個分のFETに比べて約2倍以上となる。
この結果、チヤネル面積を増やさずとも多量の電
流を流すことができ、その電流量を同じにした場
合の素子サイズは約1/2となり、その分微細パタ
ーン化が計れ、集積度の向上に大いに寄与でき
る。
As can be understood from the above configuration, the MISFET according to this example has a structure in which the same N-channel insulated gate FETs are stacked on top and bottom, so the current amount between the source and drain of one N-channel FET as a whole is equal to that of one N-channel FET. This is approximately twice as large as that of the FET.
As a result, a large amount of current can flow without increasing the channel area, and the element size is approximately halved for the same amount of current, allowing for finer patterning and greatly improving the degree of integration. I can contribute.

次に、本例によるMISFETの製造工程を第4
図について説明する。
Next, the manufacturing process of MISFET according to this example will be explained in the fourth step.
The diagram will be explained.

まず第4A図のように、P型シリコン基板1の
一主面に周知の選択酸化技術によつてフイールド
SiO2膜2を成長させた後、耐酸化マスク(窒化
シリコン膜)を除去し、更に1素子領域にゲート
酸化膜3を成長させる。そして、全面にポリシリ
コンを化学的気相成長(CVD)で析出させ、フ
オトエツチングによつてパターニングし、ポリシ
リコンゲート電極4及びその配線を形成する。
First, as shown in FIG. 4A, a field is formed on one main surface of the P-type silicon substrate 1 by a well-known selective oxidation technique.
After growing the SiO 2 film 2, the oxidation-resistant mask (silicon nitride film) is removed, and a gate oxide film 3 is further grown in one element region. Then, polysilicon is deposited on the entire surface by chemical vapor deposition (CVD) and patterned by photoetching to form a polysilicon gate electrode 4 and its wiring.

次いで第4B図のように、ポリシリコン膜4の
表面を熱酸化して薄いSiO2膜8を成長させた後、
第4C図のように、ソース及びドレイン領域に対
応する箇所のゲート酸化膜をエツチングで除去
し、基板1の表面を露出させる。
Next, as shown in FIG. 4B, after thermally oxidizing the surface of the polysilicon film 4 to grow a thin SiO 2 film 8,
As shown in FIG. 4C, the gate oxide film at locations corresponding to the source and drain regions is removed by etching to expose the surface of the substrate 1.

次いで第4D図のように、P型不純物(例えば
ボロン)を含むP型ポリシリコン膜10をCVD
で全面に成長させる。このCVD時にボロン化合
物ガスを反応ガスに混合すれば、その熱分解によ
つてボロンをポリシリコン中にドーピングでき
る。このドーピング量は基板1の不純物濃度と同
程度にする。
Next, as shown in FIG. 4D, a P-type polysilicon film 10 containing P-type impurities (for example, boron) is formed by CVD.
to fully grow. If boron compound gas is mixed with the reaction gas during this CVD, boron can be doped into polysilicon through its thermal decomposition. This doping amount is made to be approximately the same as the impurity concentration of the substrate 1.

次いで第4E図のように、ポリシリコン膜10
をエツチングでパターニングした後にCVDで成
長させたSiO2膜をエツチングしてゲート電極4
上にのみマスクとしてのSiO2膜13を残す。こ
の場合、第4D図の状態で全面にSiO2膜を成長
させ、これをまずエツチングして第4E図の形状
にポリシリコン膜をエツチングするためのマスク
を形成し、更にこのマスクを再びエツチングして
第4E図のSiO2膜13に形成してもよい。マス
ク13を図示の如く形成した後、全面にN型不純
物、例えばリン又は砒素のイオンビーム14を照
射し、マスク13のない領域のポリシリコン膜1
0にイオン打込みを行なつて、ソース又はドレイ
ン領域となるN+型ポリシリコン領域11,12
を選択的に形成する。このイオン打込みによつ
て、図示の如くN型不純物を基板1に一部分注入
して、ポリシリコン領域11,12下にN+型結
晶シリコン領域5,6を形成するようにしてもよ
い。
Next, as shown in FIG. 4E, a polysilicon film 10 is formed.
After patterning by etching, the SiO 2 film grown by CVD is etched to form gate electrode 4.
The SiO 2 film 13 as a mask is left only on the top. In this case, a SiO 2 film is grown on the entire surface in the state shown in Fig. 4D, and this is first etched to form a mask for etching the polysilicon film in the shape shown in Fig. 4E, and then this mask is etched again. It may also be formed on the SiO 2 film 13 shown in FIG. 4E. After the mask 13 is formed as shown in the figure, the entire surface is irradiated with an ion beam 14 of N-type impurity, such as phosphorus or arsenic, to form the polysilicon film 1 in the area where the mask 13 is not present.
ion implantation into N + type polysilicon regions 11 and 12 that will become source or drain regions.
selectively formed. Through this ion implantation, N type impurities may be partially implanted into the substrate 1 as shown in the figure to form N + type crystalline silicon regions 5 and 6 under the polysilicon regions 11 and 12.

次いで第4F図のように、SiO2膜13をエツ
チングで除去し、更に全面にレーザー光15を照
射し、このレーザー光の熱エネルギーによつてポ
リシリコン10,11,12全体にレーザーアニ
ールを施す。この結果、これらの各ポリシリコン
領域は単結晶化せしめられ、そのうちP型ポリシ
リコン領域は第2のMISFETのP型チヤネル部
10となり、N+型ポリシリコン領域は基板1側
のN+型単結晶領域5,6と一体のN+型単結晶ソ
ース領域11及びドレイン領域12となる。
Next, as shown in FIG. 4F, the SiO 2 film 13 is removed by etching, the entire surface is further irradiated with a laser beam 15, and the entire polysilicon 10, 11, 12 is subjected to laser annealing using the thermal energy of this laser beam. . As a result, each of these polysilicon regions is made into a single crystal, of which the P-type polysilicon region becomes the P-type channel part 10 of the second MISFET, and the N + -type polysilicon region becomes the N + -type monocrystalline silicon region on the substrate 1 side. An N + type single crystal source region 11 and a drain region 12 are formed integrally with the crystal regions 5 and 6.

次いで全面にリンシリケートガラス膜16(第
1図参照)をCVDで形成し、その所定箇所をフ
オトエツチングで除去した後、全面にアルミニウ
ムを蒸着し、パターニングによつて第1図のソー
ス電極17、ドレイン電極18及び必要なアルミ
ニウム配線を形成する。
Next, a phosphosilicate glass film 16 (see FIG. 1) is formed on the entire surface by CVD, and predetermined portions of the film are removed by photo-etching, and then aluminum is deposited on the entire surface and patterned to form the source electrode 17 shown in FIG. A drain electrode 18 and necessary aluminum wiring are formed.

以上、本発明を例示したが、上述の実施例は本
発明の技術的思想に基いて更に変形が可能であ
る。例えば、第2のMISFETのパターンは種々
にできるし、各FETの半導体部分の導電型も変
換できる。上述の例において、上下のMISFET
のしきい値電圧は同じでもよいし、チヤネル部へ
の不純物ドーピングによつて互いに異ならせても
よい。例えば、各FETをデイプリーシヨンタイ
プ又はエンハンスメントタイプにできる。また、
ポリシリコン膜10の膜質向上の為にポリシリコ
ンデポ後このポリシリコンにレーザ照射を行い、
ポリシリコンの単結晶化を計つても良い。また、
第4D図のP型ポリシリコン膜を形成するため
に、まず不純物を含まないポリシリコン膜を成長
させてから全面にボロン等のイオン打込みを行な
うようにしてもよい。さらにソース・ドレイン領
域の形成方法としては、図4Bまたは図4Cの状
態でイオン注入法または、熱拡散法で、ソース・
ドレイン領域にN型不純物、例えば、りん、砒素
をドーピングした後、ポリシリコン膜10を気相
成長させる。その後、レーザ光15を照射し、こ
のレーザ光の熱エネルギーによつてポリシリコン
10,11,12全体にレーザアニールを施す。
この結果、これらの各ポリシリコン領域が単結晶
化されることの他に、基板のソース、ドレイン領
域にドーピングされたN型不純物がポリシリコン
膜中に拡散して、自己接合型のソース、ドレイン
の形成が可能となる。
Although the present invention has been illustrated above, the embodiments described above can be further modified based on the technical idea of the present invention. For example, the pattern of the second MISFET can be varied, and the conductivity type of the semiconductor portion of each FET can also be changed. In the above example, the upper and lower MISFETs
The threshold voltages may be the same or may be made different by doping the channel portion with impurities. For example, each FET can be a depletion type or an enhancement type. Also,
In order to improve the film quality of the polysilicon film 10, after the polysilicon is deposited, this polysilicon is irradiated with a laser.
It is also possible to try to make polysilicon into a single crystal. Also,
In order to form the P-type polysilicon film shown in FIG. 4D, a polysilicon film containing no impurities may be grown first, and then ions such as boron or the like may be implanted into the entire surface. Furthermore, as a method for forming the source/drain regions, the source/drain regions may be formed by ion implantation or thermal diffusion in the state shown in FIG. 4B or 4C.
After doping the drain region with an N-type impurity such as phosphorus or arsenic, a polysilicon film 10 is grown in a vapor phase. Thereafter, a laser beam 15 is irradiated, and the entire polysilicon 10, 11, 12 is subjected to laser annealing using the thermal energy of the laser beam.
As a result, in addition to single crystallization of each of these polysilicon regions, the N-type impurity doped in the source and drain regions of the substrate diffuses into the polysilicon film, forming self-junction type source and drain regions. It becomes possible to form

本発明は、上述した如く、ゲート電極の上下に
夫々チヤネル部を形成し、このチヤネル部の両側
において第1及び第2のMISFETのソース及び
ドレイン領域を共通に設けているので、両FET
によつてソース・ドレイン間の電流を多くするこ
とができ、しかもその電流量の増大を両FETの
積重ね構造で達成できるために素子面積が大きく
ならず、微細パターン化及び高集積化を図ること
ができる。
As described above, in the present invention, channel portions are formed above and below the gate electrode, and the source and drain regions of the first and second MISFETs are provided in common on both sides of the channel portion.
This allows the current between the source and drain to be increased, and since this increase in current can be achieved with a stacked structure of both FETs, the element area does not increase, allowing for fine patterning and high integration. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであつて、第
1図はMOSFETの断面図、第2図は第1図の平
面図(そのX−X線断面が第1図)、第3図はそ
のMOSFETの等価回路図、第4A図〜第4F図
はそのMOSFETの製造方法を工程順に示す各断
面図である。 なお、図面に用いられている符号において、3
及び8はゲート酸化膜、4はゲート電極、5及び
11はソース領域、6及び12はドレイン領域、
7及び10はチヤネル部、17はソース電極、1
8はドレイン電極である。
The drawings show an embodiment of the present invention, and FIG. 1 is a cross-sectional view of a MOSFET, FIG. 2 is a plan view of FIG. The equivalent circuit diagrams of the MOSFET, FIGS. 4A to 4F, are cross-sectional views showing the method of manufacturing the MOSFET in the order of steps. In addition, in the symbols used in the drawings, 3
and 8 is a gate oxide film, 4 is a gate electrode, 5 and 11 are source regions, 6 and 12 are drain regions,
7 and 10 are channel parts, 17 is a source electrode, 1
8 is a drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体上にゲート絶縁膜を介して設けら
れたゲート電極を有し、前記ゲート絶縁膜下の前
記半導体基体をチヤネル部とするMIS型電界効果
半導体素子が構成されている半導体装置におい
て、前記ゲート電極上に前記ゲート絶縁膜に連続
した第2のゲート絶縁膜が形成され、この第2の
ゲート絶縁膜上から前記MIS型電界効果半導体素
子上にかけて半導体層が被着され、前記ゲート電
極と前記第2のゲート絶縁膜とこの絶縁膜上にチ
ヤネル部を形成する前記半導体層とによつて第2
のMIS型電界効果半導体素子が構成されており、
前記半導体層の両側部分に前記の両MIS型電界効
果半導体素子の各ソース及びドレイン領域が夫々
共通に設けられていることを特徴とする半導体装
置。
1. In a semiconductor device comprising a MIS type field effect semiconductor element having a gate electrode provided on a semiconductor substrate via a gate insulating film, and having the semiconductor substrate under the gate insulating film as a channel part, A second gate insulating film that is continuous with the gate insulating film is formed on the gate electrode, and a semiconductor layer is deposited from above the second gate insulating film to the MIS type field effect semiconductor element, and is connected to the gate electrode. The second gate insulating film and the semiconductor layer forming a channel portion on the second gate insulating film
The MIS type field effect semiconductor device is composed of
A semiconductor device characterized in that source and drain regions of both MIS type field effect semiconductor elements are provided in common on both sides of the semiconductor layer.
JP56076530A 1981-05-22 1981-05-22 Semiconductor device Granted JPS57192077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56076530A JPS57192077A (en) 1981-05-22 1981-05-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56076530A JPS57192077A (en) 1981-05-22 1981-05-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS57192077A JPS57192077A (en) 1982-11-26
JPH023556B2 true JPH023556B2 (en) 1990-01-24

Family

ID=13607830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56076530A Granted JPS57192077A (en) 1981-05-22 1981-05-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS57192077A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211779A (en) * 1981-06-23 1982-12-25 Nec Corp Field effect transistor

Also Published As

Publication number Publication date
JPS57192077A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US4476475A (en) Stacked MOS transistor
JPS638622B2 (en)
KR20010110769A (en) SEMICONDUCTOR DEVICE WITH AN INTEGRATED CMOS CIRCUIT WITH MOS TRANSISTORS HAVING SILICON-GERMANIUM (Si1-xGex) GATE ELECTRODES, AND METHOD OF MANUFACTURING SAME
US6906345B2 (en) Semiconductor device and method of manufacturing the same
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPH0555593A (en) Manufacture of insulated-gate field-effect transistor
EP0117339B1 (en) Stacked mos transistor
JPH05283687A (en) Production of semiconductor element
JPH023556B2 (en)
JPH0441502B2 (en)
US4772568A (en) Method of making integrated circuit with pair of MOS field effect transistors sharing a common source/drain region
JPS6156607B2 (en)
JPS6237818B2 (en)
JPS63278273A (en) Semiconductor device
JPS635554A (en) Complementary mos type semiconductor device
JPH10335643A (en) Manufacture of semiconductor device
JP3314341B2 (en) Method of forming C-MOS gate array and base contact
JPH0548108A (en) Semiconductor device and its manufacture
JP3848782B2 (en) Manufacturing method of semiconductor device
EP0112662A1 (en) Stacked MOS devices with polysilicon interconnects
JPS63211760A (en) Semiconductor device and manufacture thereof
JPS61101082A (en) Manufacture of semiconductor device
JPS62159468A (en) Semiconductor device
JPS6155783B2 (en)
JPH04256366A (en) Field effect transistor and its manufacture