JPS6246825B2 - - Google Patents

Info

Publication number
JPS6246825B2
JPS6246825B2 JP55175450A JP17545080A JPS6246825B2 JP S6246825 B2 JPS6246825 B2 JP S6246825B2 JP 55175450 A JP55175450 A JP 55175450A JP 17545080 A JP17545080 A JP 17545080A JP S6246825 B2 JPS6246825 B2 JP S6246825B2
Authority
JP
Japan
Prior art keywords
region
diaphragm tube
liquid
cathode
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175450A
Other languages
Japanese (ja)
Other versions
JPS5798855A (en
Inventor
Takeshi Murayama
Setsuo Muramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP55175450A priority Critical patent/JPS5798855A/en
Publication of JPS5798855A publication Critical patent/JPS5798855A/en
Publication of JPS6246825B2 publication Critical patent/JPS6246825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、上下水道、工業用水および河川等に
おける残留塩素の濃度を測定する残留塩素測定方
法および測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual chlorine measuring method and a measuring device for measuring the concentration of residual chlorine in water and sewage systems, industrial water, rivers, etc.

水処理の1つとして、塩素処理は極めて重要な
役割を果しており、上水道における殺菌のための
塩素処理をはじめ、プール、下水放流水、清涼飲
料水用滅菌水、浴場、クリーニングから発電所、
工場、船舶等の冷却水に対する藻類、貝類の進入
防止やスライム防止等を目的とするものまで多く
の分野で広範囲に行なわれている。このような塩
素処理において、使用する塩素量の適正化を図る
一般的な方法として、処理後の残留塩素濃度を測
定して注入塩素量を調節する方法がある。而し
て、残留塩素測定法として従来から知られている
主な方法にジエチルパラフエニレンジアミン(以
下「DPD」と略す)法とオルトトリジン法があ
るが、前者はDPDが塩素によつて酸化されて赤
色を呈することから該赤色濃度を比色測定するこ
とにより残留塩素濃度を測定する方法であり、後
者はオルトトリジンが塩素の存在によつて黄色ホ
ロキノンを生成するので、該黄色濃度を比色測定
することにより残留塩素濃度を測定する方法であ
る。
As a type of water treatment, chlorination plays an extremely important role, including chlorination for disinfection in water supplies, swimming pools, sewage discharge water, sterilized water for soft drinks, baths, cleaning, power plants, etc.
It is widely used in many fields to prevent algae and shellfish from entering the cooling water of factories, ships, etc., and to prevent slime. In such chlorine treatment, a common method for optimizing the amount of chlorine used is to measure the residual chlorine concentration after treatment and adjust the amount of chlorine injected. The main methods conventionally known for measuring residual chlorine are the diethyl paraphenylene diamine (hereinafter abbreviated as "DPD") method and the orthotolidine method, but the former method is based on the fact that DPD is oxidized by chlorine. This method measures the residual chlorine concentration by colorimetrically measuring the red color concentration, since orthotolidine produces yellow holoquinone in the presence of chlorine. This method measures the residual chlorine concentration by

然し乍ら、上記従来例においては、発色した赤
色濃度若しくは黄色濃度を比色測定する比色法を
用いて残留塩素の定量を行なうため、被測定液を
くみあげて専用容器に入れ、試薬を添加して後反
応する時間を待ち、発色した液をカバーガラス等
の標準色と比較するといつた煩雑な作業と長い時
間とを必要としていた。
However, in the above conventional example, in order to quantify residual chlorine using a colorimetric method that measures the developed red or yellow concentration colorimetrically, the liquid to be measured is pumped up and placed in a special container, and a reagent is added. Waiting for post-reaction time and comparing the developed solution with the standard color of a cover glass, etc., requires complicated work and a long time.

本発明は、かかる欠点に鑑みてなされたもので
あり、その目的は、煩雑な作業を要することなく
簡単な作業で迅速に被測定液中の残留塩素濃度を
測定できる残留塩素の測定方法および測定装置を
提供するにある。
The present invention has been made in view of these drawbacks, and its purpose is to provide a residual chlorine measurement method and measurement method that can quickly measure the residual chlorine concentration in a liquid to be measured with simple work without requiring complicated work. We are in the process of providing equipment.

本発明の特徴は、被測定液中の残留塩素濃度を
測定する方法および装置において、電解セルを貫
通するように設けられた隔膜チユーブの外側に陽
極を配設すると共に該チユーブの内側に陰極と第
3電極を配設し、前記電解セル内の電解液が存在
する部分に相当する領域Bにおいて前記第3電極
を被覆すると共に該領域Bの上側の領域A及び該
領域Bの下側の領域Cにおいて前記陰極を被覆
し、前記隔膜チユーブの中へ被測定液を導いて静
止させ、該被測定液へ前記隔膜チユーブを透過さ
せてKIを供給して前記被測定液に含まれる残留
塩素をI2に置換し、前記領域A及びCで被覆され
た陰極と前記領域Bで被覆された第3電極により
前記隔膜チユーブ内において電気分解される前記
被測定液の間仕切りをおこないながら前記I2に定
電位電気分解反応を生じさせ、その後、前記陰極
と陽極の間に流れる電気量を測定することによ
り、前記被測定液中の残留塩素を測定することに
ある。
A feature of the present invention is that, in a method and apparatus for measuring the residual chlorine concentration in a liquid to be measured, an anode is disposed outside a diaphragm tube provided to penetrate an electrolytic cell, and a cathode is disposed inside the tube. A third electrode is disposed, and covers the third electrode in a region B corresponding to a portion where an electrolytic solution exists in the electrolytic cell, and a region A above the region B and a region below the region B. In step C, the cathode is coated, the liquid to be measured is introduced into the diaphragm tube and kept stationary, and KI is supplied to the liquid to be measured through the diaphragm tube to remove residual chlorine contained in the liquid to be measured. I2 while partitioning the liquid to be electrolyzed in the diaphragm tube by the cathode covered with the regions A and C and the third electrode covered with the region B. The purpose is to measure residual chlorine in the liquid to be measured by causing a constant potential electrolysis reaction and then measuring the amount of electricity flowing between the cathode and the anode.

以下、本発明について図を用いて詳細に説明す
る。第1図は、本発明の実施例を示す構成説明図
である。同図において、吸入器1はピストン11
とシリンダ12から構成されており、シリンダ1
2の底部には所定の長さを有するイオン交換膜等
からなる隔膜チユーブ13が接続されている。ま
た、電解セル2はガラス等でなる筒状部材21、
該筒状部材21の両端開口部を塞ぐとともに上記
隔膜チユーブ13が中心部を貫通するように設け
られシリコーンゴム等でなる栓22,22′とで
構成されており、栓22,22′、筒状部材2
1、および隔膜チユーブ13の一部とで形成され
る空間部にはKIとCH3COOHの溶液からなる電
解液23が入れられるとともに該電解液23に浸
漬されるようにしてPt若しくはAuからなる筒状
の陽極24が設けられている。更に、栓22,2
2′の中心部を貫通する隔膜チユーブ13の中に
はPt線若しくはAu線からなるとともに所定部分
が塗料等で被覆された陰極25および第3電極2
6が設けられており、陰極25は電流計4および
スイツチ5を介して上記陽極24および第3電極
26と導線などで接続されている。更にまた、容
器6には被測定液7が入れられており、上記隔膜
チユーブ13の先端部から被測定液7が吸引され
るようになつている。また、上記栓22,2
2′、筒状部材21、および隔膜チユーブ13の
一部とで形成される空間部には、フタル酸カリウ
ムの結晶31およびKIの結晶32からなる混合
物3が上記電解液23とともに入れられている。
Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention. In the figure, the inhaler 1 has a piston 11
and cylinder 12, cylinder 1
A diaphragm tube 13 made of an ion exchange membrane or the like having a predetermined length is connected to the bottom of the tube 2 . Further, the electrolytic cell 2 includes a cylindrical member 21 made of glass or the like,
The diaphragm tube 13 is provided so as to close the openings at both ends of the cylindrical member 21 and pass through the center thereof, and is composed of plugs 22, 22' made of silicone rubber or the like. shaped member 2
1 and a part of the diaphragm tube 13 is filled with an electrolyte 23 made of a solution of KI and CH 3 COOH, and is immersed in the electrolyte 23 made of Pt or Au. A cylindrical anode 24 is provided. Furthermore, the stopper 22,2
Inside the diaphragm tube 13 that penetrates through the center of the diaphragm tube 2' are a cathode 25 and a third electrode 2 made of Pt wire or Au wire and predetermined portions covered with paint or the like.
6, and the cathode 25 is connected to the anode 24 and the third electrode 26 via an ammeter 4 and a switch 5 by a conductive wire or the like. Furthermore, a liquid to be measured 7 is placed in the container 6, and the liquid to be measured 7 is sucked from the tip of the diaphragm tube 13. In addition, the plugs 22, 2
2', the cylindrical member 21, and a part of the diaphragm tube 13, a mixture 3 consisting of potassium phthalate crystals 31 and KI crystals 32 is placed together with the electrolytic solution 23. .

第2図は、上記電解セル2の周辺部の拡大断面
図であり、図中、41〜43は陰極25および第
3電極26の所定部分に施された塗料等の被覆で
あり、該被覆部分は電極として機能せず隔膜チユ
ーブ13内における被測定液を陰極25や第3電
極26と直交する平面で3つの領域A,B,Cに
間仕切りしたと同様の役割を果している。また、
第2図において、第1図と同一記号は同一意味を
もたせて使用し、ここでの説明は省略する。尚、
上記3つの領域A,B,Cは第2図に示す如く大
略次のように設計されている。即ち、電解セル2
内の電解液23(混合物3を含む)が存在する部
分に相当する領域が領域Bとされ、領域Bの上側
の領域(栓22が存在する部分に相当する領域)
が領域Aとされ、領域Bの下側の領域(栓22′
等が存在する部分に相当する領域)が領域Cとさ
れている。
FIG. 2 is an enlarged sectional view of the peripheral part of the electrolytic cell 2, and in the figure, 41 to 43 are coatings such as paint applied to predetermined portions of the cathode 25 and the third electrode 26, and the coated portions are does not function as an electrode, but plays the same role as if the liquid to be measured in the diaphragm tube 13 was partitioned into three areas A, B, and C by a plane perpendicular to the cathode 25 and the third electrode 26. Also,
In FIG. 2, the same symbols as in FIG. 1 are used with the same meanings, and their explanations will be omitted here. still,
The three areas A, B, and C mentioned above are designed roughly as follows, as shown in FIG. That is, electrolytic cell 2
The area corresponding to the part where the electrolytic solution 23 (including the mixture 3) exists is defined as area B, and the area above area B (the area corresponding to the part where the plug 22 exists)
is defined as area A, and the area below area B (plug 22'
The area corresponding to the area where the above-mentioned objects exist is defined as area C.

上記構成からなる本発明の実施例における動作
について以下説明する。初めに、ピストン11が
操作されて、被測定液7が吸引され隔膜チユーブ
13内に導入されるとともに該被測定液7が隔膜
チユーブ13の中で静止状態に保たれる。一方、
電解セル2においては、フタル酸カリウムの結晶
31、KIの結晶32が存在するため、電解液2
3はPH=4のKI飽和溶液となつている。このた
め、隔膜チユーブ13内の被測定液と電解セル2
内の電解液23との間に、KIに関する大きな濃
度差が生じ、該濃度勾配が推進力となつて、電解
液23中のKIが隔膜透過して隔膜チユーブ13
内の被測定液へ移動する。而して、隔膜チユーブ
13内の被測定液に含まれる残留塩素は、電解液
23から至つたKIと直ちに反応してI2を析出す
る。該I2は各電極に電圧を印加することなくスイ
ツチ5が閉の状態で、陰極25若しくは第3電極
26にて還元されてI-となり、I2の量に比例した
電気量が電流計4で検出される。
The operation of the embodiment of the present invention having the above configuration will be described below. First, the piston 11 is operated, and the liquid to be measured 7 is sucked and introduced into the diaphragm tube 13, and the liquid to be measured 7 is kept stationary in the diaphragm tube 13. on the other hand,
In the electrolytic cell 2, since potassium phthalate crystals 31 and KI crystals 32 are present, the electrolyte 2
3 is a KI saturated solution with pH=4. Therefore, the liquid to be measured in the diaphragm tube 13 and the electrolytic cell 2
A large concentration difference regarding KI occurs between the electrolyte 23 in the electrolyte 23 and the KI in the diaphragm tube 13.
Move to the liquid to be measured inside. Therefore, the residual chlorine contained in the liquid to be measured in the diaphragm tube 13 immediately reacts with KI coming from the electrolytic solution 23 to precipitate I 2 . With the switch 5 closed and no voltage applied to each electrode, the I 2 is reduced to I - at the cathode 25 or the third electrode 26, and an amount of electricity proportional to the amount of I 2 is measured by the ammeter 4. Detected in

ところで、陰極25および第3電極26は、被
覆41〜43によつて所定の部分が被われてお
り、該被覆以外の部分でのみ電極として機能する
ため、隔膜チユーブ13内は、前述の如く、被覆
41〜43によつて3つの領域A,B,C間仕切
りされたようになつており、電解液23から至つ
たKIと被測定液中の残留塩素が反応して生成し
た前記I2のうち、領域Bで析出したI2は陰極25
で還元され、領域A,Cで析出したI2は第3電極
26で還元される。従つて、スイツチ5が開の状
態では、領域A,Cで析出したI2だけが第3電極
26による還元を受けているが、スイツチ5を閉
じると、領域Bで析出したI2が陰極25による還
元を受け、該I2に比例した電気量が電流計4で検
出される。このため、領域A,Cで析出したI2
関する電気量は電流計4には現われず、領域Bで
析出したI2に関する電気量だけが電流計4で検出
される。
By the way, the cathode 25 and the third electrode 26 are covered with the coatings 41 to 43 at predetermined portions, and function as electrodes only in the portions other than the coatings, so the inside of the diaphragm tube 13 is as described above. Three areas A, B, and C are partitioned by the coatings 41 to 43, and the area I2 generated by the reaction between KI from the electrolytic solution 23 and residual chlorine in the liquid to be measured. , I 2 deposited in region B is on the cathode 25
The I 2 deposited in areas A and C is reduced at the third electrode 26. Therefore, when the switch 5 is open, only the I 2 deposited in regions A and C is reduced by the third electrode 26, but when the switch 5 is closed, the I 2 deposited in the region B is reduced by the cathode 25. The ammeter 4 detects an amount of electricity proportional to the I 2 . Therefore, the quantity of electricity related to I 2 deposited in areas A and C does not appear on the ammeter 4, and only the quantity of electricity related to I 2 deposited in area B is detected by the ammeter 4.

第3図および第4図は、電流計4で検出される
電解電流とスイツチ5が閉になつてからの経過時
間との関係を示す特性曲線図であり、第3電極2
6および被覆41〜43を用いず被覆されない陰
極を用いたときは第3図の特性を示し、陰極25
および第3電極26を用いたときは第4図の特性
を示す。また、第3図および第4図において、電
解電流Iは時間Tの経過にともなつて減少し、陰
極25の近辺に存在するI2がなくなつたときに零
となる。しかし、第3図では陰極25に近接する
I2はすぐに電気分解されるが、陰極の上下部分よ
り離れて存在するI2は、泳動もしくは拡散して陰
極に達するまでに時間がかかり、このI2がいつま
でも電気分解を続けるため電解電流Iはなかなか
零にならない。
3 and 4 are characteristic curve diagrams showing the relationship between the electrolytic current detected by the ammeter 4 and the elapsed time after the switch 5 is closed, and the third electrode 2
6 and coatings 41 to 43 and an uncoated cathode exhibits the characteristics shown in FIG.
When the third electrode 26 is used, the characteristics shown in FIG. 4 are shown. Furthermore, in FIGS. 3 and 4, the electrolytic current I decreases with the passage of time T, and becomes zero when I 2 existing in the vicinity of the cathode 25 disappears. However, in FIG.
I 2 is electrolyzed immediately, but I 2 that is located far away from the upper and lower parts of the cathode takes time to migrate or diffuse to reach the cathode, and because this I 2 continues to be electrolyzed indefinitely, the electrolytic current I does not easily reach zero.

第5図および第6図は、電流計4で検出される
電解電流の値が積分された電気量Cと、スイツチ
5が閉になつてからの経過時間との関係を示す特
性曲線図であり、第3電極26および被覆41〜
43を用いず被覆されない陰極を用いたときは第
5図の特性を示し、陰極25および第3電極26
を用いたときは第6図の特性を示す。また、第5
図および第6図において、電気量Cは、被測定液
中の残留塩素濃度と比例関係にあり、通常は、約
2分経過後のほぼ安定した電気量の値から、被測
定液中の残留塩素濃度が測定される。第5図にお
いては、第3図と同様に電気量Cがいつまでも安
定しないが、第6図では電気量Cが短時間(第6
図では約1分)で安定する。
5 and 6 are characteristic curve diagrams showing the relationship between the amount of electricity C, which is the integrated value of the electrolytic current detected by the ammeter 4, and the elapsed time after the switch 5 is closed. , third electrode 26 and coating 41~
When an uncovered cathode is used without using the cathode 25 and the third electrode 26, the characteristics shown in FIG.
When used, the characteristics shown in FIG. 6 are shown. Also, the fifth
In the figure and Fig. 6, the quantity of electricity C is in a proportional relationship with the residual chlorine concentration in the liquid to be measured. Chlorine concentration is measured. In Fig. 5, as in Fig. 3, the quantity of electricity C is not stable forever, but in Fig. 6, the quantity of electricity C remains stable for a short period of time (6
It stabilizes in about 1 minute (in the figure).

以上、詳しく説明したような本発明の実施例に
よれば、隔膜チユーブ13内における所定領域に
存在する被測定液のみが、陰極25によつて残留
塩素の測定を受けることになり、測定される被測
定液の容積が限定されるため、短時間で安定した
測定値が得られるという利点を有する。また、本
発明の実施例において、残留塩素のI2置換が100
%行なわれ、且つ隔膜チユーブ13や電極24〜
26の大きさが一定に保たれると、標準液を用い
て測定のたびに測定装置を校正する必要もなくな
るという利点も有している。更に、本発明の実施
例からピストン11およびシリンダ12を取り除
くとともに隔膜チユーブ13の上流へ定流量ポン
プを付設し、被測定液を一定の流量で隔膜チユー
ブ13内へ供給することにより、被測定液中の残
留塩素濃度を容易に連続測定できるという利点も
有している。
According to the embodiment of the present invention as described in detail above, only the liquid to be measured existing in a predetermined area within the diaphragm tube 13 is subjected to the residual chlorine measurement by the cathode 25. Since the volume of the liquid to be measured is limited, it has the advantage that stable measured values can be obtained in a short time. In addition, in the examples of the present invention, the I 2 substitution of residual chlorine is 100
%, and the diaphragm tube 13 and the electrodes 24~
If the size of 26 is kept constant, there is also the advantage that there is no need to calibrate the measuring device using a standard solution every time a measurement is made. Furthermore, the piston 11 and cylinder 12 are removed from the embodiment of the present invention, and a constant flow pump is attached upstream of the diaphragm tube 13 to supply the liquid to be measured into the diaphragm tube 13 at a constant flow rate. Another advantage is that the residual chlorine concentration inside can be easily and continuously measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す構成説明図、
第2図は、電解セル周辺部の拡大断面図、第3図
および第4図は、電解電流値と経過時間との関係
を示す特性曲線図、第5図および第6図は、電気
量と経過時間との関係を示す特性曲線図である。 1……吸入器、11……ピストン、12……シ
リンダ、13……隔膜チユーブ、2……電解セ
ル、21……筒状部材、22,22′……栓、2
3……電解液、24……陽極、25……陰極、2
6……第3電極、3……混合物、31,32……
結晶、41〜43……被覆、4……電流計、5…
…スイツチ、6……容器、7……被測定液。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention;
Figure 2 is an enlarged sectional view of the surrounding area of the electrolytic cell, Figures 3 and 4 are characteristic curve diagrams showing the relationship between electrolytic current value and elapsed time, and Figures 5 and 6 are graphs showing the relationship between the amount of electricity and It is a characteristic curve diagram showing the relationship with elapsed time. DESCRIPTION OF SYMBOLS 1... Inhaler, 11... Piston, 12... Cylinder, 13... Diaphragm tube, 2... Electrolytic cell, 21... Cylindrical member, 22, 22'... Plug, 2
3... Electrolyte, 24... Anode, 25... Cathode, 2
6...Third electrode, 3...Mixture, 31,32...
Crystal, 41-43...Coating, 4...Ammeter, 5...
...Switch, 6... Container, 7... Liquid to be measured.

Claims (1)

【特許請求の範囲】 1 電解セルを貫通するように設けられた隔膜チ
ユーブの外側に陽極を配設すると共に該チユーブ
の内側に陰極と第3電極を配設し、前記電解セル
内の電解液が存在する部分に相当する領域Bにお
いて前記第3電極を被覆すると共に該領域Bの上
側の領域A及び該領域Bの下側の領域Cにおいて
前記陰極を被覆し、前記隔膜チユーブの中へ被測
定液を導いて静止させ、該被測定液へ前記隔膜チ
ユーブを透過させてKIを供給して前記被測定液
に含まれる残留塩素をI2に置換し、前記領域A及
びCで被覆された陰極と前記領域Bで被覆された
第3電極により前記隔膜チユーブ内において電気
分解される前記被測定液の間仕切りをおこないな
がら前記I2に定電位電気分解反応を生じさせ、そ
の後、前記陰極と陽極の間に流れる電気量を測定
することにより、前記被測定液中の残留塩素を測
定することを特徴とする残留塩素の測定方法。 2 ピストン、シリンダ、および該シリンダに接
続された一定長さの隔膜チユーブからなり被測定
液を吸引し前記隔膜チユーブ内へ導いて静止させ
る吸入器と、筒状部材および該筒状部材の両端開
口部を塞ぐと共に前記隔膜チユーブが中心部を貫
通するように設けられた2個の栓とで構成され内
部に陽極、電解液、KIの結晶、およびフタル酸
カリウムの結晶が封入された電解セルと、前記隔
膜チユーブの外側に配設された陽極と、前記電解
セル内の電解液が存在する部分に相当する領域B
において被覆された第3電極と、該領域Bの上側
の領域A及び該領域Bの下側の領域Cにおいて被
覆された陰極とを具備し、前記陰極と第3電極に
より前記隔膜チユーブ内において電気分解される
被測定液の間仕切りをおこないながら前記陰極と
陽極の間に流れる電気量を測定して前記被測定液
中の残留塩素を測定する残留塩素の測定装置。
[Scope of Claims] 1. An anode is disposed on the outside of a diaphragm tube provided to penetrate the electrolytic cell, and a cathode and a third electrode are disposed on the inside of the tube, and the electrolyte in the electrolytic cell is The third electrode is coated in a region B corresponding to the part where the diaphragm tube is present, and the cathode is coated in a region A above the region B and a region C below the region B, and into the diaphragm tube. The measurement liquid is guided and kept stationary, and the diaphragm tube is passed through the measurement liquid to supply KI to replace the residual chlorine contained in the measurement liquid with I2 , and the area covered with the areas A and C is A constant potential electrolysis reaction is caused in the I2 while partitioning the liquid to be electrolyzed in the diaphragm tube by the cathode and a third electrode covered with the region B, and then the cathode and the anode A method for measuring residual chlorine, characterized in that residual chlorine in the liquid to be measured is measured by measuring the amount of electricity flowing during the period. 2. An inhaler consisting of a piston, a cylinder, and a diaphragm tube of a certain length connected to the cylinder, which sucks the liquid to be measured, guides it into the diaphragm tube, and makes it stand still, and a cylindrical member and openings at both ends of the cylindrical member. an electrolytic cell consisting of two plugs provided so that the diaphragm tube passes through the center, and an anode, an electrolyte, KI crystals, and potassium phthalate crystals sealed inside; , an anode disposed outside the diaphragm tube and a region B corresponding to a portion where an electrolytic solution exists in the electrolytic cell;
a third electrode coated in the diaphragm tube, and a cathode coated in a region A above the region B and a region C below the region B; A residual chlorine measuring device that measures residual chlorine in the liquid to be measured by measuring the amount of electricity flowing between the cathode and the anode while partitioning the liquid to be measured to be decomposed.
JP55175450A 1980-12-12 1980-12-12 Measuring method and device for residual chlorine Granted JPS5798855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55175450A JPS5798855A (en) 1980-12-12 1980-12-12 Measuring method and device for residual chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55175450A JPS5798855A (en) 1980-12-12 1980-12-12 Measuring method and device for residual chlorine

Publications (2)

Publication Number Publication Date
JPS5798855A JPS5798855A (en) 1982-06-19
JPS6246825B2 true JPS6246825B2 (en) 1987-10-05

Family

ID=15996282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55175450A Granted JPS5798855A (en) 1980-12-12 1980-12-12 Measuring method and device for residual chlorine

Country Status (1)

Country Link
JP (1) JPS5798855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187321U (en) * 1987-12-03 1989-06-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0187321U (en) * 1987-12-03 1989-06-09

Also Published As

Publication number Publication date
JPS5798855A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US4049382A (en) Total residual chlorine
US4207157A (en) Method for controlling halogen ion concentration in a photographic processing solution
FR2418931A1 (en) CHLORINE BIOXIDE ANALYZER
US4581121A (en) Free chlorine gas analyzer
JPS6246825B2 (en)
CN110579524A (en) Method for cleaning, adjusting, calibrating and/or adjusting a current sensor
US4441979A (en) Nutating probe for gas analysis
JPS6317180B2 (en)
JPS6223818B2 (en)
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JP3448834B2 (en) ORP sensor for anode water measurement
JP3106447B2 (en) Residual chlorine meter with automatic calibration function
RU2139530C1 (en) Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water
JPH0729486Y2 (en) Residual chlorine meter
JPH0643132A (en) Measuring method for residual chlorine concentration in purified water
JPH0619089Y2 (en) Residual chlorine meter with automatic calibration function
JPH079083Y2 (en) Redox current measuring device
JPH10104221A (en) Method and device for measuring water activity
JPS61258158A (en) Electrochemical cell
JPH079084Y2 (en) Residual chlorine measuring device
JPH0639329Y2 (en) Residual chlorine meter with automatic calibration function
JPH0746093B2 (en) Method for measuring chlorite ion
JPH036450A (en) Apparatus for measuring chlorine dioxide
JPS6258464B2 (en)