JPH079083Y2 - Redox current measuring device - Google Patents

Redox current measuring device

Info

Publication number
JPH079083Y2
JPH079083Y2 JP6804190U JP6804190U JPH079083Y2 JP H079083 Y2 JPH079083 Y2 JP H079083Y2 JP 6804190 U JP6804190 U JP 6804190U JP 6804190 U JP6804190 U JP 6804190U JP H079083 Y2 JPH079083 Y2 JP H079083Y2
Authority
JP
Japan
Prior art keywords
sample
sample solution
electrode
anode
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6804190U
Other languages
Japanese (ja)
Other versions
JPH0426363U (en
Inventor
満 後藤
真一 赤沢
尚子 三上
Original Assignee
電気化学計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学計器株式会社 filed Critical 電気化学計器株式会社
Priority to JP6804190U priority Critical patent/JPH079083Y2/en
Publication of JPH0426363U publication Critical patent/JPH0426363U/ja
Application granted granted Critical
Publication of JPH079083Y2 publication Critical patent/JPH079083Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、アノードとカソードの2電極を有し、アノー
ドに試料液中の測定対象成分が接触したときに両電極間
に流れる酸化還元電流を検出することにより該成分の濃
度を測定する酸化還元電流測定装置に関し、更に詳述す
ると、例えばボイラー水中に含まれる微量のヒドラジン
を測定する場合などに好適に用いられる酸化還元電流測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has two electrodes, an anode and a cathode, and a redox current that flows between both electrodes when a measurement target component in a sample solution contacts the anode. The present invention relates to a redox current measuring device for measuring the concentration of the component by detecting, and more specifically, it relates to a redox current measuring device suitably used for measuring a small amount of hydrazine contained in boiler water.

〔従来の技術〕[Conventional technology]

通常、ボイラー水には防食剤としてヒドラジン(N2H4
が注入されており、このヒドラジン量を管理するために
ボイラー水中のヒドラジン濃度を測定することが行なわ
れている。
Normally, hydrazine (N 2 H 4 ) is used as an anticorrosive agent in boiler water.
Is injected, and the hydrazine concentration in the boiler water is measured to control the amount of hydrazine.

従来、試料液中に含まれるヒドラジンの測定装置とし
て、第4図或いは第5図に示すポーラログラフ式酸化還
元電流測定装置が知られている。即ち、第4,5図の装置
においてaは測定槽、bは測定槽a内に注入された電解
液と試料液との混合液で、第4図に示す装置は混合液b
にアノードc及びカソードdを浸漬させた2電極式のも
の、第3図に示す装置は混合液bにアノードc、カソー
ドd及び比較電極eを浸漬させた3電極式のものであ
る。
Conventionally, as a measuring device for hydrazine contained in a sample liquid, a polarographic redox current measuring device shown in FIG. 4 or 5 is known. That is, in the apparatus shown in FIGS. 4 and 5, a is a measuring tank, b is a mixed solution of the electrolytic solution and the sample solution injected into the measuring tank a, and the apparatus shown in FIG.
The two-electrode type in which the anode c and the cathode d are dipped in is shown in FIG. 3, and the apparatus shown in FIG. 3 is the three-electrode type in which the anode c, the cathode d and the reference electrode e are dipped in the mixed solution b.

上記装置においては、試料液中のヒドラジンがアノード
cに接触すると、下記(1)式の酸化反応が起こる。
In the above device, when hydrazine in the sample solution comes into contact with the anode c, an oxidation reaction of the following formula (1) occurs.

上記装置においては、試料液中のヒドラジンがアノード
cに接触すると、下記(1)式の酸化反応が起こる。
In the above device, when hydrazine in the sample solution comes into contact with the anode c, an oxidation reaction of the following formula (1) occurs.

N2H4+4OH-→N2+4H2O+2e …(1) 一方、カソードdではこれと当量の下記式(2)又は
(3)の還元反応が生じる。
N 2 H 4 + 4OH → N 2 + 4H 2 O + 2e (1) On the other hand, in the cathode d, an equivalent reduction reaction of the following formula (2) or (3) occurs.

1/2O2+H2O+2e→2OH- …(2) 2H++2e→H2 …(3) 従ってアノードcとカソードdとの間にはヒドラジン濃
度に比例した電流が流れることになり、この電流値から
ヒドラジン濃度を求めることができるるものである。
1 / 2O 2 + H 2 O + 2e → 2OH (2) 2H + + 2e → H 2 (3) Therefore, a current proportional to the hydrazine concentration flows between the anode c and the cathode d. The hydrazine concentration can be determined from the current value.

また、第4,5図の装置は試料液と電解液とを混合して測
定槽に入れなければならないため、バッチ測定を行なう
ことができるが、プロセスにおいて連続測定を行なうに
は不向きであるという欠点を有し、このためフローセル
を用いて連続測定ができるようにした3電極式の酸化還
元電流測定装置も提案されている(実開昭60−27355号
公報、実開平1−61656号公報参照)。
Further, since the apparatus of FIGS. 4 and 5 must mix the sample solution and the electrolytic solution into the measuring tank, batch measurement can be performed, but it is not suitable for continuous measurement in the process. A three-electrode type redox current measuring device, which has a drawback and is capable of continuous measurement using a flow cell, has also been proposed (see Japanese Utility Model Publication No. 60-27355 and Japanese Utility Model Publication No. 1-61656). ).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかし、従来の酸化還元電流測定装置は、次に述べるよ
うな欠点を有するものであった。
However, the conventional redox current measuring device has the following drawbacks.

a.電解液を別に調製して装置に供給、補給しなければな
らないため、測定作業が煩雑になる。特に、3電極式の
ものは比較電極の電位を一定にするために電解液の濃度
を一定に保つ必要があり、電解液の調製、濃度管理等が
面倒である。
a. Since the electrolytic solution must be separately prepared and supplied to the device, the measurement work becomes complicated. In particular, in the three-electrode type, it is necessary to keep the concentration of the electrolytic solution constant in order to keep the potential of the reference electrode constant, and preparation of the electrolytic solution and control of the concentration are troublesome.

b.3電極式のものはアノードが比較電極から溶出した金
属イオンの影響を受け、感度が低下する。また、これを
防ごうとすると、アノードと比較電極の距離を大きくし
なければならず、装置が大型化する。
b. The sensitivity of the three-electrode type is reduced due to the influence of the metal ions eluted from the reference electrode on the anode. Further, in order to prevent this, the distance between the anode and the reference electrode must be increased, which increases the size of the device.

本考案は、上記事情に鑑みなされたもので、装置が小型
で、しかも電解液の調製、濃度管理やその他の保守メン
テナンスが簡単である上、感度の低下が生じにくく、従
ってプロセスにおける連続測定に好適に使用できる酸化
還元電流測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the apparatus is small, and the preparation of the electrolytic solution, the concentration control and other maintenance and maintenance are easy, and the sensitivity is less likely to decrease. It is an object of the present invention to provide a redox current measuring device that can be suitably used.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、上記目的を達成するため、下端部に試料液が
通過するフィルターが取り付けられた支持管の内部にカ
ソードを配設し、かつ上記フィルターの外面にアノード
を取り付けると共に、上記支持管内に固体電解質を入れ
た電極本体と、上記電極本体が着脱可能に挿入される挿
入凹部を有すると共に、下部に該凹部と接続する試料液
の導入口、高さ方向中間部に該凹部と接続する試料液の
排出口を有し、上記挿入凹部に電極本体を挿入したとき
に電極本体と挿入凹部の周壁部との間に上記導入口と排
出口とを連通する試料流通路が形成される測定セルとを
具備し、上記測定セルの挿入凹部に電極本体を挿入した
状態で上記導入口から測定セル内に試料液を導入したと
きに、試料液の一部が上記フィルターを通って支持管内
に流入し、この試料液に上記カソードと固体電解質が浸
漬されると共に、試料液の残部が上記試料流通路を通っ
て排出口から排出されるよう構成した酸化還元電流測定
装置を提供する。
In order to achieve the above object, the present invention provides a cathode inside a support tube having a filter through which a sample solution passes at the lower end, and an anode on the outer surface of the filter. An electrode body containing a solid electrolyte, and an insertion recess into which the electrode body is removably inserted, and a sample solution inlet for connecting to the recess in the lower part, and a sample for connecting to the recess in the height direction middle part A measuring cell having a liquid discharge port, in which a sample flow passage that connects the inlet port and the discharge port is formed between the electrode body and the peripheral wall of the insertion recess when the electrode body is inserted into the insertion recess. When a sample solution is introduced into the measurement cell from the inlet while the electrode body is inserted into the insertion recess of the measurement cell, part of the sample solution flows into the support tube through the filter. And this try Together with the cathode and the solid electrolyte is immersed in the liquid, the remainder of the sample liquid to provide a redox current measuring device configured to be discharged from the discharge port through the sample flow path.

〔作用〕[Action]

本考案測定装置を用いて試料液中の目的成分の測定を行
なう場合、試料液導入口から測定セル内に試料液を導入
するものであるが、このとき試料液の一部がフィルター
を通って電極本体内に流入し、この試料液に固体電解質
が溶解して電解液となり、この電解液がフィルターを通
って試料液の一部がフィルターを通って電極本体内に流
入し、この試料液に固体電解質が溶解して電解液とな
り、この電解液がフィルターを通って試料流通路の試料
液中に流出することによりアノードとカソードとが電気
的に導通して装置が測定可能な状態となる。また、試料
液りの残部は導入口から試料流通路、排出口を通って排
出されるものであるが、このとき試料液中の目的成分が
アノードに接触して前記(1)式のような酸化反応が生
じると共に、カソードで前記(2)又は(3)式のよう
な還元反応がおこり、その結果両極間に目的成分の濃度
に対応した電流が流れるものである。
When the target component in the sample liquid is measured using the measuring device of the present invention, the sample liquid is introduced into the measurement cell from the sample liquid inlet, but at this time, part of the sample liquid passes through the filter. It flows into the electrode body, the solid electrolyte is dissolved in this sample solution to become an electrolyte solution, this electrolyte solution passes through the filter, and part of the sample solution flows through the filter into the electrode body and The solid electrolyte is dissolved into an electrolytic solution, and the electrolytic solution flows through the filter into the sample solution in the sample flow path, whereby the anode and the cathode are electrically connected to each other, and the device is in a measurable state. The rest of the sample liquid is discharged from the inlet through the sample flow passage and the outlet. At this time, the target component in the sample liquid comes into contact with the anode, and as shown in the formula (1), As the oxidation reaction occurs, the reduction reaction as in the above formula (2) or (3) occurs at the cathode, and as a result, a current corresponding to the concentration of the target component flows between both electrodes.

次に、実施例により本考案を具体的に示すが、本考案は
下記実施例に制限されるものではない。
Next, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

第1図は本考案の一実施例に係るヒドラジン測定装置を
示すもので、図中1は電極本体、(2)は測定セルを示
す。
FIG. 1 shows a hydrazine measuring device according to an embodiment of the present invention, in which 1 is an electrode body and (2) is a measuring cell.

上記電極本体1において3は支持管、4は支持管3の下
端部に取り付けられた筒状のフィルター、5は支持管3
の上部に着脱可能に取り付けられた固体電解質投入容
器、6は投入容器5に取り付けられたカソード取付管、
7はカソード取付管6の先端部に巻回された白金からな
るカソード、8はフィルター4に巻回された白金からな
るアノード、9はアノード8の近傍に設けられたアノー
ド8に電圧を印加する洗浄電極、10は温度補償電極、11
は支持管3内に入れられた食塩錠剤(固体電解質)、1
2,13,14,15はそれぞれ各電極8,10,7,9のリード線であ
る。
In the electrode body 1, 3 is a support tube, 4 is a cylindrical filter attached to the lower end of the support tube 3, and 5 is a support tube 3.
A solid electrolyte charging container detachably mounted on the upper part of the cathode, 6 is a cathode mounting tube mounted on the charging container 5,
7 is a cathode made of platinum wound around the tip of the cathode mounting tube 6, 8 is an anode made of platinum wound around the filter 4, and 9 is a voltage applied to the anode 8 provided in the vicinity of the anode 8. Cleaning electrode, 10 is temperature compensation electrode, 11
Is a salt tablet (solid electrolyte) placed in the support tube 3, 1
Reference numerals 2, 13, 14, and 15 are lead wires of the electrodes 8, 10, 7, and 9, respectively.

また、測定セル2において、16は上記電極本体1に相応
した形状を有する挿入凹部、17はセル2の下部に形成さ
れた凹部16と接続する試料導入口、18はセル2の高さ方
向中間部に形成された凹部16と接続する試料排出口であ
る。
Further, in the measurement cell 2, 16 is an insertion recess having a shape corresponding to the electrode body 1, 17 is a sample introduction port connected to the recess 16 formed in the lower portion of the cell 2, and 18 is the middle of the cell 2 in the height direction. It is a sample discharge port connected to the concave portion 16 formed in the section.

本装置においては、セル2の挿入凹部16に電極本体1の
下部が着脱可能にかつOリング19によって液密に挿入さ
れ、これにより電極本体1と凹部16の周壁部との間に上
記導入口17と排出口18とを連通する試料流通路20が形成
されている。
In this device, the lower portion of the electrode body 1 is detachably and liquid-tightly inserted into the insertion recess 16 of the cell 2 by the O-ring 19, so that the introduction port is provided between the electrode body 1 and the peripheral wall of the recess 16. A sample flow passage 20 is formed which connects 17 and the discharge port 18.

本実施例の装置を用いて試料液中のヒドラジン濃度を測
定する場合、セル2内に試料液を連続的に導入する。こ
れにより、前述したように試料液が電極本体1内に入っ
て電解液21になると共に、試料液中のヒドラジン濃度に
比例する電流がアノード8とカソード7との間に流れ、
従ってこの電流を検出することによりヒドラジン濃度を
求めることができる。
When the hydrazine concentration in the sample solution is measured using the apparatus of this example, the sample solution is continuously introduced into the cell 2. As a result, as described above, the sample solution enters the electrode body 1 to become the electrolyte solution 21, and a current proportional to the hydrazine concentration in the sample solution flows between the anode 8 and the cathode 7,
Therefore, the hydrazine concentration can be determined by detecting this current.

また、本装置においては、所定時間毎に洗浄電極9に微
小の電流を流すことによってアノード8の表面に生成し
た酸化皮膜を除去できるようになっている。
Further, in this apparatus, the oxide film formed on the surface of the anode 8 can be removed by passing a minute electric current to the cleaning electrode 9 every predetermined time.

従って、本装置によれば、試料液中のヒドラジン濃度を
連続測定できると共に、電解液21の調製、補充のために
は食塩錠剤11を支持管3内に投入するだけでよく、非常
に簡便である。また、支持管3内の電解液21と試料流通
路20を流れる試料液との間にヘッド差が生じないので、
電解液21がフィルター4を通って試料流通路20内の試料
液中に自然拡散し、このため安定した出力を得ることが
できる。また、2電極式としたことにより比較電極から
溶出した金属イオンによってフィルター4が目詰まりし
たり、アノード8表面が汚れたりすることがない上、ア
ノード表面が汚れた場合でもこれを洗浄電極9によって
洗浄できるため、常時高感度で測定を行なうことができ
る。更に、電極本体1を測定セル2に着脱可能に設けた
ので、電極本体1やセル2のメンテナンスを簡単に行な
うことができるものである。
Therefore, according to this device, the concentration of hydrazine in the sample solution can be continuously measured, and the salt tablet 11 need only be put into the support tube 3 to prepare and replenish the electrolyte solution 21, which is very simple. is there. Further, since there is no head difference between the electrolytic solution 21 in the support tube 3 and the sample solution flowing in the sample flow passage 20,
The electrolytic solution 21 naturally diffuses through the filter 4 into the sample solution in the sample flow path 20, and thus a stable output can be obtained. Further, the two-electrode type prevents the filter 4 from being clogged by the metal ions eluted from the reference electrode and the surface of the anode 8 to be soiled. In addition, even when the surface of the anode is soiled, this is cleaned by the cleaning electrode 9. Since it can be washed, it is possible to measure with high sensitivity at all times. Further, since the electrode body 1 is detachably attached to the measurement cell 2, the maintenance of the electrode body 1 and the cell 2 can be easily performed.

ここで本測定装置の電圧−電流特性を第2図に、電流−
ヒドラジン濃度特性を第3図に示すが、本装置によれば
試料液中の微量のヒドラジン濃度を正確に測定できるこ
とが認められる。この場合、第2図からわかるように、
本装置では印加電圧ゼロでも測定を行なうことができ、
このように印加電圧ゼロで測定を行なうとゼロ点が小さ
くなるため、補正回路を不要とすることができる。
The voltage-current characteristics of this measuring device are shown in FIG.
The hydrazine concentration characteristic is shown in FIG. 3, and it is recognized that the present apparatus can accurately measure a minute amount of hydrazine concentration in the sample solution. In this case, as can be seen from FIG.
With this device, you can perform measurements even with zero applied voltage,
In this way, when the measurement is performed with the applied voltage of zero, the zero point becomes small, so that the correction circuit can be eliminated.

なお、上記実施例では装置をヒドラジン測定用に構成し
たが、酸化還元電流を生じさせる他の成分、例えば過酸
化水素、溶存酸素、オゾン等の測定用に構成してもよ
い。また、アノード、カソードとしての他の材質、例え
ば金等を用いてもよい。更に、固体電解質として食塩錠
剤20を使用したが、粒粉状や塊状の食塩、苛性ソーダや
塩化カリウムの錠剤、粒粉物等を用いてもよく、その他
の構成についても本考案の要旨を逸脱しない範囲で種々
変更して差支えない。
Although the apparatus is configured for hydrazine measurement in the above-mentioned examples, it may be configured for measurement of other components that generate a redox current, such as hydrogen peroxide, dissolved oxygen, and ozone. Also, other materials for the anode and cathode, such as gold, may be used. Further, the salt tablet 20 is used as the solid electrolyte, but salt or lumpy salt, caustic soda or potassium chloride tablets, granular powder, etc. may be used, and other configurations do not depart from the gist of the present invention. Various changes can be made within the range.

〔考案の効果〕[Effect of device]

以上説明したように、本考案の酸化還元電流測定装置
は、下記の効果を奏し、プロセスにおける連続測定に好
適に使用されるものである。
As described above, the redox current measuring device of the present invention has the following effects and is suitably used for continuous measurement in a process.

アノード、カソードが電極本体に一体に設けられてい
るので、小型で取り扱いが簡単である。
Since the anode and the cathode are integrally provided on the electrode body, they are small and easy to handle.

電極本体に固体電解質を入れ、電極本体内に流入した
試料液に固体電解質を溶かして電解液をつくるようにし
たので、電解液を別に調製する面倒がない。また、電解
液の補充についても通常は月に1度程度固体電解質を支
持管内に補給すればよく、非常に簡便である。この場
合、本装置は2電極式であるため、電解液の濃度を3電
極式のように厳密に一定にする必要もない。
Since the solid electrolyte is put into the electrode body and the solid electrolyte is dissolved in the sample solution flowing into the electrode body to form the electrolyte solution, there is no need to separately prepare the electrolyte solution. In addition, as for the replenishment of the electrolytic solution, it is usually very simple to replenish the solid electrolyte into the support tube once a month. In this case, since the present apparatus is of the two-electrode type, it is not necessary to keep the concentration of the electrolytic solution strictly constant unlike the three-electrode type.

2電極式としたので、比較電極から溶出する金属イオ
ンによるフィルターの目詰まり、アノードの汚れ等が生
じることがなく、このため長期間保守メンテナンスを行
なうことなく高感度で連続測定を行なうことができる。
また、電極本体と測定セルとを着脱可能に形成したの
で、保守メンテナンスを行なう場合にはセルから電極本
体を取り外せばよく、非常に簡単である。
Since it is a two-electrode type, the filter is not clogged with metal ions eluted from the reference electrode and the anode is not contaminated. Therefore, continuous measurement with high sensitivity can be performed without long-term maintenance. .
Further, since the electrode body and the measuring cell are detachably formed, it is very easy to remove the electrode body from the cell for maintenance and maintenance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す一部断面図、第2図は
同装置の電流−電圧特性を示すグラフ、第3図は同装置
の濃度特性を示すグラフ、第4図及び第5図はそれぞれ
従来の酸化還元電流測定装置を示す概略図である。 1…電極本体、2…測定セル 3…支持管、4…フィルター 7…カソード、8…アノード 11…固体電解質、16…挿入凹部 17…導入口、18…排出口 20…試料流通路
FIG. 1 is a partial sectional view showing an embodiment of the present invention, FIG. 2 is a graph showing current-voltage characteristics of the device, FIG. 3 is a graph showing concentration characteristics of the device, FIGS. FIG. 5 is a schematic view showing a conventional redox current measuring device. DESCRIPTION OF SYMBOLS 1 ... Electrode main body, 2 ... Measuring cell 3 ... Support tube, 4 ... Filter 7 ... Cathode, 8 ... Anode 11 ... Solid electrolyte, 16 ... Insertion recess 17 ... Inlet port, 18 ... Discharge port 20 ... Sample flow path

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】下端部に試料液が通過するフィルターが取
り付けられた支持管の内部にカソードを配設し、かつ上
記フィルターの外面にアノードを取り付けると共に、上
記支持管内に固体電解質を入れた電極本体と、上記電極
本体が着脱可能に挿入される挿入凹部を有すると共に、
下部に該凹部と接続する試料液の導入口、高さ方向中間
部に該凹部と接続する試料液の排出口を有し、上記挿入
凹部に電極本体を挿入したときに電極本体と挿入凹部の
周壁部との間に上記導入口と排出口とを連通する試料流
通路が形成される測定セルとを具備し、上記測定セルの
挿入凹部に電極本体を挿入した状態で上記導入口から測
定セル内に試料液を導入したときに、試料液の一部が上
記フィルターを通って支持管内に流入し、この試料液に
上記カソードと固体電解質が浸漬されると共に、試料液
の残部が上記試料流通路を通って排出口から排出される
よう構成したことを特徴とする酸化還元電流測定装置。
1. An electrode in which a cathode is disposed inside a support tube having a filter through which a sample solution passes at the lower end, an anode is attached to the outer surface of the filter, and a solid electrolyte is placed in the support tube. While having a main body and an insertion recess into which the electrode main body is detachably inserted,
A sample liquid inlet connected to the recess is provided in the lower portion, and a sample liquid outlet connected to the recess is provided in the middle portion in the height direction. When the electrode body is inserted into the insertion recess, the electrode body and the insertion recess are A measuring cell in which a sample flow passage that connects the inlet and the outlet is formed between the peripheral wall and the measuring cell, and the measuring cell is introduced from the inlet with the electrode body inserted in the insertion recess of the measuring cell. When the sample solution is introduced into the inside, a part of the sample solution flows into the support tube through the filter, the cathode and the solid electrolyte are immersed in this sample solution, and the rest of the sample solution flows through the sample passage. An oxidation-reduction current measuring device characterized in that it is configured to be discharged from an outlet through a passage.
JP6804190U 1990-06-27 1990-06-27 Redox current measuring device Expired - Lifetime JPH079083Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6804190U JPH079083Y2 (en) 1990-06-27 1990-06-27 Redox current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6804190U JPH079083Y2 (en) 1990-06-27 1990-06-27 Redox current measuring device

Publications (2)

Publication Number Publication Date
JPH0426363U JPH0426363U (en) 1992-03-02
JPH079083Y2 true JPH079083Y2 (en) 1995-03-06

Family

ID=31602147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6804190U Expired - Lifetime JPH079083Y2 (en) 1990-06-27 1990-06-27 Redox current measuring device

Country Status (1)

Country Link
JP (1) JPH079083Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409500B2 (en) * 2014-10-24 2018-10-24 東亜ディーケーケー株式会社 Composite electrode
JP7078242B2 (en) * 2016-07-27 2022-05-31 水青工業株式会社 Ozone water concentration sensor and ozone water concentration measuring device

Also Published As

Publication number Publication date
JPH0426363U (en) 1992-03-02

Similar Documents

Publication Publication Date Title
Hersch Trace monitoring in gases using galvanic systems
JP2002503330A (en) Micro fuel cell oxygen gas sensor
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
JPH0473095B2 (en)
US5106482A (en) High speed oxygen sensor
JPH079083Y2 (en) Redox current measuring device
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
US3329599A (en) Apparatus for measuring trace constituents
US5200044A (en) Method for measuring oxygen content
US4208253A (en) Method for measuring the concentration of sodium in a flow of mercury-sodium amalgam
CA1222795A (en) Electrochemical reference electrode
CA2173464A1 (en) Method and device for the determination of substances in solution
US3269924A (en) Galvanic cell and method for measuring oxygen traces in gases
JP2000131276A (en) Potable type residual chlorine meter
US6228237B1 (en) Automatic measuring device for the concentration of a developing agent
US3427238A (en) Electrolytic titration apparatus
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JPH0330851Y2 (en)
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
US3377256A (en) Alkali analysis
JP2004226263A (en) Electrolyte for diaphragm type electrode, the diaphragm type electrode, and method for stabilizing the same
JPH0854369A (en) Method and device for measuring amount of oxygen in gas
JP3633077B2 (en) pH sensor and ion water generator
Yosypchuk et al. Combined Voltammetric‐Potentiometric Sensor with Silver Solid Amalgam Link for Electroanalytical Measurements