JPH02296143A - Method for measuring dissolved chlorine dioxide - Google Patents

Method for measuring dissolved chlorine dioxide

Info

Publication number
JPH02296143A
JPH02296143A JP1116288A JP11628889A JPH02296143A JP H02296143 A JPH02296143 A JP H02296143A JP 1116288 A JP1116288 A JP 1116288A JP 11628889 A JP11628889 A JP 11628889A JP H02296143 A JPH02296143 A JP H02296143A
Authority
JP
Japan
Prior art keywords
electrode
chlorine dioxide
electrodes
current
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1116288A
Other languages
Japanese (ja)
Other versions
JPH0746090B2 (en
Inventor
Etsuo Furuya
降矢 悦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP1116288A priority Critical patent/JPH0746090B2/en
Publication of JPH02296143A publication Critical patent/JPH02296143A/en
Publication of JPH0746090B2 publication Critical patent/JPH0746090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform measurement continuously for a long period without special electrolyte which must be replenished and replaced by using a sample liquid itself dissoved in chlorine dioxide, and measuring electrolytic current. CONSTITUTION:Two electrodes of a working electrode 3 and a counter electrode 4 or three electrodes of said electrodes and an additional reference electrode 5 are immersed into a sample liquid 2. The electrode 3 comprising noble metal or a carbon is relatively moved with respect to the sample liquid 2. Dissolved chlorine dioxide in the sample liquid 2 undergoes electrolysis, and a reduction current is generated. Then, the voltage of the reduction current is applied to the electrode 3 with an ammeter 6 with the counter electrode 4 as a reference in the case of two electrodes and with a potentiostat 7 with the electrode 5 as a reference in the case of three electrodes. Thus, the generated current is measured, or the short-circuit current between the electrode 3 and the counter electrode 4 is measured. Since the reduction current is proportional to the concentration of the dissolved chlorine dioxide, the concentration of the dissolved chlorine dioxide can be obtained by obtaining the relationship between the concentration of the dissolved chlorine dioxde and the value of the reduction current beforehand.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、試料液中に溶存している二酸化塩素(atO
)を連続的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to the treatment of chlorine dioxide (atO
).

〔従来の技術〕[Conventional technology]

従来から上水やプールの殺菌に塩素が使用されているが
、塩素から発癌性のトリハロメタンが生成することが判
り問題となっている。
Chlorine has traditionally been used to disinfect tap water and swimming pools, but it has become a problem as it has been found that chlorine produces carcinogenic trihalomethanes.

そこで最近では、トリハロメタンを生成しない二酸化塩
素による上水やプールの殺菌が検討されている。又、二
酸化塩素は強い酸化力を有するので、繊維の漂白にも利
用されている。
Therefore, recently, sterilization of tap water and swimming pools using chlorine dioxide, which does not produce trihalomethane, is being considered. In addition, since chlorine dioxide has strong oxidizing power, it is also used for bleaching textiles.

従って、これらの分野においては、液中に溶解した二酸
化塩素の濃度を適切に管理することが極めて重要である
Therefore, in these fields, it is extremely important to appropriately control the concentration of chlorine dioxide dissolved in the liquid.

一方、溶存二酸化塩素の測定法としては、ヨウ素滴定法
(化学防災指針(7))と、隔膜形ポーラログラフ電極
法(特開昭54−125095号公報)が知られている
On the other hand, as methods for measuring dissolved chlorine dioxide, the iodine titration method (Chemical Disaster Prevention Guidelines (7)) and the diaphragm polarographic electrode method (Japanese Patent Laid-Open No. 125095/1982) are known.

しかしながら、上記のヨウ素滴定法は間欠測定であって
、連続的な濃彦管理には不適当である。
However, the above-mentioned iodine titration method is an intermittent measurement, and is not suitable for continuous control.

隔膜形ポーラログラフ電極法は連続測定が可能であるが
、試料液の他に電解液を必要とするため、電極反応の進
行に伴なって電解液の消耗が起るので、電解液の補充や
交換の必要から連続使用出来る期間に限界があった。
The diaphragm polarographic electrode method allows continuous measurement, but since it requires an electrolyte in addition to the sample solution, the electrolyte is consumed as the electrode reaction progresses, so it is difficult to replenish or replace the electrolyte. There was a limit to how long it could be used continuously due to the need for

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、連続測定が可能であ
り、補充や交換の必要がある特別な電解液などを用いる
ことのない、溶存二酸化塩素の測定方法を提供すること
を目的とする。
In view of the conventional circumstances, it is an object of the present invention to provide a method for measuring dissolved chlorine dioxide, which allows continuous measurement and does not require the use of a special electrolytic solution that requires replenishment or replacement.

(課題を解決するための手段) 上記目的を達成するため、本発明の溶存二酸化塩素の測
定方法では、試料液中に作用電極と対極の2極又は作用
電極と参照電極と対極の3極を浸漬し、貴金属又は炭素
からなる作用電極を試料液に対し相対的に動かしながら
、2極の場合は対極を基準に又3極の場合は参照電極を
基準にして溶存二酸化塩素の還元電流を生じる電圧を作
用′rt極に印加して発生する還元電流を測定するか、
又は作用電極と対極の短絡電流を測定して試料液中の二
酸化塩素濃度を求めることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the method for measuring dissolved chlorine dioxide of the present invention, two electrodes, a working electrode and a counter electrode, or three electrodes, a working electrode, a reference electrode and a counter electrode, are provided in the sample solution. While moving the working electrode made of noble metal or carbon relative to the sample solution, a reduction current of dissolved chlorine dioxide is generated based on the counter electrode in the case of two electrodes or the reference electrode in the case of three electrodes. Apply a voltage to the working 'rt electrode and measure the resulting reduction current, or
Alternatively, the short circuit current between the working electrode and the counter electrode is measured to determine the chlorine dioxide concentration in the sample solution.

(作用) 本発明は、試料液中の溶存二酸化塩素が印加電圧の如何
によっては電解され、電解電流を発生するとの発見に基
づきなされたものである。
(Function) The present invention was made based on the discovery that dissolved chlorine dioxide in a sample solution is electrolyzed depending on the applied voltage and generates an electrolytic current.

即ち、本発明方法は試料液自体を電解液として直接電解
し、二酸化塩素の電解により発生する電流を測定するも
のであって、二酸化塩素の電解の場合には還元電流が発
生する。
That is, the method of the present invention directly electrolyzes the sample solution itself as an electrolyte and measures the current generated by electrolysis of chlorine dioxide, and in the case of electrolysis of chlorine dioxide, a reduction current is generated.

この還元電流は試料液中に溶存する二酸化塩素の濃度に
比例するので、溶存二酸化塩緊濃度と還元電流の値との
関係を予め求めておけば、供給した試料液における還元
電流を測定することによって溶存二酸化塩素の濃度を知
ることが出来る。
Since this reduction current is proportional to the concentration of chlorine dioxide dissolved in the sample solution, it is possible to measure the reduction current in the supplied sample solution by determining the relationship between the dissolved salt dioxide concentration and the reduction current value in advance. The concentration of dissolved chlorine dioxide can be determined by

本発明方法は上記の如く電解を利用した方法であるから
、長期間測定を続けると作用電極の表面に酸化物の生成
による汚れが付着して発生電流値の低下をもたらすので
、このような場合には作用電極表面をブラシやガラスピ
ーズ等でこすって、新しい表面を保つようにする必要が
ある。
Since the method of the present invention utilizes electrolysis as described above, if measurements are continued for a long period of time, dirt due to the formation of oxides will adhere to the surface of the working electrode, resulting in a decrease in the generated current value. It is necessary to scrub the surface of the working electrode with a brush or glass beads to keep it fresh.

〔実施例〕〔Example〕

本発明方法を実施するための測定装置の具体例を第1図
及び第4図から第6図に示した。
A specific example of a measuring device for implementing the method of the present invention is shown in FIG. 1 and FIGS. 4 to 6.

第1図は測定槽1に供給される試料液2に作用1極3と
対極4を浸漬した2極による測定装置であり、作用電極
3を回転させることにより試料液2に対して動かしなが
ら、作用電極3に印加した電圧により発生する還元電流
を電流計6でNO定するようになっている。第4図は対
極4として市販の参照電極を用いた2極による測定装置
である。
FIG. 1 shows a two-pole measuring device in which a working electrode 3 and a counter electrode 4 are immersed in a sample liquid 2 supplied to a measuring tank 1. While moving the working electrode 3 relative to the sample liquid 2 by rotating the working electrode 3, The reduction current generated by the voltage applied to the working electrode 3 is determined by an ammeter 6. FIG. 4 shows a two-pole measuring device using a commercially available reference electrode as the counter electrode 4.

第5図は電流を流す電極と電位を規制する電極を分離し
た3極による測定装置の例であり、通常は電位を規制す
る′FL極として市販の参照電極5を使用し且つ電流を
流す作用i極3には貴金属を使用する。又、第5図の測
定装置では、電圧の印加と発生する還元電流の測定をポ
テンショスタット7を用いて行なっている。更に、第6
図は第1図と同様の2極による測定装置であるが、作用
電極3と試料液2との相対的な動きをスターラーによる
試料液2の攪拌により得る例であり、回転するスターラ
ーバ−8を作用電極3に接触させることにより、作用電
極3の表面を常時こすって新しい表面を保つようにした
ものである。
Figure 5 is an example of a three-electrode measurement device in which the electrode for flowing current and the electrode for regulating potential are separated.Usually, a commercially available reference electrode 5 is used as the 'FL pole for regulating potential, and the current flows. A noble metal is used for the i-pole 3. Further, in the measuring device shown in FIG. 5, a potentiostat 7 is used to apply voltage and measure the generated reduction current. Furthermore, the sixth
The figure shows a measuring device with two poles similar to that in Figure 1, but this is an example in which the relative movement between the working electrode 3 and the sample liquid 2 is obtained by stirring the sample liquid 2 with a stirrer, and a rotating stirrer bar 8 is used. By bringing it into contact with the working electrode 3, the surface of the working electrode 3 is constantly rubbed to maintain a fresh surface.

第1図の測定装置において、作用電極3として金(Au
) 、白金(Pt)又はブラシシーカーボン(GCりを
用い、及び対極4として銀又は銀/環化銀(AgO/)
を使用して、約5 ppmの溶存二酸化塩素を含む試料
液(p H6)に対して作用i!#ii3への印加電圧
を変化させた場合の加電圧電流特性を第2図に示した。
In the measuring device of FIG. 1, the working electrode 3 is made of gold (Au).
), platinum (Pt) or brushy carbon (GC), and silver or silver/silver cyclide (AgO/) as the counter electrode 4.
was used to act on a sample solution (pH 6) containing approximately 5 ppm of dissolved chlorine dioxide. FIG. 2 shows the applied voltage and current characteristics when the applied voltage to #ii3 was changed.

この場合、作用電極の種類により多少異なるが印加電圧
が+0.5vよりも小さくなると拡散律速に基づく安定
した還元電流が発生し、特に作用電極3がAu又はQC
の場合には印加電圧子0.4V〜−〇、4vの範囲で二
酸化塩素の安定した還元電流が発生し残余電流も小さい
ことが判る。
In this case, although it differs somewhat depending on the type of working electrode, when the applied voltage becomes smaller than +0.5V, a stable reduction current based on diffusion control is generated, especially when the working electrode 3 is made of Au or QC.
In the case of , it can be seen that a stable reduction current of chlorine dioxide occurs in the applied voltage range of 0.4 V to -0.4 V, and the residual current is small.

作用電極3と対極、4による2極の測定の場合、両者の
短絡電流を測定しても良く、この場合は第2図における
印加電圧ゼロと同じ意味である。
In the case of two-pole measurement using the working electrode 3 and the counter electrode 4, the short-circuit current between both may be measured, and in this case, the meaning is the same as the applied voltage of zero in FIG. 2.

又、第3図は、上記と同じ測定装置と試料液で印加電圧
を+0.25Vに設定し、試料液のpHを変化させた場
合の電流変化を示す。作用iIE極としてptを用いた
場合には残余電流や還元電流が大きく変動し、pHの影
響が大きいことが判る。一方、作用電極としてAu又は
aCを用いるとpHの影響が少ないことが判り、安定し
て精度のよい測定が出来るので好ましい。尚、作用電極
にAu又はaCを使用した場合でもpHの影響を無視で
きないので、試料液のpHが変動する場合にはpHを測
定し、測定値を補正することが測定精度を上げるうえで
望ましい。
Moreover, FIG. 3 shows the current change when the applied voltage is set to +0.25 V using the same measuring device and sample liquid as described above, and the pH of the sample liquid is changed. It can be seen that when PT is used as the working iIE electrode, the residual current and reduction current fluctuate greatly, indicating that the influence of pH is large. On the other hand, it has been found that the use of Au or aC as the working electrode is less affected by pH and allows for stable and accurate measurements, which is preferable. Note that even when Au or aC is used for the working electrode, the influence of pH cannot be ignored, so it is desirable to measure the pH and correct the measured value when the pH of the sample solution fluctuates in order to improve measurement accuracy. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二酸化塩素の溶解した試料液自体を電
解液として電解電流を測定するので、補充や交換が必要
な特別な電解液などを要せず、従って長期間に亘る連続
測定が可能な溶存二酸化塩素の測定方法を提供すること
が出来る。
According to the present invention, since the electrolytic current is measured using the sample solution in which chlorine dioxide is dissolved as an electrolyte, there is no need for a special electrolyte that needs to be replenished or replaced, and therefore continuous measurement over a long period of time is possible. A method for measuring dissolved chlorine dioxide can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる測定装置の一例を示
す概略の断面図であり、第2図は一定濃度の溶存二酸化
塩素を含む試料液の加電圧電流特性を示すグラフであり
、第3図は同じ試料液での還元電流及び残余電流とpH
の関係を示すグラフである。第4図から第6図は本発明
方法の実施に用いる別の測定装置を示す概略の断面図で
ある。 1・・測定槽     2・・試料液 3・・作用電極    4・・対極 5・・参照電極    6・・電流計 7・・ポテンショスタット 8・・スターラーパー 漉1図 第4図 第2図 第3図
FIG. 1 is a schematic cross-sectional view showing an example of a measuring device used in carrying out the method of the present invention, and FIG. 2 is a graph showing applied voltage and current characteristics of a sample solution containing a fixed concentration of dissolved chlorine dioxide. Figure 3 shows reduction current, residual current, and pH for the same sample solution.
It is a graph showing the relationship between. 4 to 6 are schematic cross-sectional views showing another measuring device used for carrying out the method of the invention. 1... Measuring tank 2... Sample solution 3... Working electrode 4... Counter electrode 5... Reference electrode 6... Ammeter 7... Potentiostat 8... Stirrer filter 1 Figure 4 Figure 2 Figure 3 figure

Claims (2)

【特許請求の範囲】[Claims] (1)試料液中に作用電極と対極の2極又は作用電極と
参照電極と対極の3極を浸漬し、貴金属又は炭素からな
る作用電極を試料液に対し相対的に動かしながら、2極
の場合は対極を基準に又3極の場合は参照電極を基準に
して溶存二酸化塩素の還元電流を生じる電圧を作用電極
に印加して発生する還元電流を測定するか、又は作用電
極と対極の短絡電流を測定して試料液中の二酸化塩素濃
度を求めることを特徴とする溶存二酸化塩素の測定方法
(1) Immerse two electrodes, a working electrode and a counter electrode, or three electrodes, a working electrode, a reference electrode, and a counter electrode, in the sample solution, and move the working electrode made of noble metal or carbon relative to the sample solution. In the case of three electrodes, a voltage that generates a reduction current of dissolved chlorine dioxide is applied to the working electrode with reference to the counter electrode, or in the case of three electrodes, a voltage that generates a reduction current of dissolved chlorine dioxide is applied to the working electrode and the generated reduction current is measured, or the working electrode and the counter electrode are shorted A method for measuring dissolved chlorine dioxide, characterized by determining the concentration of chlorine dioxide in a sample solution by measuring an electric current.
(2)作用電極に金又はグラツシーカーボンを使用し、
対極に銀又は銀/塩化銀を使用して、対極を基準にして
作用電極に+0.4V〜−0.4Vの電圧を印加するこ
とを特徴とする、請求項(1)記載の溶存二酸化塩素の
測定方法。
(2) Using gold or glassy carbon for the working electrode,
Dissolved chlorine dioxide according to claim (1), characterized in that silver or silver/silver chloride is used as a counter electrode, and a voltage of +0.4 V to -0.4 V is applied to the working electrode with respect to the counter electrode. How to measure.
JP1116288A 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide Expired - Fee Related JPH0746090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116288A JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116288A JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Publications (2)

Publication Number Publication Date
JPH02296143A true JPH02296143A (en) 1990-12-06
JPH0746090B2 JPH0746090B2 (en) 1995-05-17

Family

ID=14683341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116288A Expired - Fee Related JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Country Status (1)

Country Link
JP (1) JPH0746090B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
KR20040009344A (en) * 2002-07-23 2004-01-31 유일정공 주식회사 Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
CN104459167A (en) * 2014-09-26 2015-03-25 浙江工商大学 Lactose concentration detection device and lactose concentration detection method
CN104459168A (en) * 2014-09-26 2015-03-25 浙江工商大学 Device and method for detecting concentration of D-galactose solution
KR102090694B1 (en) * 2019-11-18 2020-03-19 한국기초과학지원연구원 Electrochemical cell and system including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
KR20040009344A (en) * 2002-07-23 2004-01-31 유일정공 주식회사 Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
CN104459167A (en) * 2014-09-26 2015-03-25 浙江工商大学 Lactose concentration detection device and lactose concentration detection method
CN104459168A (en) * 2014-09-26 2015-03-25 浙江工商大学 Device and method for detecting concentration of D-galactose solution
KR102090694B1 (en) * 2019-11-18 2020-03-19 한국기초과학지원연구원 Electrochemical cell and system including the same

Also Published As

Publication number Publication date
JPH0746090B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US20120103823A1 (en) Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JPH0731157B2 (en) Simultaneous measurement method of chlorine dioxide and chlorite ion
KR20060101973A (en) Sensor for measuring chloride concentration, sensor for detecting microorganisms, and water cleansing apparatus having the same
JP4371731B2 (en) Hypohalite generator and generation method
CN110579524B (en) Method for cleaning, adjusting, calibrating and/or regulating a current sensor
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JPH0746093B2 (en) Method for measuring chlorite ion
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
JP2008058025A (en) Residual chlorine concentration meter
JPH06249832A (en) Measurement of chlorous acid ion
JP2016049517A (en) Hydrogen water generator
Komkova et al. Scanning electrochemical microscopy: Visualization of local electrocatalytic activity of transition metals hexacyanoferrates
KR20130075686A (en) Polarographic type residual chlorine sensor
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
RU2178886C2 (en) Method and apparatus for detecting concentration of active chlorine in electrolyte solution
JP3838435B2 (en) Hypochlorous acid concentration measuring device
JPH079083Y2 (en) Redox current measuring device
JP7356704B2 (en) Electrochemical measuring device
JPH1164275A (en) Oxidation-reduction potential measuring device
Dormond-herrera et al. Voltammetric Membrane Chlorine Dioxide Electrode
JP2024031671A (en) Residual chlorine measurement sensor and residual chlorine measurement device using it
Rudenok Double-Pole Electrode in New Devices and Processes for Direct Electrochemical Oxidation of Blood Inside the Blood Vessel
JP2017067736A (en) Coulometric titration method and device of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees