JPH06249832A - Measurement of chlorous acid ion - Google Patents

Measurement of chlorous acid ion

Info

Publication number
JPH06249832A
JPH06249832A JP5062876A JP6287693A JPH06249832A JP H06249832 A JPH06249832 A JP H06249832A JP 5062876 A JP5062876 A JP 5062876A JP 6287693 A JP6287693 A JP 6287693A JP H06249832 A JPH06249832 A JP H06249832A
Authority
JP
Japan
Prior art keywords
conductivity
concentration
chlorite ion
sample solution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5062876A
Other languages
Japanese (ja)
Inventor
Taisuke Nakano
泰介 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP5062876A priority Critical patent/JPH06249832A/en
Publication of JPH06249832A publication Critical patent/JPH06249832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide a method for invarrably the correct concentration of chlorous acid ions continuously in a simple manner, without being given with the influence of the dissolved dioxidized chlorine, even if the electric coductivity of a sample liquid varies, by using the polarography method. CONSTITUTION:Two electrodes consisting of a working electrode 4 and a counter electrode 5 or three electrodes consisting of the working electrode 4, reference electrode 6 and the counter electrode 5 are immersed in a sample liquid. Relatively moving the working electrode 4 and the sample liquid, the voltage for generating the oxidation electric current of chlorous acid ion is applied on the working electrode 4, having the counter electrode 5 as standard in case of two electrodes, while having the reference electrode 6 as standard in case of three electrodes, and the concentration of the chlorous acid ions in the sample liquid is measured on the basis of the flowing oxidation electric current. then, the chlorous acid ion is measured carrying out compensation according to the electric coductivity of the sample liquid for which the concentration of chlorous acid ion is measured separately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料液の電導度に拘ら
ず、試料液中の亜塩素酸イオン(ClO2 -)濃度を正確
に測定する方法に関する。
The present invention relates, regardless of the conductivity of the sample solution, chlorite ion in the sample solution - relates to a method for accurately measuring the concentration (ClO 2).

【0002】[0002]

【従来の技術】従来から、上水やプール水の殺菌には塩
素が使用されているが、塩素からは発癌性のトリハロメ
タンが発生することが判り問題となっている。そこで、
トリハロメタンを発生しない二酸化塩素を用いて上水や
プール水の殺菌を行うことが検討され、最近に至り厚生
省生活衛生局企画課長通知「衛企第46号」等により遊
泳用プール水の消毒に二酸化塩素の使用が認められるこ
ととなった。
2. Description of the Related Art Conventionally, chlorine has been used for sterilizing tap water or pool water, but it has been known that chlorine produces carcinogenic trihalomethanes, which has been a problem. Therefore,
It has been considered to sterilize tap water and pool water using chlorine dioxide that does not generate trihalomethane, and recently, it was used to disinfect swimming pool water by disinfecting swimming pool water according to the notification of the director of the Planning Division, Living Health Bureau, Ministry of Health and Welfare. Use of chlorine has been approved.

【0003】二酸化塩素を水の消毒に利用すると二酸化
塩素そのものは還元されるが、一部は分解されて亜塩素
酸となる。亜塩素酸は光や紫外線によって又酸性にする
ことによって二酸化塩素を生成し、二酸化塩素の酸化能
を潜在的に有するものであるから、上記の水の消毒に当
たっては二酸化塩素と共に亜塩素酸の濃度管理を行うこ
とが必要である。又、亜塩素酸は高濃度で摂取するとヘ
モグロビン障害や貧血等を起こすとの動物実験による報
告があるので、プール水においても亜塩素酸濃度を1.
2mg/l以下とすることが要望されている。
When chlorine dioxide is used for disinfection of water, chlorine dioxide itself is reduced, but part of it is decomposed to chlorous acid. Since chlorous acid produces chlorine dioxide when it is acidified by light or ultraviolet light and has the potential of oxidizing chlorine dioxide, the concentration of chlorous acid together with chlorine dioxide is used in disinfecting the above water. It is necessary to manage. In addition, since there is a report from an animal experiment that chlorous acid causes hemoglobin disorder and anemia when ingested at a high concentration, chlorous acid concentration in pool water is 1.
It is required to be 2 mg / l or less.

【0004】かかる亜塩素酸の濃度測定方法としては、
上記「衛企第46号」に付記されているジエチル−p−
フェニレンジアミン法(DPD法)、及び化学防災指針
(7)に定められたヨウ素滴定法が知られている。しかし
ながら、両方法とも試料液に硫酸とヨウ化カリウムを加
え、酸性下で亜塩素酸から生成した二酸化塩素によりヨ
ウ化カリウムをヨウ素に変えた後、このヨウ素の量から
亜塩素酸濃度を求める間接的な方法である。
As a method for measuring the concentration of chlorous acid,
Diethyl -p- added to the above "Eki 46th"
Phenylenediamine method (DPD method) and chemical disaster prevention guidelines
The iodometric titration method defined in (7) is known. However, in both methods, sulfuric acid and potassium iodide were added to the sample solution, and after changing potassium iodide to iodine by chlorine dioxide generated from chlorous acid under acidic conditions, the chlorous acid concentration was calculated from the amount of iodine. Method.

【0005】即ち、DPD法では発色試薬ジエチル−p
−フェニレンジアミンをヨウ素により発色させてその吸
光度を測定し、ヨウ素滴定法では遊離したヨウ素を酸化
還元滴定する。従って、いずれの方法も溶存二酸化塩素
の影響を受けるため、その影響を除く操作が必要であ
り、操作が極めて繁雑であって連続モニターするには不
適当であるうえ、試薬の1つとして硫酸を用いるため危
険である等の欠点があった。
That is, in the DPD method, the coloring reagent diethyl-p
-Phenylenediamine is colored with iodine and its absorbance is measured. In the iodine titration method, liberated iodine is subjected to redox titration. Therefore, since any of the methods is affected by dissolved chlorine dioxide, it is necessary to perform an operation to remove the effect, which is extremely complicated and not suitable for continuous monitoring, and sulfuric acid is used as one of the reagents. Since it is used, it has some drawbacks such as being dangerous.

【0006】ところで、亜塩素酸は解離定数pKa=
2.31(25℃)の弱酸で、図2に示すごとくpH約
4以上ではほぼ100%亜塩素酸イオンに解離してい
る。従って、上水やプール水のような中性付近の水中で
は亜塩素酸は全て亜塩素酸イオンになっていると考えて
良く、亜塩素酸イオンの濃度をもって亜塩素酸の濃度と
することができる。即ち、上記亜塩素酸の濃度管理に亜
塩素酸イオンの濃度を用いても実用上において問題はな
い。
By the way, chlorous acid has a dissociation constant pKa =
With a weak acid of 2.31 (25 ° C), as shown in Fig. 2, almost 100% dissociated into chlorite ions at a pH of about 4 or higher. Therefore, it can be considered that chlorous acid is all chlorite ions in near-neutral water such as tap water or pool water, and the concentration of chlorite ions can be regarded as the concentration of chlorite. it can. That is, even if the concentration of chlorite ion is used to control the concentration of chlorous acid, there is no practical problem.

【0007】かかる事実に基づいて、亜塩素酸イオンの
電解によって生じる酸化電流を測定することにより、亜
塩素酸イオン濃度ひいては亜塩素酸濃度を求める方法が
提案され、特開平2−296145号公報に開示されて
いる。この方法によれば、溶存二酸化塩素の影響を受け
ることなく、簡単にしかも連続的に亜塩素酸イオン濃度
を測定することができる。
Based on this fact, a method has been proposed in which the oxidation current generated by electrolysis of chlorite ions is measured to determine the chlorite ion concentration and thus the chlorous acid concentration, which is disclosed in JP-A-2-296145. It is disclosed. According to this method, the chlorite ion concentration can be easily and continuously measured without being affected by dissolved chlorine dioxide.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記特
開平2−296145号公報に開示された方法は、ポー
ラログラフィーを用いた方法であるため試料液の電導度
等が変動すると測定値に誤差を生じることが判明した。
化学分析において電導度の影響を回避するためには、測
定に無関係な電解質を予め試料液に添加して試料液の電
導度を一定に保持した後、測定を行うのが一般的であ
る。しかし、この方法は電解質による試料液の電導度調
整の面倒な操作が必要なため、その操作を人手に頼らざ
るず又時間がかかるうえ、この電導度調整のため上水や
プール水等の管理では連続的な濃度管理が出来なくなる
欠点がある。
However, since the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 2-296145 is a method using polarography, an error in the measured value may occur when the conductivity of the sample solution changes. It turned out to occur.
In order to avoid the influence of the electric conductivity in the chemical analysis, it is general that an electrolyte irrelevant to the measurement is added to the sample solution in advance to keep the electric conductivity of the sample solution constant and then the measurement is performed. However, this method requires a troublesome operation for adjusting the conductivity of the sample solution with an electrolyte, and it requires time and labor for the operation, and in addition, for adjusting this conductivity, it is necessary to manage tap water or pool water. However, there is a drawback that continuous concentration control is not possible.

【0009】本発明は、かかる従来の事情に鑑み、特開
平2−296145号公報に記載の方法を用いて、試料
液の電導度が変動した場合であっても、常に正しい亜塩
素酸イオン濃度を求めることができる方法を提供するこ
とを目的とする。
In view of such conventional circumstances, the present invention uses the method described in Japanese Patent Application Laid-Open No. 2-296145 to always obtain a correct chlorite ion concentration even when the conductivity of the sample liquid changes. The aim is to provide a method by which the

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する亜塩素酸イオンの測定方法におい
ては、試料液中に作用電極と対極の2極又は作用電極と
参照電極と対極の3極を浸漬し、貴金属又は炭素からな
る作用電極と試料液とを相対的に動かしながら、2極の
場合は対極を基準に又3極の場合は参照電極を基準にし
て作用電極に亜塩素酸イオンの酸化電流を生じる電圧を
印加し、流れる酸化電流に基づいて試料液中の亜塩素酸
イオンの濃度を測定し、この亜塩素酸イオンの濃度測定
値を、別途測定した試料液の電導度に応じて補償するこ
とを特徴とする。
In order to achieve the above object, in the method for measuring chlorite ion provided by the present invention, a working electrode and a counter electrode are provided in a sample liquid, or a working electrode and a reference electrode and a counter electrode. While immersing the three electrodes, the working electrode made of a noble metal or carbon and the sample liquid are relatively moved, the working electrode is divided into two parts by using the counter electrode as a reference and the reference electrode as a reference in the case of three electrodes. A voltage that produces an oxidation current of chlorate ions is applied, the concentration of chlorite ion in the sample solution is measured based on the flowing oxidation current, and the measured value of the concentration of this chlorite ion is measured separately. The feature is that compensation is performed according to the electric conductivity.

【0011】本発明方法に従って電導度補償を行う具体
的な方法の1つは; (1) 任意の異なる電導度の複数の亜塩素酸既知濃度の
基準液について、前記方法による酸化電流に基づいて各
亜塩素酸イオンの濃度測定値を求め、 (2) 得られた各濃度測定値から、少なくとも電導度と
当該電導度に対応する亜塩素酸イオン濃度とを変数とし
て持つ関数であって、任意指定の電導度での正しい亜塩
素酸イオン濃度を算出する計算式を予め求めておき、 (3) その後、試料液について前記方法による酸化電流
に基づく亜塩素酸イオンの濃度と電導度を測定し、 (4) 試料液の亜塩素酸イオンの濃度測定値と電導度を
前記計算式に代入して、試料液の電導度補償された亜塩
素酸イオン濃度を演算する方法である。
One of the specific methods of conducting the conductivity compensation according to the method of the present invention is: (1) Based on the oxidation current of the above method for a plurality of reference solutions of known concentrations of chlorous acid having arbitrary conductivity. The concentration measurement value of each chlorite ion is obtained, and (2) a function having at least the electric conductivity and the chlorite ion concentration corresponding to the electric conductivity as variables from the obtained concentration measurement values, A calculation formula for calculating the correct chlorite ion concentration at the specified conductivity is obtained in advance, and (3) after that, the chlorite ion concentration and the conductivity based on the oxidation current by the above method are measured for the sample solution. (4) A method of calculating the conductivity-compensated chlorite ion concentration of a sample solution by substituting the measured concentration of chlorite ion of the sample solution and the conductivity into the above calculation formula.

【0012】又、電導度補償を行う別の方法として、前
記(1)で得られた複数の基準液の各電導度に対応する各
濃度測定値から、電導度と当該電導度に対応する亜塩素
酸イオン濃度とを変数とする表又は図を予め作製し、そ
の後試料液について測定した亜塩素酸イオンの濃度測定
値と電導度から、表又は図のいずれかを用いて、試料液
の電導度補償された亜塩素酸イオン濃度を求めることも
出来る。
As another method of compensating for the conductivity, the conductivity and the sub-correspondence corresponding to the conductivity can be calculated from the respective concentration measurement values corresponding to the conductivity of the plurality of reference solutions obtained in (1) above. A table or figure with the chlorate ion concentration as a variable is prepared in advance, and then the conductivity of the sample solution is measured using either the table or the figure from the measured concentration of chlorite ion and the conductivity measured for the sample solution. The degree-compensated chlorite ion concentration can also be obtained.

【0013】[0013]

【作用】本発明者らは、上記特開平2−296145号
公報記載の方法の電導度依存性を研究した結果、その濃
度測定値は試料液の電導度による影響を受けること、及
び電導度の影響は定量的に定め得ることを見い出し、こ
の発見に基づいて電導度変動による影響を補償して正し
い亜塩素酸イオン濃度を求めることを可能にしたもので
ある。
The present inventors have studied the electric conductivity dependence of the method described in Japanese Patent Application Laid-Open No. 2-296145, and as a result, the measured concentration value is affected by the electric conductivity of the sample liquid, and It was found that the effect can be quantitatively determined, and based on this finding, it is possible to compensate for the effect of the change in conductivity and obtain the correct chlorite ion concentration.

【0014】即ち、本発明方法では、定量的に変化する
電導度と亜塩素酸イオン濃度との関係を予め求めてお
き、この関係を計算式、表又は図として表現若しくは記
録した上で、実際の試料液の測定に際しては、試料液の
亜塩素酸イオンの濃度測定値と共に電導度計で試料液の
電導度を測定し、これらの値を用いて正しい亜塩素酸イ
オン濃度を計算式から演算するか、表又は図から読み取
るものである。
That is, in the method of the present invention, the relationship between the quantitatively changing conductivity and the chlorite ion concentration is obtained in advance, and the relationship is expressed or recorded as a calculation formula, table or figure, and then the actual value is recorded. When measuring the sample solution, measure the chlorite ion concentration of the sample solution and the conductivity of the sample solution with a conductivity meter, and use these values to calculate the correct chlorite ion concentration from the formula. Or read from the table or figure.

【0015】しかし、電導度の影響が定量的であるとは
言っても、その程度は使用する測定装置、特に作用電極
等の構造により変わる可能性があるので、測定装置毎に
本発明方法を適用することが好ましい。又、電導度の測
定は同一試料液について亜塩素酸イオン濃度の測定と同
時に行うことが好ましいが、電導度の変動幅が小さい場
合には、電導度の測定間隔を長くして、1つの電導度測
定値を数回の亜塩素酸イオン濃度の測定に利用すること
も可能である。
However, even though the influence of the electrical conductivity is quantitative, the degree thereof may vary depending on the measuring device used, particularly the structure of the working electrode and the like. It is preferably applied. Moreover, it is preferable to measure the conductivity at the same time as the measurement of the chlorite ion concentration in the same sample solution, but if the fluctuation range of the conductivity is small, increase the measurement interval of the conductivity to make one conductivity. It is also possible to use the degree measurement value to measure the chlorite ion concentration several times.

【0016】[0016]

【実施例】本発明方法を実施するための測定装置の具体
例を図1に示す。電解セル1は底部に試料液流入口2を
及び上部に試料液流出口3を備え、感応部がグラッシー
カーボンからなる作用電極4が電解セル1の底部に配置
されると共に、銀/塩化銀電極からなる対極5と参照電
極6とが作用電極4の上方に配置されている。これらの
作用電極4、対極5及び参照電極6はポテンショスタッ
ト7に接続され、参照電極6を基準にして作用電極4に
亜塩素酸イオンの酸化電流を生じる0.6〜1.2Vの電
圧を印加できるようになっている。
EXAMPLE FIG. 1 shows a concrete example of a measuring apparatus for carrying out the method of the present invention. The electrolysis cell 1 is provided with a sample solution inlet 2 at the bottom and a sample solution outlet 3 at the top, and a working electrode 4 having a sensitive portion made of glassy carbon is arranged at the bottom of the electrolysis cell 1 and a silver / silver chloride electrode. A counter electrode 5 and a reference electrode 6 are arranged above the working electrode 4. The working electrode 4, the counter electrode 5 and the reference electrode 6 are connected to a potentiostat 7, and a voltage of 0.6 to 1.2 V that causes an oxidation current of chlorite ion in the working electrode 4 with reference to the reference electrode 6 is applied. It can be applied.

【0017】又、ポテンショスタット7はデータ処理部
8に接続されている。このデータ処理部8には予め実験
的に求めた亜塩素酸イオン濃度とその酸化電流との関係
が入力してあり、この入力データと実測によりポテンシ
ョスタット7で求められた試料液の酸化電流とに基づい
て、データ処理部8で試料液中の亜塩素酸イオンの濃度
測定値を算出し、これを表示/印字部9に表示し又は印
字できるようになっている。更に、電解セル1は電導度
測定用の電導度セル10を備えており、電導度セル10
は電導度計11に接続されている。
The potentiostat 7 is connected to the data processing unit 8. The relation between the chlorite ion concentration experimentally obtained and its oxidation current is input to the data processing unit 8, and the input data and the oxidation current of the sample liquid obtained by the potentiostat 7 by actual measurement are input. Based on the above, the data processing unit 8 calculates the concentration measurement value of the chlorite ion in the sample liquid, and this can be displayed or printed on the display / printing unit 9. Further, the electrolysis cell 1 is provided with a conductivity cell 10 for measuring conductivity, and the conductivity cell 10
Is connected to the conductivity meter 11.

【0018】図1の測定装置を用いて、以下のごとく試
料液の亜塩素酸イオン濃度を測定した。まず校正操作に
おいて、亜塩素酸イオン濃度が0mg/lと2.5mg
/lの2種類の校正液の電導度をナトリウム塩を用いて
共に350μS/cmに調整し、この2種類の校正液を
用いて2点校正を行った。校正後の測定装置により、亜
塩素酸イオン濃度の異なる5種の試料液(いずれも電導
度350μS/cm)について測定を行ったところ、既
知亜塩素酸イオン濃度とその測定値とは図3に示す通り
良好な直線性を示した。
The chlorite ion concentration of the sample liquid was measured as follows using the measuring apparatus shown in FIG. First, in the calibration operation, the chlorite ion concentration was 0 mg / l and 2.5 mg.
The conductivity of each of the two types of calibration solutions of 1 / l was adjusted to 350 μS / cm using sodium salt, and two-point calibration was performed using these two types of calibration solutions. Measurements were performed on five types of sample liquids (each having an electrical conductivity of 350 μS / cm) having different chlorite ion concentrations by using the measuring device after calibration, and the known chlorite ion concentration and its measured value are shown in FIG. As shown, it showed good linearity.

【0019】次に、校正後の測定装置を用い、亜塩素酸
イオン濃度が1.0mg/l(一定)で且つ電導度が2
22〜731μS/cmの間にある8種の試料液〜
について、亜塩素酸イオンの濃度測定値と電導度を同時
に測定し、下記表1に示した。表1の電導度と濃度測定
値及びこれをグラフ化した図4(図中○)から判るよう
に、電導度補償を行わないままの濃度測定値は、使用し
た校正液の電導度350μS/cmより高い電導度領域
では実際の亜塩素酸イオン濃度とほぼ一致するものの、
低い電導度領域では実際の濃度よりも低くなり、試料液
の電導度による影響を受けていることが明白である。
Next, using a calibrated measuring device, the chlorite ion concentration was 1.0 mg / l (constant) and the conductivity was 2
8 kinds of sample liquids between 22 and 731 μS / cm
For the above, the measured concentration of chlorite ion and the electric conductivity were measured at the same time, and the results are shown in Table 1 below. As can be seen from the conductivity and the concentration measurement value in Table 1 and FIG. 4 (○ in the figure) which is a graph of the conductivity measurement value, the concentration measurement value without the conductivity compensation is the conductivity of the used calibration solution of 350 μS / cm. Although it is almost the same as the actual chlorite ion concentration in the higher conductivity region,
In the low conductivity region, the concentration is lower than the actual concentration, and it is clear that the conductivity is affected by the sample liquid.

【0020】[0020]

【表1】 試 料 液 試料液の電導度(μS/cm) 222 283 374 433 489 561 609 731 濃 度 測 定 値 (mg/l) 0.91 0.94 0.97 0.97 0.97 1.01 1.01 1.01[Table 1] Sample liquid                Conductivity of sample solution (μS / cm) 222 283 374 433 489 561 609 731 Concentration measurement value (mg / l) 0.91 0.94 0.97 0.97 0.97 1.01 1.01 1.01

【0021】そこで、基準液の測定により求めた表1及
び図4に示す亜塩素酸イオンの濃度測定値と試料液の電
導度とから、亜塩素酸イオン濃度と電導度とを変数とす
る関数であって、任意指定の電導度での正しい亜塩素酸
イオン濃度を算出する計算式を求めたところ、下記式1
の計算式が得られた:
Therefore, from the measured values of the chlorite ion concentration shown in Table 1 and FIG. 4 obtained by the measurement of the reference liquid and the electric conductivity of the sample liquid, a function having the chlorite ion concentration and the electric conductivity as variables is used. Then, when the calculation formula for calculating the correct chlorite ion concentration at the arbitrarily specified conductivity is obtained, the following formula 1 is obtained.
The following formula was obtained:

【式1】亜塩素酸イオン濃度値=濃度測定値÷{1+0.
0002(試料液電導度−350)}+0.0002×(試
料液電導度−350)
[Formula 1] Chlorite ion concentration value = concentration measurement value / {1 + 0.
0002 (conductivity of sample liquid −350)} + 0.0002 × (conductivity of sample liquid −350)

【0022】そこで、測定装置のデータ処理部8に式1
の計算式を記憶させ、亜塩素酸イオンの濃度測定値と電
導度とから、式1に従ってデータ処理部8で電導度の違
いによる補償を行った電導度補償濃度値を演算し、これ
を表示/印字部9に表示又は印字するようにした。その
後、同じ試料液〜を再度測定して得られた電導度補
償を行った亜塩素酸イオンの濃度値を、補償前の濃度測
定値と共に表2に示した。
Therefore, in the data processing section 8 of the measuring apparatus, the equation 1
The calculation formula is stored, the conductivity compensation concentration value is calculated by the data processor 8 according to the formula 1 from the measured value of the concentration of chlorite ion and the conductivity, and this is displayed. / Displayed or printed on the printing unit 9. Then, the concentration values of the conductivity-compensated chlorite ions obtained by measuring the same sample liquids again are shown in Table 2 together with the concentration measurement values before compensation.

【0023】[0023]

【表2】 試 料 液 濃 度 測 定 値 (mg/l) 0.91 0.94 0.97 0.97 0.97 1.01 1.01 1.01 電導度補償濃度値(mg/l) 0.96 0.97 0.97 0.97 0.97 1.01 1.01 1.01[Table 2] Sample liquid                Concentration measurement value (mg / l) 0.91 0.94 0.97 0.97 0.97 1.01 1.01 1.01 Conductivity compensation concentration value (mg / l) 0.96 0.97 0.97 0.97 0.97 1.01 1.01 1.01

【0024】上記表2及びこれをグラフ化した図4(図
中●)から判るように、本発明方法により電導度補償し
た後の亜塩素酸イオンの濃度値は、試料液の電導度の変
動に拘らず、常に実際の亜塩素酸イオン濃度である1.
0mg/lにほぼ等しい値を示すことが判る。従って、
この測定装置を使用すれば、以後いかなる電導度の試料
液を測定しても、常に電導度350μS/cmにおける
正しい亜塩素酸イオン濃度を知ることが出来る。尚、前
記計算式を求める際に、意味のある任意の電導度として
350μS/cm以外の電導度を選択すれば、当該任意
電導度における正しい電導度補償濃度値を算出する計算
式を求めることが可能である。
As can be seen from the above Table 2 and the graph of FIG. 4 (● in the figure), the concentration value of the chlorite ion after the conductivity compensation by the method of the present invention is the variation of the conductivity of the sample solution. Regardless of, the actual chlorite ion concentration is always 1.
It can be seen that it shows a value approximately equal to 0 mg / l. Therefore,
By using this measuring device, it is possible to always know the correct chlorite ion concentration at an electric conductivity of 350 μS / cm, irrespective of the subsequent measurement of the sample liquid of any electric conductivity. When a conductivity other than 350 μS / cm is selected as a meaningful arbitrary conductivity when obtaining the above-mentioned calculation formula, a calculation formula for calculating a correct conductivity compensation concentration value at the arbitrary conductivity can be obtained. It is possible.

【0025】次に、電導度と亜塩素酸イオン濃度との関
係を表又は図にまとめ、この表又は図を用いて亜塩素酸
イオン濃度測定値を電導度補償する方法を実施した。ま
ず、前記計算式を記憶させる前の図1の測定装置を用
い、亜塩素酸イオン濃度が0.1〜3.0mg/lの各基
準液で電導度を150〜550μS/cmの範囲で変化
させた多数の基準液について、亜塩素酸イオンの濃度と
電導度を同時に測定し、その結果を正しい亜塩素酸イオ
ン濃度と各電導度とをそれぞれ縦横の欄とし、各電導度
に対応する各亜塩素酸イオン濃度測定値を両欄の交差す
る位置に記入して表に整理した。又、この表に整理され
た結果を、電導度を横軸とし、亜塩素酸イオンの濃度測
定値と正しい濃度値とを左右の縦軸とする図に表示し
た。
Next, the relationship between the electric conductivity and the chlorite ion concentration was summarized in a table or a diagram, and a method for compensating the measured value of the chlorite ion concentration with the electric conductivity was carried out using this table or the diagram. First, using the measuring device of FIG. 1 before storing the above calculation formula, the conductivity was changed in the range of 150 to 550 μS / cm with each reference liquid having a chlorite ion concentration of 0.1 to 3.0 mg / l. For a large number of reference liquids, the concentration and conductivity of chlorite ions were measured at the same time, and the results were taken as the vertical and horizontal columns of the correct chlorite ion concentration and each conductivity, respectively. The measured values of chlorite ion concentration were entered at the intersecting positions of both columns and arranged in a table. In addition, the results organized in this table are shown in a diagram in which the horizontal axis represents the conductivity and the left and right vertical axes represent the measured concentration of chlorite ion and the correct concentration value.

【0026】その後、同じ測定装置を用いて試料液の亜
塩素酸イオンの濃度と電導度を測定した。得られた亜塩
素酸イオン濃度測定値と電導度を表又は図にあてはめ
て、電導度補償された亜塩素酸イオン濃度を求めること
が出来た。即ち、表からは当該電導度の欄の該当する濃
度測定値を摘出すれば、その濃度測定値に対応する任意
電導度における正しい濃度値(電導度補償濃度値)を求
めることが出来る。一方、図の場合には、当該電導度と
濃度測定値との交点を求め、その交点近くを通る曲線又
は直線を当該交点に平行移動すれば、平行移動した曲線
又は直線上で任意電導度に対応する正しい濃度値(電導
度補償濃度値)を求めることが出来る。
After that, the same measuring device was used to measure the chlorite ion concentration and the conductivity of the sample liquid. By applying the obtained measured value of chlorite ion concentration and the electric conductivity to a table or a figure, the electric conductivity-compensated chlorite ion concentration could be obtained. That is, if the corresponding concentration measurement value in the column of the conductivity is extracted from the table, the correct concentration value (conductivity compensation concentration value) at an arbitrary conductivity corresponding to the concentration measurement value can be obtained. On the other hand, in the case of the figure, if the intersection between the conductivity and the concentration measurement value is obtained, and a curve or a straight line passing near the intersection is moved in parallel to the intersection, an arbitrary conductivity is obtained on the parallel-moved curve or straight line. The corresponding correct concentration value (conductivity compensation concentration value) can be obtained.

【0027】[0027]

【発明の効果】本発明によれば、溶存二酸化塩素の影響
を受けることなく、簡単にしかも連続的に亜塩素酸イオ
ン濃度を測定することができる特開平2−296145
号公報記載のポーラログラフィーを用いた方法におい
て、試料液の電導度が変動しても、測定値の電導度補償
を行うことにより常に正確な亜塩素酸イオン濃度を求め
ることができる。
According to the present invention, the concentration of chlorite ion can be easily and continuously measured without being affected by dissolved chlorine dioxide. JP-A-2-296145
In the method using polarography described in the publication, even if the electric conductivity of the sample solution changes, the accurate chlorite ion concentration can be always obtained by compensating the electric conductivity of the measured value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための測定装置の具体例
を示す概略の説明図である。
FIG. 1 is a schematic explanatory view showing a specific example of a measuring apparatus for carrying out the method of the present invention.

【図2】亜塩素酸(HClO2)の亜塩素酸イオン(ClO
2 -)への解離度αとpHとの関係を示すグラフである。
FIG. 2: Chlorite ion (ClO 2 ) of chlorous acid (HClO 2 ).
2 is a graph showing the relationship between the degree of dissociation α into 2 ) and pH.

【図3】電導度一定の試料液の亜塩素酸イオン濃度と、
本発明方法に係わる測定装置により求めたその測定値と
の関係を示すグラフである。
FIG. 3 shows the chlorite ion concentration of a sample liquid having a constant conductivity,
It is a graph which shows the relationship with the measured value calculated by the measuring device concerning the method of the present invention.

【図4】本発明方法により電導度補償した場合と電導度
補償しない場合について、試料液の電導度と対数目盛で
表した亜塩素酸イオン濃度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the conductivity of a sample liquid and the concentration of chlorite ion expressed on a logarithmic scale, with and without the conductivity compensation according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 電解セル 2 試料液流入口 3 試料液流出口 4 作用電極 5 対極 6 参照電極 7 ポテンショスタット 8 データ処理部 9 表示/印字部 10 電導度セル 11 電導度計 1 Electrolytic Cell 2 Sample Liquid Inlet 3 Sample Liquid Outlet 4 Working Electrode 5 Counter Electrode 6 Reference Electrode 7 Potentiostat 8 Data Processing Section 9 Display / Print Section 10 Conductivity Cell 11 Conductivity Meter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料液中に作用電極と対極の2極又は作
用電極と参照電極と対極の3極を浸漬し、貴金属又は炭
素からなる作用電極と試料液とを相対的に動かしなが
ら、2極の場合は対極を基準に又3極の場合は参照電極
を基準にして作用電極に亜塩素酸イオンの酸化電流を生
じる電圧を印加し、流れる酸化電流に基づいて試料液中
の亜塩素酸イオンの濃度を測定し、この亜塩素酸イオン
の濃度測定値を試料液の電導度に応じて補償することを
特徴とする亜塩素酸イオンの測定方法。
1. Immersing a working electrode and a counter electrode or a working electrode and a reference electrode and a counter electrode into a sample solution, and moving the working electrode made of a noble metal or carbon and the sample solution relatively to each other. In the case of a pole, the counter electrode is used as a reference and in the case of a three pole, a voltage that causes an oxidation current of chlorite ion is applied to the working electrode as a reference, and chlorite in the sample solution is based on the flowing oxidation current. A method for measuring chlorite ion, comprising measuring the ion concentration and compensating the measured value of the chlorite ion concentration according to the conductivity of the sample solution.
【請求項2】 請求項1記載の亜塩素酸イオンの測定方
法において、(1) 任意の異なる電導度の複数の亜塩素
酸既知濃度の基準液について、前記方法による酸化電流
に基づいて各亜塩素酸イオンの濃度測定値を求め、(2)
得られた各濃度測定値から、少なくとも電導度と当該
電導度に対応する亜塩素酸イオン濃度とを変数として持
つ関数であって、任意指定の電導度での正しい亜塩素酸
イオン濃度を算出する計算式を予め求めておき、(3)
その後、試料液について前記方法による酸化電流に基づ
く亜塩素酸イオンの濃度と電導度を測定し、(4) 試料
液の亜塩素酸イオンの濃度測定値と電導度を前記計算式
に代入して、試料液の電導度補償された亜塩素酸イオン
濃度を演算することを特徴とする亜塩素酸イオンの測定
方法。
2. The method for measuring chlorite ion according to claim 1, wherein (1) a plurality of reference liquids with known concentrations of chlorous acid having arbitrary different conductivities are prepared based on the oxidation current by the method. Obtain the measured concentration of chlorate ion, and (2)
From each obtained concentration measurement value, it is a function having at least the conductivity and the chlorite ion concentration corresponding to the conductivity as a variable, and calculates the correct chlorite ion concentration at the arbitrarily specified conductivity. Obtain the formula in advance, (3)
Then, the concentration and conductivity of chlorite ion based on the oxidation current by the above method were measured for the sample solution, and (4) the measured concentration and conductivity of chlorite ion of the sample solution were substituted into the above formula. , A method for measuring chlorite ion, which comprises calculating a conductivity-compensated chlorite ion concentration of a sample solution.
【請求項3】 請求項2における(2)の計算式の代わり
に、前記(1)で得られた複数の基準液の各電導度に対応
する各濃度測定値から、電導度と当該電導度に対応する
亜塩素酸イオン濃度とを変数とする表又は図を予め作製
し、その後試料液について測定した亜塩素酸イオンの濃
度測定値と電導度から、表又は図のいずれかを用いて、
試料液の電導度補償された亜塩素酸イオン濃度を求める
ことを特徴とする、請求項2記載の亜塩素酸イオンの測
定方法。
3. Instead of the calculation formula of (2) in claim 2, from the respective measured concentration values corresponding to the respective conductivity of the plurality of reference liquids obtained in (1), the conductivity and the conductivity can be obtained. In advance, a table or a figure with a variable chlorite ion concentration corresponding to was prepared, and then from the measured concentration and conductivity of the chlorite ion measured for the sample liquid, using either the table or the figure.
3. The method for measuring chlorite ion according to claim 2, wherein the conductivity-compensated chlorite ion concentration of the sample solution is determined.
【請求項4】 試料液の電導度の測定は、当該試料液の
亜塩素酸イオンの濃度測定と同時に行うことを特徴とす
る、請求項1ないし3のいずれかに記載の亜塩素酸イオ
ンの測定方法。
4. The chlorite ion according to claim 1, wherein the conductivity of the sample solution is measured simultaneously with the measurement of the concentration of chlorite ion in the sample solution. Measuring method.
JP5062876A 1993-02-26 1993-02-26 Measurement of chlorous acid ion Pending JPH06249832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5062876A JPH06249832A (en) 1993-02-26 1993-02-26 Measurement of chlorous acid ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5062876A JPH06249832A (en) 1993-02-26 1993-02-26 Measurement of chlorous acid ion

Publications (1)

Publication Number Publication Date
JPH06249832A true JPH06249832A (en) 1994-09-09

Family

ID=13212914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5062876A Pending JPH06249832A (en) 1993-02-26 1993-02-26 Measurement of chlorous acid ion

Country Status (1)

Country Link
JP (1) JPH06249832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011050A1 (en) * 1989-03-28 1990-10-04 Yokogawa Medical Systems, Ltd. Image processing apparatus
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2008082853A (en) * 2006-09-27 2008-04-10 Daiso Co Ltd Measuring method of concentrations of chlorine dioxide and chlorite ions in aqueous solution and measuring instrument
US20110000797A1 (en) * 2009-07-06 2011-01-06 Ada Technologies, Inc. Electrochemical device and method for long-term measurement of hypohalites
US20170015555A1 (en) * 2013-05-20 2017-01-19 Honbu Sankei Co., Ltd. Long-term preservation and novel application of chlorous acid aqueous solution formulation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011050A1 (en) * 1989-03-28 1990-10-04 Yokogawa Medical Systems, Ltd. Image processing apparatus
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2008082853A (en) * 2006-09-27 2008-04-10 Daiso Co Ltd Measuring method of concentrations of chlorine dioxide and chlorite ions in aqueous solution and measuring instrument
US20110000797A1 (en) * 2009-07-06 2011-01-06 Ada Technologies, Inc. Electrochemical device and method for long-term measurement of hypohalites
US8329024B2 (en) * 2009-07-06 2012-12-11 Ada Technologies, Inc. Electrochemical device and method for long-term measurement of hypohalites
US20170015555A1 (en) * 2013-05-20 2017-01-19 Honbu Sankei Co., Ltd. Long-term preservation and novel application of chlorous acid aqueous solution formulation

Similar Documents

Publication Publication Date Title
US4049382A (en) Total residual chlorine
US20120103823A1 (en) Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry
KR102297617B1 (en) Multi-wavelength real-time concentration analyser capable of on-site calibration and measurement using optical system-specific visible light transmission characteristics
EP0896669A1 (en) Measuring chlorine concentration
JPH06249832A (en) Measurement of chlorous acid ion
JP3372078B2 (en) How to measure chlorite ion
JP3372079B2 (en) How to measure chlorite ion
JPH02296146A (en) Method for simultaneously measuring chlorine dioxide and chlorite ion
Steininger et al. ORP sensor response in chlorinated water
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
KR20040009344A (en) Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
JP7231814B2 (en) Calibration method of residual chlorine measuring device
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JPH02296145A (en) Method for measuring chlorite ion
Lowinsohn et al. Coulometric titrations in wine samples: Studies on the determination of S (IV) and the formation of adducts
Nakareseisoon et al. Determination of chlorite at very low levels by using differential pulse polarography
RU2178886C2 (en) Method and apparatus for detecting concentration of active chlorine in electrolyte solution
JP7401744B2 (en) Method and device for measuring chlorine demand
JPH0635176Y2 (en) Residual chlorine meter
TWI678533B (en) Chloride ion concentration detecting method
JPH04172243A (en) Method for measuring concentration of residual oxidant in sea water
Einaga Industrial Application of Electrochemical Chlorine Sensor
KR200344894Y1 (en) Gas Permeable Membrane Type Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
Hu Chronoamperometric determination of free chlorine by using a wax‐impregnated carbon electrode