JP2008082853A - Measuring method of concentrations of chlorine dioxide and chlorite ions in aqueous solution and measuring instrument - Google Patents

Measuring method of concentrations of chlorine dioxide and chlorite ions in aqueous solution and measuring instrument Download PDF

Info

Publication number
JP2008082853A
JP2008082853A JP2006262586A JP2006262586A JP2008082853A JP 2008082853 A JP2008082853 A JP 2008082853A JP 2006262586 A JP2006262586 A JP 2006262586A JP 2006262586 A JP2006262586 A JP 2006262586A JP 2008082853 A JP2008082853 A JP 2008082853A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
sample
concentration
container
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262586A
Other languages
Japanese (ja)
Other versions
JP4826778B2 (en
Inventor
Futoshi Yamamoto
太 山本
Toshio Muranaga
外志雄 村永
Masanobu Nakamura
正信 中村
Masaki Iwabori
政樹 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2006262586A priority Critical patent/JP4826778B2/en
Publication of JP2008082853A publication Critical patent/JP2008082853A/en
Application granted granted Critical
Publication of JP4826778B2 publication Critical patent/JP4826778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method for simply and precisely measuring the concentrations of chlorine dioxide and chlorite ions in an aqueous solution by a rotary polarographic method. <P>SOLUTION: In the measuring method for measuring the concentrations of chlorine dioxide and chlorite ions in the aqueous solution by the rotary polarographic method, (1) the chlorine dioxide and chlorite ions in a sample are replaced with an equivalent amount of iodine or bromine to measure the concentration (a) of iodine or bromine, (2) the chlorine dioxide and chlorite ions are replaced with an equivalent amount of iodine or bromine after chlorine dioxide is removed by blowing air in the sample before measurement to measure the concentration (b) of iodine or bromine and (3) the concentration of chlorine dioxide is calculated from a-b=c and the concentration of the chlorite ions is calculated from the concentration (b) of iodine or bromine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

水溶液中の微量の二酸化塩素および亜塩素酸イオン、特に二酸化塩素水で処理(殺菌)した水道水、プールの水、温泉水や下水道水に残留する二酸化塩素と亜塩素酸イオンの濃度を測定する測定方法および測定装置に関する。   Measures the concentration of chlorine dioxide and chlorite ions remaining in trace amounts of chlorine dioxide and chlorite ions, especially tap water, pool water, hot spring water and sewer water treated with chlorine dioxide water in aqueous solutions. The present invention relates to a measurement method and a measurement apparatus.

従来の水道水、プールの水、温泉水や下水道水の殺菌は次亜塩素酸ソーダや塩素ガスで行われることが多く、その場合は有効塩素濃度計や比色法で測定が行われていた。最近、次亜塩素酸ソーダや塩素ガスに比べて、二酸化塩素で殺菌するとトリハロメタン等の有機ハロゲン化物の生成が極めて少ないことから、二酸化塩素水で水道水、プールの水、温泉水や下水道水を殺菌する方法が注目されており、殺菌後の水の残留二酸化塩素濃度や亜塩素酸イオン濃度を簡易に測定する方法及び装置が望まれている。
特開昭62−288559号
Conventional sterilization of tap water, pool water, hot spring water and sewerage water is often performed with sodium hypochlorite or chlorine gas, and in that case, measurement was performed using an effective chlorine concentration meter or colorimetric method. . Recently, compared with sodium hypochlorite and chlorine gas, sterilization with chlorine dioxide produces very little organic halides such as trihalomethanes. A method of sterilizing has attracted attention, and a method and an apparatus for simply measuring the residual chlorine dioxide concentration and chlorite ion concentration of water after sterilization are desired.
JP-A 62-288559

水溶液中の二酸化塩素および亜塩素酸イオン濃度を簡易に精度良く回転式ポーラログラフ法で測定することを課題とする。   It is an object to measure the chlorine dioxide and chlorite ion concentrations in an aqueous solution easily and accurately by the rotary polarograph method.

本発明は上記の問題を解決するために鋭意検討した結果、残留二酸化塩素や亜塩素酸イオンをヨウ素又は臭素で置換して、ガラスやセラミックビーズ入りの測定容器に導入し、2電極式のポーラロ法で測定が可能である事を見出し、本発明を完成するに至った。   As a result of diligent studies to solve the above problems, the present invention replaces residual chlorine dioxide and chlorite ions with iodine or bromine and introduces them into a measurement vessel containing glass or ceramic beads. The inventors have found that measurement is possible by the method, and have completed the present invention.

すなわち、本発明は
水溶液中の二酸化塩素および亜塩素酸イオン濃度を回転式ポーラログラフ法で測定する測定法において、測定用電極が電極研磨用のビーズ入りの測定容器内に挿入されたものであって、
1)試料中の二酸化塩素および亜塩素酸イオンを当量のヨウ素又は臭素に置換し、該ヨウ素又は臭素濃度aを測定し、
2)前記測定用試料を脱気して二酸化塩素を除いた後、当量のヨウ素又は臭素に置換し、該ヨウ素又は臭素濃度bを測定し、
3)a−b=cより二酸化塩素濃度を、bより亜塩素酸イオン濃度を算出する、
ことを特徴とする、二酸化塩素および亜塩素酸イオン濃度の測定方法である。
That is, the present invention is a measurement method in which the chlorine dioxide and chlorite ion concentrations in an aqueous solution are measured by a rotary polarographic method, wherein the measurement electrode is inserted into a measurement vessel containing beads for electrode polishing. ,
1) Chlorine dioxide and chlorite ions in the sample are replaced with equivalent iodine or bromine, and the iodine or bromine concentration a is measured.
2) After degassing the sample for measurement and removing chlorine dioxide, replacing it with an equivalent amount of iodine or bromine, measuring the iodine or bromine concentration b,
3) Chlorine dioxide concentration is calculated from a−b = c, and chlorite ion concentration is calculated from b.
This is a method for measuring the concentration of chlorine dioxide and chlorite ions.

また本発明は、
回転可能な測定容器と、
前記容器に挿入されたポーラログラフ検出器と、
測定容器に試料貯槽中の試料溶液を混合器を経て供給する試料供給手段と
試料貯槽中の試料溶液に空気を導入し試料溶液中の二酸化塩素を脱気する手段と、
前記、試料供給手段の混合器より上流側に試薬としてのヨウ化カリウムを供給する手段と、
前記、試料供給手段の混合器より上流側に試薬としての塩酸を供給する手段と、
測定容器の回転及びこれらの手段を制御し、検出器からの出力を演算して二化塩素濃度、及び亜塩素酸イオン濃度として出力する制御演算手段、
を有することを特徴とする、水溶液中の二酸化塩素及び亜塩素酸イオンの測定装置
The present invention also provides
A rotatable measuring container;
A polarographic detector inserted into the container;
A sample supply means for supplying the sample solution in the sample storage tank to the measurement container via the mixer; a means for introducing air into the sample solution in the sample storage tank to degas chlorine dioxide in the sample solution;
Means for supplying potassium iodide as a reagent upstream from the mixer of the sample supply means;
Means for supplying hydrochloric acid as a reagent upstream from the mixer of the sample supply means;
Control calculation means for controlling the rotation of the measurement container and these means, calculating the output from the detector and outputting it as the chlorine dichloride concentration and the chlorite ion concentration,
A device for measuring chlorine dioxide and chlorite ions in an aqueous solution, characterized by comprising

及び、
回転可能な測定容器と、
前記容器に挿入されたポーラログラフ検出器と、
交換可能で試薬としてのヨウ化カリウム及び塩酸を添加可能な試料容器A中の試料溶液を測定容器に供給する試料供給手段と、該試料供給量を制御するタイマー1と、
前記試料容器とは別に設けられ交換可能な試料容器B中の試料溶液に空気を導入し試料溶液中の二酸化塩素を脱気する手段と、該空気を導入を制御するタイマー2と、
測定容器の回転を制御し、検出器からの出力を演算して二化塩素濃度、及び亜塩素酸イオン濃度として表示する制御演算表示手段、
を有することを特徴とする、水溶液中の二酸化塩素及び亜塩素酸イオンの測定装置に関する。
as well as,
A rotatable measuring container;
A polarographic detector inserted into the container;
A sample supply means for supplying the sample solution in the sample container A, which can be replaced with potassium iodide and hydrochloric acid as reagents, to the measurement container, a timer 1 for controlling the sample supply amount,
Means for introducing air into a sample solution in a replaceable sample vessel B provided separately from the sample vessel and degassing chlorine dioxide in the sample solution; a timer 2 for controlling the introduction of the air;
Control calculation display means for controlling the rotation of the measurement container and calculating the output from the detector and displaying it as the chlorine dichloride concentration and the chlorite ion concentration,
It is related with the measuring apparatus of the chlorine dioxide and chlorite ion in aqueous solution characterized by having.

前記回転式ポーラログラフ法は、電極に電圧を印加し前記反応により生成するヨウ素又は臭素の還元反応における拡散電流を測定することにより、ヨウ素又は臭素濃度の測定が行われる。
回転式ポーラログラフ法は電極を回転させる方式であってもよいが、構造の簡素化の観点からは測定容器を回転させながら測定する方式が好ましい。
更に、電極の活性を維持し安定した測定を行うためには、電極研磨用のビーズを測定容器内に入れ、測定容器の回転に伴い測定用電極が研磨され電極表面の付着物が除去される方式にすることが好ましい。
In the rotary polarographic method, the concentration of iodine or bromine is measured by applying a voltage to the electrode and measuring the diffusion current in the reduction reaction of iodine or bromine produced by the reaction.
The rotary polarographic method may be a method of rotating the electrode, but from the viewpoint of simplifying the structure, a method of measuring while rotating the measurement container is preferable.
Furthermore, in order to maintain the activity of the electrode and perform stable measurement, beads for electrode polishing are placed in the measurement container, and the measurement electrode is polished and the deposits on the electrode surface are removed as the measurement container rotates. It is preferable to adopt a method.

二酸化塩素又は亜塩素酸イオンを当量のヨウ素又は臭素に置換するには、二酸化塩素又は亜塩素酸イオンを含む水溶液に酸性下、ヨウ化物又は臭化物を反応させることにより行われる。ヨウ化物又は臭化物としては、酸性下、二酸化塩素又は亜塩素酸イオンと反応してヨウ素又は臭素を生成するものであれば良いが、例えばヨウ化ナトリウム、ヨウ化カリウム、臭化ナトリウム、臭化カリウム等である。また使用する酸としては塩酸、硫酸、酢酸等が挙げられる。   Replacement of chlorine dioxide or chlorite ion with an equivalent amount of iodine or bromine is carried out by reacting an iodide or bromide with an aqueous solution containing chlorine dioxide or chlorite ion under acidic conditions. Any iodide or bromide may be used as long as it reacts with chlorine dioxide or chlorite ion to produce iodine or bromine under acidic conditions. For example, sodium iodide, potassium iodide, sodium bromide, potassium bromide Etc. Examples of the acid used include hydrochloric acid, sulfuric acid, and acetic acid.

好ましくは、電極を挿入した測定容器にガラス、セラミック、プラスチック等のビーズを入れ200〜800rpmの回転速度で回転させながら測定を行う。
電極は円柱状の電極支持体底面に陽極、陰極が支持されてなる電極を用いて測定を行う。
測定容器はプラスチックスで作製可能であり、適度な容量のものでよいが、30〜100mlが適当である。円柱状の電極支持体はプラスチックスで作製可能であり、直径0.5〜1.5cm長さ5〜10cmが適当であり、その底面に陽極、陰極が支持されてなる電極を用いることができる。電極には液に安定な材料であり、反応が速やかに生ずる白金や金が適当であり、半円状にして支持体底面に固定することができる。セラミックビーズの材料としてはアルミナやシリカが挙げられる。
Preferably, measurement is performed while beads such as glass, ceramic, and plastic are put in a measurement container in which an electrode is inserted and rotated at a rotation speed of 200 to 800 rpm.
Measurement is performed using an electrode in which an anode and a cathode are supported on the bottom surface of a cylindrical electrode support.
The measuring container can be made of plastics and may have an appropriate capacity, but 30 to 100 ml is suitable. The cylindrical electrode support can be made of plastics, and has a diameter of 0.5 to 1.5 cm and a length of 5 to 10 cm. An electrode having an anode and a cathode supported on the bottom can be used. The electrode is a liquid-stable material, and platinum or gold that reacts quickly is suitable, and can be fixed to the bottom of the support in a semicircular shape. Examples of the material for the ceramic beads include alumina and silica.

二酸化塩素濃度が亜塩素酸イオンの濃度に比べかなり大きい場合は、精度良く測定するために、二酸化塩素水処理した水中の残留二酸化塩素と亜塩素酸イオンの合量をヨウ素に置換し、二酸化塩素測定側レンジ(二酸化塩素測定スイッチ側)で測定し、次に残留二酸化塩素を脱気して追い出し、二酸化塩素を含まない状態にして、亜塩素酸イオンのみをヨウ素置換し、亜塩素酸イオン測定側レンジ(亜塩素酸イオン測定スイッチ側)で測定しても良い。前記ヨウ素濃度aはClO2濃度A(ppm)として表示し、前記ヨウ素濃度bはNaClO2濃度B(ppm)に換算して表示させ、下記式により、ClO2濃度(ppm)を求めても良い。
ClO2濃度(ppm)=A−(1/1.7)×B
If the chlorine dioxide concentration is considerably higher than the concentration of chlorite ions, the total amount of residual chlorine dioxide and chlorite ions in the water treated with chlorine dioxide water is replaced with iodine for accurate measurement. Measure with the measuring side range (chlorine dioxide measuring switch side), then degas and drive out residual chlorine dioxide, make it free from chlorine dioxide, replace only chlorite ion with iodine, and measure chlorite ion You may measure with the side range (chlorite ion measurement switch side). The iodine concentration a may be displayed as a ClO2 concentration A (ppm), the iodine concentration b may be converted into a NaClO2 concentration B (ppm) and displayed, and the ClO2 concentration (ppm) may be obtained by the following formula.
ClO2 concentration (ppm) = A− (1 / 1.7) × B

好ましい測定濃度範囲は、二酸化塩素水で殺菌後の残留二酸化塩素濃度が0〜5ppm、亜塩素酸イオン濃度が0〜5ppmの範囲であり、更に好ましくは残留二酸化塩素濃度が0〜3ppm、亜塩素酸イオン濃度が0〜0.6ppmの範囲である。5ppm以上になると測定値の誤差が大きくなるので好ましくない。   A preferable measurement concentration range is a range in which the residual chlorine dioxide concentration after sterilization with chlorine dioxide water is 0 to 5 ppm and a chlorite ion concentration is 0 to 5 ppm, and more preferably the residual chlorine dioxide concentration is 0 to 3 ppm. The acid ion concentration is in the range of 0 to 0.6 ppm. If it is 5 ppm or more, an error in the measured value increases, which is not preferable.

本発明により水溶液中の微量の二酸化塩素および亜塩素酸イオンを簡便に精度良く測定することが可能になった。   According to the present invention, trace amounts of chlorine dioxide and chlorite ions in an aqueous solution can be easily and accurately measured.

図1は本発明を実施するための半自動操作装置の概略全体図である。
図1において、
測定容器(10)は、モーターMのシャフト(図示せず)に連結されて回転可能であり、測定容器(10)の回転はタイマー1(3)により制御される。
測定容器(10)には、ポーラログラフ検出器(11)が挿入されており、更に電極研磨用のガラスビーズ(12)が装填されている。
フラスコA(1)にはサンプル送液管(5)が挿入されており、サンプルポンプ(6)によりフラスコA中のサンプル液が測定容器(10)に送液されるようになっている。
サンプル液の供給量はタイマー1(3)により制御される。
フラスコB(2)には空気供給管(60)が挿入されており、エアポンプ(61)により
空気が供給され二酸化塩素ガスがエアパージされるようになっている。エアポンプ(61)はタイマー2(4)により制御される。
ポーラログラフ検出器(11)の出力信号は演算・表示部(80)に伝えられ、演算処理後、二酸化塩素又は亜塩素酸イオン濃度が濃度表示部(71)に表示される。
演算・表示部(80)は、レンジ切替スイッチ(81)、零点調整のためのゼロボリューム(82)、標準濃度合わせのためのスパンボリューム(83)を備えている。
FIG. 1 is a schematic overall view of a semi-automatic operation apparatus for carrying out the present invention.
In FIG.
The measurement container (10) is connected to a shaft (not shown) of the motor M and is rotatable, and the rotation of the measurement container (10) is controlled by a timer 1 (3).
A polarographic detector (11) is inserted into the measurement container (10), and further, glass beads (12) for electrode polishing are loaded.
A sample feeding pipe (5) is inserted into the flask A (1), and the sample liquid in the flask A is fed to the measuring container (10) by the sample pump (6).
The amount of sample solution supplied is controlled by timer 1 (3).
An air supply pipe (60) is inserted into the flask B (2), and air is supplied by an air pump (61) to purge the chlorine dioxide gas with air. The air pump (61) is controlled by the timer 2 (4).
The output signal of the polarographic detector (11) is transmitted to the calculation / display unit (80), and after the calculation process, the chlorine dioxide or chlorite ion concentration is displayed on the concentration display unit (71).
The calculation / display unit (80) includes a range changeover switch (81), a zero volume (82) for zero adjustment, and a span volume (83) for standard density adjustment.

図2は本発明を実施するための全自動操作装置の概略全体図である。
図2において、
測定容器(10)は、モーターMのシャフト(図示せず)に連結されて回転可能であり、測定容器(10)の回転は制御・演算部(70)により制御されている。
測定容器(10)には、ポーラログラフ検出器(11)が挿入されており、更に電極研磨用のガラスビーズ(12)が装填されている。
試料溶液は、試料液送液管(20)より一旦試料液貯槽(22)に一定量貯液され、試料液送液ポンプ(21)により試料液送液管(20)、混合器(23)を通じて測定容器(10)に送液されるようになっている。
標準液は標準液送液ポンプ(31)により、標準液送液管(30)を通じて混合器(23)の上流側で試料液送液管(20)に連結され、測定容器(10)に送液されるようになっている。
ヨウ化カリウム溶液はヨウ化カリウム溶液送液ポンプ(41)により、ヨウ化カリウム送液管(40)を通じて混合器(23)の上流側で試料液送液管(20)に連結され、測定容器(10)に送液されるようになっている。
塩酸は塩酸送液ポンプ(51)により、塩酸送液管(50)を通じて混合器(23)の上流側で試料液送液管(20)に連結され、測定容器(10)に送液されるようになっている。
サンプル液、標準液、ヨウ化カリウム溶液、塩酸の送液は制御・演算部(70)により制御されている。
試料貯槽(22)には空気供給管(60)が挿入されており、エアポンプ(61)により
空気が供給され二酸化塩素がエアパージされるようになっている。エアポンプ(61)は
制御・演算部(70)により制御されている。
ポーラログラフ検出器(11)の出力信号は制御・演算部(70)に伝えられ、演算処理後、二酸化塩素又は亜塩素酸イオン濃度が濃度表示部(71)又は印字部(72)に表示される。
FIG. 2 is a schematic overall view of a fully automatic operation device for carrying out the present invention.
In FIG.
The measurement container (10) is connected to a shaft (not shown) of the motor M and is rotatable, and the rotation of the measurement container (10) is controlled by the control / calculation unit (70).
A polarographic detector (11) is inserted into the measurement container (10), and further glass beads (12) for electrode polishing are loaded.
A sample solution is temporarily stored in a sample solution storage tank (22) from a sample solution supply tube (20), and is supplied to a sample solution supply tube (20) and a mixer (23) by a sample solution supply pump (21). The liquid is fed to the measurement container (10).
The standard solution is connected to the sample solution delivery pipe (20) by the standard solution delivery pump (31) through the standard solution delivery pipe (30) on the upstream side of the mixer (23) and sent to the measurement container (10). It is supposed to be liquid.
The potassium iodide solution is connected to the sample solution feeding pipe (20) on the upstream side of the mixer (23) through the potassium iodide feeding pipe (40) by the potassium iodide solution feeding pump (41), and the measurement container. The liquid is sent to (10).
Hydrochloric acid is connected to the sample liquid supply pipe (20) by the hydrochloric acid liquid supply pump (51) through the hydrochloric acid liquid supply pipe (50) on the upstream side of the mixer (23), and is supplied to the measurement container (10). It is like that.
The liquid supply of the sample solution, standard solution, potassium iodide solution, and hydrochloric acid is controlled by the control / calculation unit (70).
An air supply pipe (60) is inserted into the sample storage tank (22), and air is supplied by an air pump (61) to purge the chlorine dioxide with air. The air pump (61) is controlled by the control / calculation unit (70).
The output signal of the polarographic detector (11) is transmitted to the control / calculation unit (70), and after the arithmetic processing, the chlorine dioxide or chlorite ion concentration is displayed on the concentration display unit (71) or the printing unit (72). .

以下に半自動操作装置による測定操作を説明する。
1.反応器と受信部の電源を入れる
2.ゼロ調整
フラスコAに純水を150ml入れ、これに試薬Aと試薬Bを所定量(試薬A(KI、0.5g)と試薬B(2.5NHCl、1ml))添加し攪拌する。このサンプルをサンプルポンプにて吸引し反応器へ送りこむ。タイマー1の設定経過時点でゼロボリュームにてゼロ点調整を行う。
3.スパン調整
フラスコAに標準液(ClO2=1pp)を150ml入れ、これにそれぞれ試薬Aと試薬Bを所定量添加し攪拌する。このサンプルをサンプルポンプにて吸引し反応器へ送り込むみ、タイマー1の設定経過後、標準液濃度(ClO2=1pp)となる様にスパンボリュームにて調整する。
続いてフラスコAに標準液(ClO2=2ppm)を150ml入れ、同様にしてスパンボリューム調整する。
The measurement operation by the semiautomatic operation device will be described below.
1. 1. Turn on the reactor and receiver. 150 ml of pure water is placed in the zero adjustment flask A, and predetermined amounts (reagent A (KI, 0.5 g) and reagent B (2.5 N HCl, 1 ml)) of reagent A and reagent B are added and stirred. The sample is sucked with a sample pump and sent to the reactor. When the timer 1 setting has elapsed, zero adjustment is performed with zero volume.
3. 150 ml of the standard solution (ClO2 = 1pp) is put into the span adjustment flask A, and predetermined amounts of Reagent A and Reagent B are added thereto and stirred. The sample is sucked with a sample pump and sent to the reactor. After the timer 1 is set, the span volume is adjusted so that the standard solution concentration (ClO2 = 1pp) is obtained.
Subsequently, 150 ml of standard solution (ClO2 = 2 ppm) is put into Flask A, and the span volume is adjusted in the same manner.

4.二酸化塩素および亜塩素酸イオンを含む水溶液の測定
1)ClO2濃度の測定
フラスコAに被検液を150ml入れ、これを試薬Aと試薬Bを所定量添加し攪拌する。このサンプルをサンプルポンプにて吸引し反応器へ送りこむ。タイマー1による所定時間経過後、濃度表示部のClO2濃度を計測する。ClO2濃度は当量のClO2濃度に換算されて、ClO2濃度及びClO2濃度の合計量がClO2濃度として表示される。
2)ClO2濃度の測定
フラスコAに同一被検液を150ml入れ、エアポンプにてタイマー2の設定時間エアバブリングしClO2を脱気する。これに試薬Aと試薬Bを所定量添加し攪拌後5分間静置する。次にサンプルポンプにて反応器へ送り込み、タイマーの経過後濃度表示部のClO2濃度を計測する。
4). Measurement of Aqueous Solution Containing Chlorine Dioxide and Chlorite Ion 1) Measurement of ClO2 Concentration 150 ml of the test solution is placed in Flask A, and predetermined amounts of Reagent A and Reagent B are added and stirred. The sample is sucked with a sample pump and sent to the reactor. After a predetermined time elapses by the timer 1, the ClO2 concentration in the concentration display unit is measured. ClO2 - concentration is converted to ClO2 concentration equivalents, ClO2 concentration and ClO2 - the total amount of concentration is displayed as ClO2 concentration.
2) Measurement of ClO2 - concentration 150 ml of the same test solution is put into flask A, and air bubbling is performed for a set time of timer 2 with an air pump to degas ClO2. Predetermined amounts of reagent A and reagent B are added thereto, and the mixture is allowed to stand for 5 minutes after stirring. Next, the sample pump feeds the reactor, and after the elapse of the timer, the ClO2 - concentration in the concentration display section is measured.

以下の実施例では半自動操作装置による水溶液中の二酸化塩素濃度及び亜塩素酸カリウム濃度の測定例を示すが、これらの操作をコンピューターにより自動化した全自動操作装置も本発明に含まれる。   In the following examples, measurement examples of chlorine dioxide concentration and potassium chlorite concentration in an aqueous solution using a semi-automatic operation device are shown, but a fully automatic operation device in which these operations are automated by a computer is also included in the present invention.

二酸化塩素水の濃度を0.2ppm,0.4ppm,1ppm及び2ppmに調整した水を夫々150ml三角フラスコに採取した。これにKIを0.5g、2.5N
HClを1ml添加し、暗所に5分放置した。この液30mlで二酸化塩素濃度計の測定容器を洗浄した。液を排出し更にこの液でガラスビーズ入りの測定容器(50ml)を満たし、電極をセットした。測定容器を400rpmの回転速度で回転させ二酸化塩素濃度を測定した。その結果を表1、図3に示す。分析値と測定値の誤差は3%以内に収まった。
Water adjusted to 0.2 ppm, 0.4 ppm, 1 ppm and 2 ppm of chlorine dioxide water was collected in 150 ml Erlenmeyer flasks, respectively. KI 0.5g, 2.5N
1 ml of HCl was added and left in the dark for 5 minutes. The measuring container of the chlorine dioxide concentration meter was washed with 30 ml of this solution. The liquid was discharged, and a measuring container (50 ml) containing glass beads was filled with this liquid, and an electrode was set. The measurement container was rotated at a rotational speed of 400 rpm, and the chlorine dioxide concentration was measured. The results are shown in Table 1 and FIG. The error between the analytical value and the measured value was within 3%.

二酸化塩素濃度測定

Figure 2008082853
Chlorine dioxide concentration measurement
Figure 2008082853

亜塩素酸ナトリウム濃度を0.2ppm,0.5ppmに調整した水を夫々150ml三角フラスコに採取した。これにKIを0.5g、2.5N
HClを1ml添加し、暗所に5分放置した。この液30mlで二酸化塩素濃度計の測定容器を洗浄した。液を排出し更にこの液で測定容器(50ml)を満たし、電極をセットした。測定容器を400rpmの回転速度で回転させ亜塩素酸ナトリウム濃度を測定した。その結果を表2、図4に示す。分析値と測定値の誤差は5%以内に収まった。
Water with sodium chlorite concentration adjusted to 0.2 ppm and 0.5 ppm was collected in 150 ml Erlenmeyer flasks. KI 0.5g, 2.5N
1 ml of HCl was added and left in the dark for 5 minutes. The measuring container of the chlorine dioxide concentration meter was washed with 30 ml of this solution. The liquid was discharged, and the measurement container (50 ml) was filled with this liquid, and the electrode was set. The measurement container was rotated at a rotation speed of 400 rpm, and the sodium chlorite concentration was measured. The results are shown in Table 2 and FIG. The error between the analytical value and the measured value was within 5%.

亜塩素酸ナトリウム濃度測定

Figure 2008082853
Sodium chlorite concentration measurement
Figure 2008082853

本発明を実施するための半自動操作装置の概略全体図Schematic overall view of a semi-automatic operating device for carrying out the present invention 本発明を実施するための全自動操作装置の概略全体図Schematic overall view of a fully automatic operating device for carrying out the present invention 水溶液中の二酸化塩素濃度の測定例Measurement example of chlorine dioxide concentration in aqueous solution 水溶液中の亜塩素酸ナトリウム濃度の測定例Measurement example of sodium chlorite concentration in aqueous solution

符号の説明Explanation of symbols

1:フラスコA
2:フラスコB
3:タイマー1
4:タイマー2
5:サンプルポンプ
10:測定容器
11:ポーラログラフ検出器
20:試料液送液管
21:試料液送液ポンプ
22:試料液貯槽
23:混合器
30:標準液送液管
31:標準液液ポンプ
40:ヨウ化カリウム溶液送液管
41:ヨウ化カリウム溶液ポンプ
50:塩酸送液管
51:塩酸液ポンプ
60:空気
61:エアポンプ
70:制御・演算部
71:表示部
72:印字部
80:演算・表示部
81:切替スイッチ
82:ゼロボリューム
83:スパンボリューム
1: Flask A
2: Flask B
3: Timer 1
4: Timer 2
5: Sample pump 10: Measuring container 11: Polarographic detector 20: Sample liquid feeding pipe 21: Sample liquid feeding pump 22: Sample liquid storage tank 23: Mixer 30: Standard liquid feeding pipe 31: Standard liquid feeding pump 40 : Potassium iodide solution feeding tube 41: Potassium iodide solution pump 50: Hydrochloric acid feeding tube 51: Hydrochloric acid solution pump 60: Air 61: Air pump 70: Control / calculation unit 71: Display unit 72: Printing unit 80: Calculation / Display unit 81: Changeover switch 82: Zero volume 83: Span volume

Claims (5)

水溶液中の二酸化塩素および亜塩素酸イオン濃度を回転式ポーラログラフ法で測定する測定法において、
1)試料中の二酸化塩素および亜塩素酸イオンを当量のヨウ素又は臭素に置換し、該ヨウ素又は臭素濃度aを測定し、
2)前記測定前試料に空気を吹き込み、二酸化塩素を除いた後、当量のヨウ素又は臭素に置換し、該ヨウ素又は臭素濃度bを測定し、
3)a−b=cより二酸化塩素濃度を、bより亜塩素酸イオン濃度を算出する、
ことを特徴とする、二酸化塩素および亜塩素酸イオン濃度の測定方法。
In the measurement method to measure the chlorine dioxide and chlorite ion concentration in the aqueous solution by the rotary polarograph method,
1) Chlorine dioxide and chlorite ions in the sample are replaced with equivalent iodine or bromine, and the iodine or bromine concentration a is measured.
2) Blow air into the sample before measurement, remove chlorine dioxide, replace with equivalent iodine or bromine, measure the iodine or bromine concentration b,
3) Chlorine dioxide concentration is calculated from a−b = c, and chlorite ion concentration is calculated from b.
A method for measuring the concentration of chlorine dioxide and chlorite ions.
回転式ポーラログラフ法が、測定容器を回転させながら行なうことを特徴とする請求項1の測定方法。 The measurement method according to claim 1, wherein the rotary polarographic method is performed while rotating the measurement container. 水溶液が二酸化塩素で殺菌された水であることを特徴とする請求項1または2に記載の
二酸化塩素および亜塩素酸イオンの測定方法。
The method for measuring chlorine dioxide and chlorite ions according to claim 1 or 2, wherein the aqueous solution is water sterilized with chlorine dioxide.
回転可能な測定容器と、
前記容器に挿入されたポーラログラフ検出器と、
測定容器に試料貯槽中の試料溶液を混合器を経て供給する試料供給手段と
試料貯槽中の試料溶液に空気を導入し試料溶液中の二酸化塩素を脱気する手段と、
前記、試料供給手段の混合器より上流側に試薬としてのヨウ化カリウムを供給する手段と、
前記、試料供給手段の混合器より上流側に試薬としての塩酸を供給する手段と、
測定容器の回転及びこれらの手段を制御し、検出器からの出力を演算して二酸化塩素濃度、及び亜塩素酸塩素イオン濃度として出力する制御演算手段、
を有することを特徴とする、水溶液中の二酸化塩素及び亜塩素酸イオンの測定装置。
A rotatable measuring container;
A polarographic detector inserted into the container;
A sample supply means for supplying the sample solution in the sample storage tank to the measurement container via the mixer; a means for introducing air into the sample solution in the sample storage tank to degas chlorine dioxide in the sample solution;
Means for supplying potassium iodide as a reagent upstream from the mixer of the sample supply means;
Means for supplying hydrochloric acid as a reagent upstream from the mixer of the sample supply means;
Control calculation means for controlling the rotation of the measurement container and these means, calculating the output from the detector and outputting it as the chlorine dioxide concentration and the chlorine ion concentration of chlorite,
A device for measuring chlorine dioxide and chlorite ions in an aqueous solution.
回転可能な測定容器と、
前記容器に挿入されたポーラログラフ検出器と、
交換可能で試薬としてのヨウ化カリウム及び塩酸を添加可能な試料容器A中の試料溶液を測定容器に供給する試料供給手段と、該試料供給量を制御するタイマー1と、
前記試料容器とは別に設けられ交換可能な試料容器B中の試料溶液に空気を導入し試料溶液中の二酸化塩素を脱気する手段と、該空気の導入を制御するタイマー2と、
測定容器の回転を制御し、検出器からの出力を演算して二化塩素濃度、及び亜塩素酸イオン濃度として表示する制御演算表示手段、
を有することを特徴とする、水溶液中の二酸化塩素及び亜塩素酸イオンの測定装置。
A rotatable measuring container;
A polarographic detector inserted into the container;
A sample supply means for supplying the sample solution in the sample container A, which can be replaced with potassium iodide and hydrochloric acid as reagents, to the measurement container, a timer 1 for controlling the sample supply amount,
Means for introducing air into a sample solution in a replaceable sample vessel B provided separately from the sample vessel and degassing chlorine dioxide in the sample solution; a timer 2 for controlling the introduction of the air;
Control calculation display means for controlling the rotation of the measurement container and calculating the output from the detector and displaying it as the chlorine dichloride concentration and the chlorite ion concentration,
A device for measuring chlorine dioxide and chlorite ions in an aqueous solution.
JP2006262586A 2006-09-27 2006-09-27 Method and apparatus for measuring chlorine dioxide and chlorite ion concentrations in aqueous solution Expired - Fee Related JP4826778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262586A JP4826778B2 (en) 2006-09-27 2006-09-27 Method and apparatus for measuring chlorine dioxide and chlorite ion concentrations in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262586A JP4826778B2 (en) 2006-09-27 2006-09-27 Method and apparatus for measuring chlorine dioxide and chlorite ion concentrations in aqueous solution

Publications (2)

Publication Number Publication Date
JP2008082853A true JP2008082853A (en) 2008-04-10
JP4826778B2 JP4826778B2 (en) 2011-11-30

Family

ID=39353876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262586A Expired - Fee Related JP4826778B2 (en) 2006-09-27 2006-09-27 Method and apparatus for measuring chlorine dioxide and chlorite ion concentrations in aqueous solution

Country Status (1)

Country Link
JP (1) JP4826778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198182A (en) * 2020-10-10 2021-01-08 中国兵器工业第五九研究所 Device and method for detecting content of chloride ions in atmospheric environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296145A (en) * 1989-05-10 1990-12-06 Toa Denpa Kogyo Kk Method for measuring chlorite ion
JPH0387649A (en) * 1989-06-05 1991-04-12 Toa Denpa Kogyo Kk Method for measuring chlorous acid ion
JPH063354A (en) * 1992-06-03 1994-01-11 Winfield Ind Method and apparatus for monitoring concentration of chemical in solution
JPH06249832A (en) * 1993-02-26 1994-09-09 Toa Denpa Kogyo Kk Measurement of chlorous acid ion
JPH06324018A (en) * 1993-05-14 1994-11-25 Dkk Corp Method and device for continuously measuring hydrogen peroxide
JP2002148237A (en) * 2000-11-15 2002-05-22 Suido Kiko Kaisha Ltd Measuring method for chlorous acid ion concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296145A (en) * 1989-05-10 1990-12-06 Toa Denpa Kogyo Kk Method for measuring chlorite ion
JPH0387649A (en) * 1989-06-05 1991-04-12 Toa Denpa Kogyo Kk Method for measuring chlorous acid ion
JPH063354A (en) * 1992-06-03 1994-01-11 Winfield Ind Method and apparatus for monitoring concentration of chemical in solution
JPH06249832A (en) * 1993-02-26 1994-09-09 Toa Denpa Kogyo Kk Measurement of chlorous acid ion
JPH06324018A (en) * 1993-05-14 1994-11-25 Dkk Corp Method and device for continuously measuring hydrogen peroxide
JP2002148237A (en) * 2000-11-15 2002-05-22 Suido Kiko Kaisha Ltd Measuring method for chlorous acid ion concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198182A (en) * 2020-10-10 2021-01-08 中国兵器工业第五九研究所 Device and method for detecting content of chloride ions in atmospheric environment
CN112198182B (en) * 2020-10-10 2023-07-14 中国兵器工业第五九研究所 Device and method for detecting chloride ion content in atmospheric environment

Also Published As

Publication number Publication date
JP4826778B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP2003526780A5 (en)
KR101519359B1 (en) On-Line Multipurpose Chloride Analyzer
JP2011529391A (en) Electrochemical equipment
JPH063354A (en) Method and apparatus for monitoring concentration of chemical in solution
JP2002090339A (en) Sensor for oxidation-reduction electric current measuring instrument, oxidation-reduction electric current measuring instrument, and method and system using the instrument for controlling water quality
JP4826778B2 (en) Method and apparatus for measuring chlorine dioxide and chlorite ion concentrations in aqueous solution
JP6397674B2 (en) Automatic analyzer
CN110749639A (en) Full-automatic calibration device and method for electrode-method residual chlorine instrument
WO2018218960A1 (en) Pre-treatment method for measuring total halogenated organic compound in water
JP6488825B2 (en) Residual chlorine measuring device
JP4371731B2 (en) Hypohalite generator and generation method
CN115436130B (en) Standard substance for simulating free residual chlorine and preparation method thereof
JP4463382B2 (en) Residual chlorine measuring device
JP2004181275A (en) Apparatus for producing sterilized water
JP2003343804A (en) Corrosion inhibition method for boiler system
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
RU2483288C2 (en) Acid vapour signalling device
JPH0643132A (en) Measuring method for residual chlorine concentration in purified water
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water
JP2017015669A (en) Residual chlorine measurement method and residual chlorine measurement device
RU2473075C1 (en) Alkali vapour signalling device
JP2005106698A (en) Method and instrument for measuring total organic carbon content
JP2008046068A (en) Contamination degree detector and air treatment device using it
JP2003343806A (en) Condensate supply method for boiler system
JPH07306195A (en) Method and apparatus for measuring concentration of oxidant component in sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees