JP2002090339A - Sensor for oxidation-reduction electric current measuring instrument, oxidation-reduction electric current measuring instrument, and method and system using the instrument for controlling water quality - Google Patents

Sensor for oxidation-reduction electric current measuring instrument, oxidation-reduction electric current measuring instrument, and method and system using the instrument for controlling water quality

Info

Publication number
JP2002090339A
JP2002090339A JP2000286164A JP2000286164A JP2002090339A JP 2002090339 A JP2002090339 A JP 2002090339A JP 2000286164 A JP2000286164 A JP 2000286164A JP 2000286164 A JP2000286164 A JP 2000286164A JP 2002090339 A JP2002090339 A JP 2002090339A
Authority
JP
Japan
Prior art keywords
oxidation
electrode
counter electrode
reduction current
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000286164A
Other languages
Japanese (ja)
Other versions
JP4463405B2 (en
Inventor
Shinichi Akazawa
真一 赤沢
Hiroko Tatematsu
裕子 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2000286164A priority Critical patent/JP4463405B2/en
Publication of JP2002090339A publication Critical patent/JP2002090339A/en
Application granted granted Critical
Publication of JP4463405B2 publication Critical patent/JP4463405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation-reduction electric current measuring instrument and a sensor for it capable of separately measuring different constituents, free residual chlorine, bonding residual chlorine, and dichloroamine especially, in a shot time, allowing easy measurement, and minimizing the installation space, installation cost and the like. SOLUTION: Using the sensor having a plurality of detection electrodes 18 arranged in a single detection electrode supporting body 16 and a common counter electrode 5 for these detection electrodes, an oxidation-reduction electric current is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化還元電流測定
装置のセンサ及び酸化還元電流測定装置、並びに酸化還
元電流測定装置を用いた水質管理方法及び水質管理シス
テムに関する。さらに詳しくは、遊離残留塩素と結合残
留塩素等、試料液中の異なる成分を分別して測定するこ
とが可能な、ポーラログラフ方式又はガルバニ電池方式
の酸化還元電流測定装置及びこれに用いるセンサ、並び
にこの酸化還元電流測定装置を用いた水質管理方法及び
水質管理システムに関する。
The present invention relates to a sensor for an oxidation-reduction current measuring device, an oxidation-reduction current measuring device, and a water quality management method and a water quality management system using the oxidation-reduction current measuring device. More specifically, a polarographic or galvanic cell-type oxidation-reduction current measuring device capable of separating and measuring different components in a sample liquid, such as free residual chlorine and bound residual chlorine, and a sensor used therefor, The present invention relates to a water quality management method and a water quality management system using a reduction current measuring device.

【0002】[0002]

【従来の技術】従来から、残留塩素、溶存オゾン,塩素
要求量、二酸化塩素等の測定を目的として、ポーラログ
ラフ方式又はガルバニ電池方式の酸化還元電流測定装置
が用いられている。たとえば、試料液に微小なカソード
(検知極)とアノード(対極)を浸漬すると共に、カソ
ードを回転や振動させながらポーラログラフ法によって
両極間に流れる拡散電流を検出し、この拡散電流から被
検液中の残留塩素濃度を求める残留塩素計等が広く用い
られている。
2. Description of the Related Art Conventionally, a polarographic or galvanic cell type oxidation-reduction current measuring apparatus has been used for the purpose of measuring residual chlorine, dissolved ozone, chlorine demand, chlorine dioxide and the like. For example, a minute cathode (detection electrode) and an anode (counter electrode) are immersed in a sample solution, and a diffusion current flowing between the two electrodes is detected by a polarographic method while rotating and vibrating the cathode. Chlorine analyzers for determining the residual chlorine concentration of water are widely used.

【0003】ここで、残留塩素とは、遊泳用プールや上
水の塩素処理の結果、水中に残留した消毒作用のある有
効塩素のことで、次亜塩素酸などの遊離残留塩素と、ク
ロラミンのような結合残留塩素に区分される。いずれも
酸化による殺菌力を有している。この内、遊離残留塩素
は主として塩素剤が水と反応して生成する次亜塩素酸
(HClO)と、これが解離した次亜塩素酸イオン(C
lO-)と、分子状塩素(Cl2)の3種類の形態をと
る。三種類の形態の比率はpHに依存する。たとえば、
pH2以下では主として分子状塩素が存在し、pH4〜
pH7の範囲では主として次亜塩素酸の形態をとり、p
H7.4で次亜塩素酸と次亜塩素酸イオンがほぼ等しい
濃度となる。すなわち、上水等の通常のpHにおいて
は、ほとんどの遊離残留塩素が次亜塩素酸又は次亜塩素
酸イオンとして存在する。
[0003] Here, residual chlorine is available chlorine having a disinfecting action remaining in water as a result of chlorination of swimming pools and drinking water, and free residual chlorine such as hypochlorous acid and chloramine. Such residual chlorine is bound. All have bactericidal power by oxidation. Of these, free residual chlorine is mainly composed of hypochlorous acid (HClO) generated by the reaction of a chlorine agent with water and hypochlorite ion (C)
lO -) and, taking the three kinds of forms of molecular chlorine (Cl 2). The ratio of the three forms depends on the pH. For example,
When the pH is 2 or less, molecular chlorine is mainly present, and the pH is 4 to
In the range of pH 7, it mainly takes the form of hypochlorous acid and p
At H7.4, hypochlorous acid and hypochlorite ions have almost the same concentration. That is, at ordinary pH such as tap water, most free residual chlorine exists as hypochlorous acid or hypochlorite ion.

【0004】一方、結合残留塩素は、水中のアンモニア
性窒素と総称されるアンモニア、アミン類、アミノ酸類
と遊離残留塩素が反応して生成するもので、モノクロラ
ミン(NH2Cl)、ジクロラミン(NHCl2)、トリ
クロラミン(NCl3)の三種類の形態をとる。これら
の比率もまたpHに依存し、モノクロラミンの比率はp
H6.5〜pH8.5の範囲で最大となる。また、ジク
ロラミンの比率はpH5.0〜pH6.5の範囲で大き
くなるとされている。そして、上水等の通常のpHにお
いては、ほとんどの結合残留塩素が、モノクロラミン又
はジクロラミンとして存在する。モノクロラミンとジク
ロラミンは、遊離残留塩素に比較すると圧倒的に弱いも
のの殺菌力を有している。
On the other hand, bound residual chlorine is produced by the reaction of free residual chlorine with ammonia, amines and amino acids, which are collectively referred to as ammoniacal nitrogen in water, and includes monochloramine (NH 2 Cl) and dichloramine (NHCl). 2 ) and three forms of trichloramine (NCl 3 ). These ratios are also pH dependent, and the ratio of monochloramine is p
It is maximum in the range of H6.5 to pH 8.5. Further, it is said that the ratio of dichloramine increases in the range of pH 5.0 to pH 6.5. Then, at ordinary pH such as tap water, most of the bound residual chlorine is present as monochloramine or dichloramine. Monochloramine and dichloramine have overwhelmingly weak bactericidal activity compared to free residual chlorine.

【0005】充分な殺菌力を確保する観点で、我が国の
水道法施行規則では、給水栓における水が遊離残留塩素
であれば0.1mg/L以上、結合残留塩素であれば
0.4mg/L以上の残留塩素を保持すべきことを定め
ている。また、厚生省の「遊泳用プールの衛生基準につ
いて」(平成4年4月28日 衛企第45号)では、遊
泳用のプール水の遊離残留塩素を、0.4mg/L以
上、1.0mg/L以下とすることが望ましいとされて
いる。このように、殺菌力の違いを考慮して、保持すべ
き残留塩素の濃度も遊離残留塩素の場合と結合残留塩素
の場合とで異なる。したがって、遊泳用プールや浄水場
等においては、全残留塩素濃度だけでなく、遊離残留塩
素濃度と結合残留塩素濃度とを区別して把握することが
必要である。
[0005] From the viewpoint of ensuring sufficient sterilizing power, according to the enforcement regulations of the Water Supply Law of Japan, water in a water tap is 0.1 mg / L or more if water is free residual chlorine and 0.4 mg / L if water is combined residual chlorine. It states that the above residual chlorine should be retained. In addition, the Ministry of Health and Welfare's “Public Swimming Pool Hygiene Standards” (April 28, 1992, No. 45, No. 45) stated that free residual chlorine in swimming pool water was 0.4 mg / L or more and 1.0 mg / L or less is desirable. As described above, the concentration of residual chlorine to be retained also differs between the case of free residual chlorine and the case of combined residual chlorine in consideration of the difference in sterilizing power. Therefore, in swimming pools, water purification plants, and the like, it is necessary to distinguish not only the total residual chlorine concentration but also the free residual chlorine concentration and the combined residual chlorine concentration.

【0006】また、アンモニア性窒素等を含む試料液の
残留塩素濃度は、塩素剤の注入量に応じて、典型的には
図9のように変化する。まず、塩素剤を注入していく初
期の段階では、残留塩素濃度はほぼゼロのまま推移す
る。これは、塩素によってきわめて分解しやすい無機物
質や有機物質によって、注入した塩素剤が直ちに消費さ
れるからである。塩素剤注入をさらに続けると、残留塩
素濃度は、アンモニア性窒素等との反応による結合塩素
の生成と共に徐々に増加するが、ある点をすぎると減少
に転じる。これは、生成した結合塩素が、結合塩素の生
成に必要な塩素量よりも余分の塩素剤によって、最終的
に窒素と塩酸にまで分解されるからである。この結合塩
素の生成と分解が終了した時点(不連続点)以降は、そ
の後の塩素剤注入量に応じて残留塩素濃度が増加してい
く。なお、不連続点以降は、アンモニア性窒素等がほと
んど存在しないので、主として遊離残留塩素濃度が増加
する。
Further, the concentration of residual chlorine in a sample solution containing ammoniacal nitrogen and the like typically changes as shown in FIG. 9 according to the injection amount of the chlorine agent. First, in the initial stage of injecting the chlorine agent, the residual chlorine concentration remains almost zero. This is because the injected chlorinating agent is immediately consumed by inorganic and organic substances which are very easily decomposed by chlorine. As the chlorinating agent injection is further continued, the residual chlorine concentration gradually increases with the generation of bound chlorine due to the reaction with ammonia nitrogen or the like, but starts decreasing after a certain point. This is because the generated bound chlorine is finally decomposed into nitrogen and hydrochloric acid by a chlorine agent in excess of the amount of chlorine required for the generation of bound chlorine. After the end of the generation and decomposition of the bound chlorine (discontinuous point), the residual chlorine concentration increases in accordance with the subsequent injection amount of the chlorinating agent. After the discontinuity point, since there is almost no ammoniacal nitrogen or the like, the concentration of free residual chlorine mainly increases.

【0007】このように、塩素剤注入に伴う残留塩素濃
度変化は、水中のアンモニア性窒素等の濃度に応じて複
雑な動きをするので、残留塩素濃度を最適化するために
は、全残留塩素濃度だけでなく、遊離残留塩素濃度と結
合残留塩素濃度もそれぞれ把握し、これらの濃度に応じ
て、塩素剤投入量を調整する必要がある。
[0007] As described above, the change in the residual chlorine concentration accompanying the injection of the chlorine agent moves in a complicated manner in accordance with the concentration of ammoniacal nitrogen or the like in the water. It is necessary to grasp not only the concentration but also the concentration of free residual chlorine and the concentration of residual chlorine residual, and to adjust the amount of the chlorinating agent to be supplied according to these concentrations.

【0008】さらに、結合残留塩素全体だけでなく、結
合残留塩素のうち、ジクロラミンの濃度を分別して測定
することも重要である。すなわち、測定した全残留塩素
濃度や遊離残留塩素濃度のみに基づき塩素剤を注入する
と、残留塩素濃度を適正に調整したつもりでも、時間の
経過と共に残留塩素濃度が上昇し、最終的に高濃度とな
りすぎる場合があった。これは、ジクロラミンが時間の
経過と共に(1)式のように分解して、遊離残留塩素を
生成するためであることが知られている。これは、特に
冬季の水温低下時に良く見られる現象である。なお、同
じ結合残留塩素でもモノクロラミンが分解しても遊離残
留塩素は生成されない。 2NHCl2+OH−→N2+2H++3Cl−+HOCl ……(1) そのため、単に全残留塩素濃度と遊離残留塩素濃度を区
別して測定するだけでなく、結合残留塩素の内、特にジ
クロラミン濃度を把握することも望まれている。
It is also important to measure the concentration of dichloramine in the residual chlorine as well as in the total residual chlorine. In other words, if a chlorine agent is injected based only on the measured total residual chlorine concentration or free residual chlorine concentration, the residual chlorine concentration will increase over time, even if the intention is to adjust the residual chlorine concentration appropriately, and the concentration will eventually become high. Sometimes it was too much. It is known that this is because dichloramine is decomposed as time elapses as shown in equation (1) to generate free residual chlorine. This is a phenomenon often seen especially when the water temperature drops in winter. Even if monochloramine is decomposed even with the same combined residual chlorine, free residual chlorine is not generated. 2N HCl2 + OH− → N2 + 2H ++ 3Cl− + HOCl (1) Therefore, it is desired not only to measure the total residual chlorine concentration and the free residual chlorine concentration separately but also to grasp the dichloramine concentration, in particular, of the bound residual chlorine. .

【0009】また、浄水や遊泳用プールの殺菌するため
に、上記塩素剤に代えて、二酸化塩素を用いることが行
われているが、この場合には、二酸化塩素(ClO2
と亜塩素酸イオン(ClO2 -)が共存する。これら、二
酸化塩素と亜塩素酸イオンの測定もポーラログラフ法に
より可能であった。
In order to sterilize water for swimming or swimming, chlorine dioxide is used instead of the above chlorine agent. In this case, chlorine dioxide (ClO 2 ) is used.
And chlorite ion (ClO 2 ) coexist. The measurement of chlorine dioxide and chlorite ion was also possible by the polarographic method.

【0010】残留塩素濃度や二酸化塩素濃度は、比色法
等によっても測定が可能であるが、ポーラログラフ法で
は、添加する試薬や検知や対極の材質、印加電圧等を適
宜選択することにより、従来から、全残留塩素濃度(遊
離残留塩素と結合残留塩素との合計濃度)、遊離残留塩
素濃度、二酸化塩素濃度、亜塩素酸イオン濃度を求める
ことが可能であった。また、ポーラログラフ法は連続測
定や自動化にも適しており、浄水場等の残留塩素濃度制
御に広く用いられている。さらに、本件特許出願人は先
に、ハロゲンイオンを含む試薬を加えた試料液につい
て、金製の検知極と白金製の対極との間に異なる印加電
圧を与えたときの電流値を測定することにより、ジクロ
ラミンを分別測定できることを見いだし、これを提案し
た(特願2000−169614号)。
[0010] The residual chlorine concentration and chlorine dioxide concentration can be measured by a colorimetric method or the like. However, in the polarographic method, a conventional method can be adopted by appropriately selecting a reagent to be added, a material for detection, a counter electrode, an applied voltage, and the like. From this, it was possible to determine the total residual chlorine concentration (total concentration of free residual chlorine and combined residual chlorine), free residual chlorine concentration, chlorine dioxide concentration, and chlorite ion concentration. The polarographic method is also suitable for continuous measurement and automation, and is widely used for controlling residual chlorine concentration in water purification plants and the like. Furthermore, the applicant of the present application first measures the current value when a different applied voltage is applied between the gold detection electrode and the platinum counter electrode with respect to a sample solution to which a reagent containing a halogen ion has been added. As a result, it was found that dichloramine can be separately measured, and this was proposed (Japanese Patent Application No. 2000-169614).

【0011】[0011]

【発明が解決しようとする課題】上述のように、ポーラ
ログラフ法による残留塩素測定装置等では、検知極や対
極の材質、印加電圧等を適宜選択することにより選択性
を持たせていた。しかし、材質の異なる検知極等により
選択性を持たせようとすると、たとえば、遊離残留塩素
測定装置と、全残留塩素測定装置とを別個に用意しなけ
ればならない。そのため、測定作業が煩雑となると共
に、設置場所や設置費用等の点でも問題があった。ま
た、特願2000−169614号のように、印加電圧
の違いにより選択性を持たせようとする場合には、一つ
の加電圧回路を時系列的に切り替えて異なる印加電圧を
与えるか、複数組みの検知極と対極とを用意し、各々に
別個の印加電圧を与える。この前者のように時系列的に
加電圧回路を切り替えると、切り替えの直後は測定電流
が安定せず1〜2分程度待たなければならないため、測
定に時間がかかる。このように時間がかかることは、性
状の安定している試料液を連続的に測定する場合にはそ
れほど支障を与えないが、異なる試料液を次々と測定す
る用途には不向きである。また、後者のように、複数組
の検知極と対極とを用意する場合には、測定作業が煩雑
となると共に、設置場所や設置費用等の点でも問題があ
る。
As described above, in the apparatus for measuring residual chlorine by the polarographic method, the selectivity is provided by appropriately selecting the material of the detection electrode and the counter electrode, the applied voltage, and the like. However, if it is desired to provide selectivity with a sensing electrode made of a different material, for example, a device for measuring free residual chlorine and a device for measuring total residual chlorine must be prepared separately. For this reason, the measurement operation becomes complicated, and there are also problems in terms of an installation place, an installation cost, and the like. In addition, as in Japanese Patent Application No. 2000-169614, when it is desired to provide selectivity due to a difference in applied voltage, one applied voltage circuit is switched in time series to apply different applied voltages, Are prepared, and a separate applied voltage is applied to each of them. When the applied voltage circuit is switched in a time series as in the former case, the measurement current is not stabilized immediately after the switching, and it is necessary to wait for about 1 to 2 minutes, so that the measurement takes time. Such a long time does not cause much trouble when continuously measuring a sample liquid having stable properties, but is unsuitable for an application in which different sample liquids are successively measured. In the case of preparing a plurality of pairs of detection electrodes and counter electrodes as in the latter case, the measurement operation becomes complicated, and there are also problems in terms of the installation location and the installation cost.

【0012】また、遊泳用のプールでは、遊泳者の体内
から排出される汗等に含まれるアンモニア性窒素等によ
り、存在する遊離塩素は常に結合残留塩素に変化しやす
い。このように汚染されやすい水を殺菌する場合には、
塩素剤の投入量を管理するだけでなく、ある程度汚染が
進んだ場合には水そのものを交換することも必要であ
る。又、水の濾過、浄化機構を備えている施設では、濾
過、浄化機構の保守を行うことも必要である。従って、
遊泳用プールの水質を管理するために、塩素剤投入量や
水の交換時期等に関する適切な判断材料が求められてい
る。
[0012] In a swimming pool, the free chlorine that is present is liable to always change into bound residual chlorine due to ammonia nitrogen contained in sweat and the like discharged from the body of the swimmer. When sterilizing such contaminated water,
It is necessary not only to control the amount of the chlorinating agent added, but also to replace the water itself when the contamination has progressed to some extent. Further, in a facility provided with a water filtration and purification mechanism, it is necessary to perform maintenance of the filtration and purification mechanism. Therefore,
In order to manage the water quality of the swimming pool, there is a need for appropriate judgment materials regarding the amount of chlorinated agent and the timing of water exchange.

【0013】本発明は、異なる成分、たとえば、遊離残
留塩素と結合残留塩素とジクロラミンとを、あるいは二
酸化塩素と亜塩素酸イオンとを、短時間で分別測定でき
ると共に、測定作業が簡便であり、設置場所や設置費用
等を最小限に留めることができる酸化還元電流測定装置
のセンサ及び酸化還元電流測定装置を提供することを課
題とする。また、塩素剤投入量や水の交換時期を判断し
て、遊泳用プールの水質を適切に管理をする管理方法及
び管理システムを提供することを課題とする。
According to the present invention, different components, for example, free residual chlorine, bound residual chlorine and dichloramine, or chlorine dioxide and chlorite ion can be separately measured in a short time, and the measuring operation is simple. An object of the present invention is to provide a sensor of an oxidation-reduction current measurement device and an oxidation-reduction current measurement device that can minimize an installation place, an installation cost, and the like. It is another object of the present invention to provide a management method and a management system for appropriately managing the water quality of a swimming pool by judging a chlorinating agent input amount and a water replacement time.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記課題
を検討した結果、複数の検知極と、これらの検知極に対
する共通の対極とを用いて、ポーラログラフ方式やガル
バニ方式の酸化還元電流測定が可能であるかどうかを検
討した。従来より、電位差を測定する静的な分析法で
は、複数の感応電極と共通の基準電極との間で電位差を
測定し、例えばpHとイオン濃度を同時に測定すること
が行われている。しかし、酸化還元電流測定のように、
相応の電流が発生する動的な測定では、対極を共通化し
た場合に、各々独立の測定電流が得られるかどうかが懸
念された。さらに、各々の検知極に異なる印加電圧を与
えた場合には、一の検知極と他の検知極との間の電位差
がもたらす影響も予測できなかった。
Means for Solving the Problems As a result of studying the above problems, the present inventors have found that a plurality of sensing electrodes and a common counter electrode for these sensing electrodes are used to form a polarographic or galvanic oxidation-reduction current. We examined whether measurement was possible. Conventionally, in a static analysis method for measuring a potential difference, a potential difference is measured between a plurality of sensitive electrodes and a common reference electrode, for example, pH and ion concentration are simultaneously measured. However, like redox current measurement,
In a dynamic measurement in which a corresponding current is generated, there is a concern whether independent measurement currents can be obtained when the counter electrode is shared. Furthermore, when a different applied voltage was applied to each of the sensing electrodes, the effect of the potential difference between one sensing electrode and another sensing electrode could not be predicted.

【0015】しかし、実験の結果、複数の検知極と、こ
れらの検知極に対する共通の対極とを用いても、各々の
検知極と対極との間で得られるポーラログラムは、単独
の検知極と対極とを組み合わせて測定した場合のポーラ
ログラムと実質的に相違しなかった。また、各々の検知
極に異なる印加電圧を与えても、一の検知極と他の検知
極との間で問題となるような相互作用は見られなかっ
た。
However, as a result of the experiment, even if a plurality of sensing poles and a common counter electrode to these sensing poles are used, the polarogram obtained between each sensing pole and the counter electrode is different from that of a single sensing pole. It was not substantially different from the polarogram when measured in combination with the counter electrode. Further, even when different applied voltages were applied to the respective detection electrodes, no problematic interaction was observed between one detection electrode and another detection electrode.

【0016】すなわち、本発明者らは、試料液を検知極
表面に対して相対的に流動させつつ、検知極と対極との
間に流れる酸化還元電流を測定する酸化還元電流測定装
置のセンサとして、複数の検知極と、これらの検知極に
対する共通の対極とを備えることを特徴とするセンサを
使用できることに着目した。
That is, the present inventors have proposed a sensor of an oxidation-reduction current measuring device for measuring an oxidation-reduction current flowing between a detection electrode and a counter electrode while flowing a sample liquid relatively to the surface of the detection electrode. It has been noted that a sensor having a plurality of sensing poles and a common counter electrode to these sensing poles can be used.

【0017】さらに、本発明者らは、上記複数の検知極
と共通の対極とを、取り扱いが容易、かつ小型化できる
回転電極式センサとしてとりまとめるため、具体的構成
として、各検知極からの信号の取り出し方や対極の配置
方法について検討した。すなわち、請求項1に係る発明
として、単一の検知極支持体に設けられた2つの検知極
と、これらの検知極に対する共通の対極と、前記検知極
支持体の所定箇所を保持する軸受けと、前記検知極支持
体の軸受けによる被保持箇所を支点として検知極支持体
を歳差運動させる駆動手段とを備え、前記検知極支持体
は、被保持箇所近傍に、互いに絶縁された中心軸部と外
周部とを有し、前記2つの検知極のリード線は、一方が
中心軸部を経由して、他方が外周部を経由して、各々導
出され、かつ、前記対極は、前記検知極支持体の外周側
を周回するように設けられたことを特徴とする酸化還元
電流測定装置のセンサを提供する。
Further, the present inventors combine the above-mentioned plurality of detection electrodes and a common counter electrode into a rotating electrode type sensor which can be easily handled and reduced in size. We examined how to take out and arrange the counter electrode. That is, as the invention according to claim 1, two detection poles provided on a single detection pole support, a common counter electrode for these detection poles, and a bearing for holding a predetermined portion of the detection pole support are provided. Driving means for precessing the sensing pole support with the location supported by the bearing of the sensing pole support as a fulcrum, wherein the sensing pole support is in the vicinity of the location to be held, and the central shaft portions are insulated from each other. And a lead wire of the two sensing electrodes, one of which is led out via the central shaft portion and the other via the outer circumferential portion, and the counter electrode is a lead wire of the sensing electrode. Provided is a sensor for an oxidation-reduction current measuring device, which is provided so as to go around the outer peripheral side of a support.

【0018】本発明において測定される酸化還元電流
は、被還元物質又は被酸化物質が一定の厚さの拡散層と
呼ばれる層の中において、濃度勾配による自然拡散によ
ってのみ検知極表面に運ばれ、その表面で酸化還元され
るときに流れる拡散電流である。被還元物質等の濃度に
応じた酸化還元電流(拡散電流)を得るためには、拡散
層が常に新しくなるようにすることが必要である。拡散
層が常に新しくされていれば、試料液液中の被還元物質
等はその濃度に応じて検知極に供給される。拡散層は検
知極に接する試料液を検知極表面に対して相対的に流動
させることにより常に新しくすることができる。
The oxidation-reduction current measured in the present invention is such that the substance to be reduced or the substance to be oxidized is carried to the surface of the detection electrode only by natural diffusion due to a concentration gradient in a layer called a diffusion layer having a constant thickness, The diffusion current that flows when redox occurs on the surface. In order to obtain an oxidation-reduction current (diffusion current) corresponding to the concentration of the substance to be reduced, it is necessary to always make the diffusion layer new. If the diffusion layer is constantly renewed, the substance to be reduced in the sample liquid is supplied to the detection electrode according to the concentration. The diffusion layer can always be refreshed by causing the sample liquid in contact with the sensing electrode to flow relatively to the sensing electrode surface.

【0019】検知極に接する試料液を検知極表面に対し
て相対的に流動させるためには、静止した試料液に対し
て検知極を回転又は振動させて動かすか、検知極は静止
したままで試料液を流すようにする。あるいは、検知極
を動かしつつ試料液も流すようにすることができる。試
料液の流れのみから相対的な流動を得る場合、検出器を
動かす機構が不要となるため、簡易な装置を構成する上
で適している。しかし、正確な測定を安定して長期間連
続するためには、検知極を回転又は振動させることが望
ましい。なぜなら、検知極は静止したままで試料液の流
れを利用して測定する場合、試料液流速によってポーラ
ログラムが変化してしまうからである。
In order to cause the sample liquid in contact with the detection electrode to flow relatively to the surface of the detection electrode, the detection electrode is rotated or vibrated with respect to the stationary sample liquid, or the detection electrode is kept stationary. Let the sample flow. Alternatively, the sample liquid can also be made to flow while moving the detection electrode. When a relative flow is obtained only from the flow of the sample liquid, a mechanism for moving the detector is not required, which is suitable for configuring a simple device. However, it is desirable to rotate or vibrate the sensing electrode in order to stably perform accurate measurement for a long period of time. This is because when the measurement is performed using the flow of the sample liquid while the detection electrode is stationary, the polarogram changes depending on the flow rate of the sample liquid.

【0020】回転させて使用する検知極を回転電極、振
動させて使用する電極を振動電極と称するが、これら
は、試料液の通常の流速よりはるかに大きい線速度で回
転、振動する。このため、試料液流速と無関係に安定な
拡散層を形成することができ、試料液流速の変動による
測定値への影響を受けにくい。また、回転や振動を洗浄
ビーズの中で行うことにより、検知極への汚れの付着を
容易に防止することができる。
The detecting electrode used by rotating is called a rotating electrode, and the electrode used by vibrating is called a vibrating electrode. These electrodes rotate and vibrate at a linear velocity much larger than the normal flow rate of the sample liquid. For this reason, a stable diffusion layer can be formed irrespective of the sample liquid flow velocity, and the measurement value is less affected by fluctuations in the sample liquid flow velocity. Further, by performing the rotation and the vibration in the cleaning beads, it is possible to easily prevent the contamination of the detection electrode with dirt.

【0021】本発明のセンサは上記の回転電極式であ
り、動きのある検知極からリード線を切断せずに引き出
すために、実公平7−4566号公報に示すように、検
知極の支持体を回転させるのではなく、すりこぎ状に動
かすことによって検知極を円運動させる方式である。
The sensor of the present invention is of the above-mentioned rotary electrode type. As shown in Japanese Utility Model Publication No. 7-4566, in order to draw out a lead wire from a moving detection electrode without cutting it, a support for the detection electrode is used. This is a method in which the detection pole is moved in a circular motion instead of rotating the detection pole.

【0022】本発明のセンサにおける単一の検知極支持
体は、複数の検知極を設けて、物理的に一体のものとし
て取り扱える部材であればよい。従って、その形状に特
に限定はないが、棒状の検知極支持体が好適に使用でき
る。検知極を検知極支持体に設ける場所は、試料液との
接触が保てる場所であれば特に限定はないが、その先端
部分表面が適当である。また、対極は、検知極支持体の
外周側を周回するように設けられる。ここで、「検知極
支持体の外周側を周回するように設けられる」とは、
「検知極支持体の外側の検知極支持体を囲む空間に設け
られる。また、その周回面を検知極支持体が貫通するよ
うに設けられる。」の意味である。なお、対極はそれ自
体で設けられても構わないが、形状保持のため、検知極
支持体の外周側に配置された保持部材に保持されること
が望ましい。
The single sensing pole support in the sensor of the present invention may be any member provided with a plurality of sensing poles and capable of being physically handled as a single unit. Therefore, although the shape is not particularly limited, a rod-shaped detection electrode support can be suitably used. The location where the detection electrode is provided on the detection electrode support is not particularly limited as long as it can keep contact with the sample liquid, but the surface of the tip portion is appropriate. The counter electrode is provided so as to orbit around the outer periphery of the detection electrode support. Here, "provided to go around the outer peripheral side of the detection electrode support" means that
It means "provided in a space surrounding the detection electrode support outside the detection electrode support. Also, provided so that the detection electrode support penetrates the orbital surface." The counter electrode may be provided by itself, but it is preferable that the counter electrode is held by a holding member arranged on the outer peripheral side of the detection electrode support in order to maintain the shape.

【0023】本発明では、対極を2つの検知極に対して
共通化すると共に、2つの検知極を単一の検知極支持体
に設け、その検知極支持体の外周側に対極を周回させて
一体的に取り扱えるようにしたので、センサの設置場所
が最小限ですむとともに取り扱いも容易である。また、
各々の検知極の信号は、検知極支持体の被保持箇所近傍
から一方が中心軸部を経由して、他方が外周部を経由し
てリードアウトできる。これら2つの検知極は機能的に
は独立しており、共通の対極との間で各々の酸化還元反
応を捉えることができる。そのため、各々別個の測定条
件を設定して、別個の成分を対称とする測定を同時に行
い、同時に測定結果を得ることが可能である。
In the present invention, the counter electrode is made common to the two detection electrodes, and the two detection electrodes are provided on a single detection electrode support, and the counter electrode is circulated around the outer periphery of the detection electrode support. Since it can be handled integrally, the installation place of the sensor is minimized and the handling is easy. Also,
One of the signals of the respective sensing electrodes can be read out from the vicinity of the held position of the sensing electrode support via the central shaft portion and the other via the outer peripheral portion. These two detection electrodes are functionally independent, and can capture each oxidation-reduction reaction with a common counter electrode. Therefore, it is possible to set separate measurement conditions, perform measurements with different components symmetrically, and obtain measurement results at the same time.

【0024】また、請求項2に係る発明として、請求項
1に記載のセンサと、このセンサの各々の検知極と対極
との間に流れる酸化還元電流を測定する電流計と、前記
各々の検知極と対極との間に、各々所定の印加電圧を与
える印加電圧付与手段とを備えることを特徴とする酸化
還元電流測定装置を提供する。
According to a second aspect of the present invention, there is provided the sensor according to the first aspect, an ammeter for measuring an oxidation-reduction current flowing between a detection electrode and a counter electrode of the sensor, and a sensor for each of the sensors. There is provided an oxidation-reduction current measuring device, comprising: an applied voltage applying means for applying a predetermined applied voltage between a pole and a counter electrode.

【0025】ここで、所定の印加電圧の値にはゼロも含
まれる。印加電圧付与手段は、通常加電圧回路から構成
されるが、印加電圧がゼロの場合には、電流計を介して
検知極と対極とを繋ぐ単なる配線によって構成すること
ができる。また、様々な印加電圧(ゼロを含んでも良
い。)を適宜設定できる可変の加電圧回路によって、印
加電圧付与手段を構成してもよい。なお、一般的には、
印加電圧がゼロでない場合はポーラログラフ方式と呼ば
れ、印加電圧がゼロの場合はガルバニ電池方式と呼ばれ
る。両方式とも、被還元物質等が一定の厚さの拡散層と
呼ばれる層の中において、濃度勾配による自然拡散によ
ってのみ検知極表面に運ばれ、その表面で酸化還元され
るときに流れる拡散電流(酸化還元電流)を捉える点に
おいて共通しており、本質的な差違はない。本発明の酸
化還元電流測定装置は、ポーラログラフ方式とガルバニ
電池方式のいずれの方式であっても差し支えない。ま
た、複数の検知極の内の何れかをポーラログラフ式の検
知極として用い、他をガルバニ電池方式の検知極として
用いても差し支えない。
Here, the value of the predetermined applied voltage includes zero. The applied voltage applying means is usually constituted by an applied voltage circuit, but when the applied voltage is zero, it can be constituted by simple wiring connecting the detection electrode and the counter electrode via an ammeter. Further, the applied voltage applying means may be constituted by a variable applied voltage circuit which can appropriately set various applied voltages (may include zero). In general,
When the applied voltage is not zero, it is called a polarographic method, and when the applied voltage is zero, it is called a galvanic cell method. In both types, the diffusion current (when the substance to be reduced, etc. is carried to the sensing electrode surface only by natural diffusion due to the concentration gradient in a layer called a diffusion layer of a certain thickness and is redox-reduced on the surface, (Redox current), and there is no essential difference. The oxidation-reduction current measuring device of the present invention may be any of a polarographic system and a galvanic cell system. Further, any one of the plurality of detection electrodes may be used as a polarographic detection electrode, and the other may be used as a galvanic cell detection electrode.

【0026】本発明では、複数の検知極と共通の対極と
を一体的に取り扱えるようにしたセンサを用いたので、
装置の設置場所が最小限ですむとともに取り扱いも容易
である。また、各々の検知極が機能的には独立してお
り、共通の対極との間で各々の酸化還元反応を捉えるこ
とができる。そのため、各々別個の測定条件を設定し
て、別個の成分を対称とする測定を同時に行い、それら
の測定結果を同時に得ることが可能である。
In the present invention, since a sensor capable of integrally handling a plurality of detection electrodes and a common counter electrode is used,
The installation place of the device is minimal and the handling is easy. In addition, each detection electrode is functionally independent, and each oxidation-reduction reaction can be captured with a common counter electrode. For this reason, it is possible to set separate measurement conditions, perform measurements with different components symmetrically, and obtain the measurement results at the same time.

【0027】ここで、別個の測定条件は、検知極の材質
と印加電圧との2つの条件を適宜設定することにより与
えることができる。すなわち、一の検知極と他の検知極
についての印加電圧は同一の値とし、各々の検知極を異
なる材質で構成することができる。また、一の検知極と
他の検知極についての印加電圧は異なる値とし、各々の
検知極を同一の材質で構成することができる。さらに、
一の検知極と他の検知極についての印加電圧を異なる値
とし、各々の検知極も異なる材質で構成することができ
る。
Here, separate measurement conditions can be given by appropriately setting two conditions of the material of the detection electrode and the applied voltage. That is, the applied voltage for one detection electrode and the other detection electrode may have the same value, and each detection electrode may be made of a different material. Also, the applied voltage for one detection electrode and the other detection electrode may be different values, and each detection electrode may be made of the same material. further,
The applied voltage for one detection electrode and another detection electrode may be different values, and each detection electrode may be made of a different material.

【0028】また、請求項3に係る発明として、前記2
つの検知極が、材質が金である第1の検知極と、材質が
白金である第2の検知極とからなり、前記共通の対極が
銀/塩化銀製である請求項1に記載のセンサと、第1の
検知極と対極との間に−0.2〜0.2Vの印加電圧を
与えると共に、第2の検知極と対極との間に、0〜0.
3Vの印加電圧を与える印加電圧付与手段と、各々の検
知極と対極との間に流れる酸化還元電流を測定する電流
計とを備え、各々の検知極と対極との間に流れる酸化還
元電流値から遊離残留塩素濃度と、結合残留塩素濃度と
を求めることを特徴とする酸化還元電流測定装置を提供
する。
[0028] According to a third aspect of the present invention, there is provided the second aspect.
2. The sensor according to claim 1, wherein the two detection electrodes comprise a first detection electrode made of gold and a second detection electrode made of platinum, and the common counter electrode is made of silver / silver chloride. 3. , A voltage of -0.2 to 0.2 V is applied between the first detection electrode and the counter electrode, and 0 to 0.
An application voltage applying means for applying an applied voltage of 3 V, and an ammeter for measuring an oxidation-reduction current flowing between each detection electrode and the counter electrode, and an oxidation-reduction current value flowing between each detection electrode and the counter electrode And measuring the concentration of free residual chlorine and the concentration of combined residual chlorine.

【0029】本発明の装置は、全残留塩素濃度と遊離残
留塩素濃度とを分別測定し、両者の差から、結合残留塩
素濃度を求めることができる。そのため、水質の劣化に
よる結合残留塩素の上昇が連続的に監視できるので遊泳
用プールの塩素注入や水質管理に特に好適に使用でき
る。本発明の装置によれば、これを一つのセンサを備え
た1台の装置で実現することができる。
The apparatus of the present invention can separately measure the total residual chlorine concentration and the free residual chlorine concentration and determine the combined residual chlorine concentration from the difference between the two. For this reason, the rise of the combined residual chlorine due to the deterioration of the water quality can be continuously monitored, so that it can be particularly suitably used for injecting chlorine into the swimming pool and controlling the water quality. According to the device of the present invention, this can be realized by one device having one sensor.

【0030】そこで、請求項4に係る発明として、請求
項3に記載の酸化還元電流測定装置の測定結果を指標と
して水質是正措置をとることを特徴とする遊泳用プール
の水質管理方法を提供する。ここで、「請求項3に記載
の酸化還元電流測定装置の測定結果」とは、具体的に
は、遊離残留塩素濃度、結合残留塩素、又は全残留塩素
濃度である。また、「指標とする」値は、単なる上限値
や下限値だけでなく、測定結果の変化率等も含む。ま
た、「水質是正措置」としては、例えば、塩素剤投入の
タイミングや投入量の調整、水全体の交換時期の調整、
濾過、浄化機構の保守等があげられる。水質是正措置
は、人手によっても、機械化によっても何れでも構わな
いのはもちろんである。
Therefore, as a fourth aspect of the present invention, there is provided a method for managing water quality of a swimming pool, wherein a water quality corrective measure is taken using the measurement result of the redox current measuring device according to the third aspect as an index. . Here, the “measurement result of the oxidation-reduction current measuring device according to claim 3” specifically refers to a free residual chlorine concentration, a combined residual chlorine concentration, or a total residual chlorine concentration. In addition, the value “as an index” includes not only an upper limit value and a lower limit value but also a rate of change of a measurement result. The “water quality corrective measures” include, for example, adjustment of the timing and input amount of the chlorine agent, adjustment of the replacement time of the entire water,
And maintenance of filtration and purification mechanisms. The water quality corrective measures can be either manual or mechanized.

【0031】本発明の方法では、遊離残留塩素濃度と結
合残留塩素濃度、あるいは全残留塩素濃度とを区分して
各々指標とすることができるので、塩素剤の投入のタイ
ミングや投入量を最適化することができる。また、水全
体の交換や濾過、浄化機構の保守も適切な時期に行うこ
とができる。なお、万一所定の水質を維持できなかった
場合には、遊泳禁止等の警告を発し、遊泳者の安全を確
保することができる。
In the method of the present invention, the free residual chlorine concentration and the combined residual chlorine concentration or the total residual chlorine concentration can be classified and used as indices, respectively. can do. In addition, replacement of the whole water, maintenance of the filtration and purification mechanism can be performed at an appropriate time. In the event that the predetermined water quality cannot be maintained, a warning such as swimming prohibition is issued, and the safety of the swimmer can be ensured.

【0032】また、請求項5に係る発明として、請求項
3に記載の酸化還元電流測定装置と、この酸化還元電流
測定装置の測定結果を指標として水質是正措置を行う水
質是正機構とを備えることを特徴とする遊泳用プールの
水質管理システムを提供する。ここで、「水質是正機
構」としては、例えば、塩素剤投入のタイミングや投入
量の調整が可能な塩素剤投入機構、交換時期の調整が可
能な水全体の交換装置等であって、指標である測定結果
に応じて作動する機構があげられる。
According to a fifth aspect of the present invention, there is provided the oxidation-reduction current measuring device according to the third aspect, and a water quality correcting mechanism for performing a water quality correcting measure using the measurement result of the redox current measuring device as an index. The present invention provides a swimming pool water quality management system characterized by the following. Here, the `` water quality correcting mechanism '' includes, for example, a chlorinating agent input mechanism capable of adjusting a chlorinating agent input timing and an input amount, a whole water exchange device capable of adjusting a replacement time, and the like. There is a mechanism that operates according to a certain measurement result.

【0033】本発明のシステムでは、遊離残留塩素濃度
と結合残留塩素濃度、あるいは全残留塩素濃度とを区分
して各々指標とすることができる。そのため、塩素剤の
投入のタイミングや投入量を最適化したり、水全体の交
換や濾過、浄化機構の保守を適切な時期に行うこと等に
より遊泳用プールの水質を適切に維持管理することがで
きる。
In the system of the present invention, the free residual chlorine concentration and the combined residual chlorine concentration or the total residual chlorine concentration can be divided and used as indices. Therefore, it is possible to appropriately maintain and manage the water quality of the swimming pool by optimizing the timing and the amount of the chlorine agent to be charged and by performing the replacement of the whole water, the filtration, and the maintenance of the purification mechanism at an appropriate time. .

【0034】また、請求項6に係る発明として、前記2
つの検知極が、何れも材質が金である第1と第2の検知
極とからなり、前記共通の対極が白金製である請求項1
に記載のセンサと、第1の検知極と対極との間に−0.
4〜−0.6Vの印加電圧を与えると共に、第2の検知
極と対極との間に、−0.7〜−1.0Vの印加電圧を
与える印加電圧付与手段と、各々の検知極と対極との間
に流れる酸化還元電流を測定する電流計とを備え、ハロ
ゲンイオンを添加した試料液について各々の検知極と対
極との間に流れる酸化還元電流値から、ジクロラミン濃
度を求めることを特徴とする酸化還元電流測定装置を提
供する。
According to a sixth aspect of the present invention, there is provided the second aspect of the present invention.
2. The detection electrode according to claim 1, wherein the first and second detection electrodes are made of gold, and the common counter electrode is made of platinum.
And between the first sensing electrode and the counter electrode.
An applied voltage applying means for applying an applied voltage of 4 to -0.6 V and applying an applied voltage of -0.7 to -1.0 V between the second detection electrode and the counter electrode; An ammeter for measuring the oxidation-reduction current flowing between the counter electrode and a dichloramine concentration is obtained from the oxidation-reduction current value flowing between each detection electrode and the counter electrode for the sample solution to which halogen ions are added. And an oxidation-reduction current measuring device.

【0035】本発明の装置によれば、試料液中の結合残
留塩素濃度からモノクロラミンを選択的に測定すること
ができ、塩素注入後の遊離残留塩素濃度の変化が予測可
能となる。そのため、浄水場等の塩素処理における塩素
注入管理に特に好適に使用できるものである。本発明の
装置によれば、これを一つのセンサを備えた1台の装置
で実現することができる。
According to the apparatus of the present invention, monochloramine can be selectively measured from the concentration of bound residual chlorine in the sample solution, and a change in the concentration of free residual chlorine after chlorine injection can be predicted. Therefore, it can be particularly suitably used for chlorine injection management in chlorination in a water purification plant or the like. According to the device of the present invention, this can be realized by one device having one sensor.

【0036】また、さらに第3の検知極を追加して、第
3の検知極と対極との間に−0.2〜−0.4Vの印加
電圧を与え、第3の検知極と対極との間の電流も測定す
ると、この電流は主として遊離残留塩素に感度を有す
る。したがって、この値で測定結果を補正すれば、より
正確にジクロラミン濃度を求めることができる。
Further, a third detection electrode is further added, an applied voltage of -0.2 to -0.4 V is applied between the third detection electrode and the counter electrode, and the third detection electrode and the counter electrode are connected to each other. If the current during this period is also measured, this current is mainly sensitive to free residual chlorine. Therefore, if the measurement result is corrected with this value, the dichloramine concentration can be obtained more accurately.

【0037】また、請求項7に係る発明として、前記2
つの検知極が、何れも金、白金、又はグラツシーカーボ
ンの何れかである第1と第2の検知極とからなり、前記
共通の対極が銀又は銀/塩化銀製である請求項1に記載
のセンサと、第1の検知極と対極との間に−0.4〜−
0.4Vの印加電圧を与えると共に、第2の検知極と対
極との間に、0.6〜−1.2Vの印加電圧を与える印
加電圧付与手段と、各々の検知極と対極との間に流れる
酸化還元電流を測定する電流計とを備え、第1の検知極
と対極との間に流れる酸化還元電流値から二酸化塩素濃
度を、第2の検知極と対極との間に流れる酸化還元電流
値から亜塩素酸イオン濃度を、各々求めることを特徴と
する酸化還元電流測定装置を提供する。
[0037] According to a seventh aspect of the present invention, there is provided the second aspect.
2. The sensor of claim 1, wherein the one sensing electrode comprises first and second sensing electrodes, each of which is either gold, platinum, or glassy carbon, and wherein the common counter electrode is made of silver or silver / silver chloride. Between the first sensing electrode and the counter electrode, and -0.4 to-
An applied voltage applying means for applying an applied voltage of 0.4 V and applying an applied voltage of 0.6 to -1.2 V between the second detection electrode and the counter electrode; And an ammeter for measuring the oxidation-reduction current flowing through the first detection electrode and the oxidation-reduction current flowing between the first detection electrode and the counter electrode. Provided is an oxidation-reduction current measuring device, wherein a chlorite ion concentration is obtained from a current value.

【0038】本発明の装置によれば、試料液中に共存す
る二酸化塩素と亜塩素酸イオンとを同時に測定すること
ができるため、浄水場やプールの二酸化塩素処理におけ
る二酸化塩素注入管理に、特に好適に使用できるもので
ある。本発明の装置によれば、これを一つのセンサを備
えた1台の装置で実現することができる。
According to the apparatus of the present invention, it is possible to simultaneously measure chlorine dioxide and chlorite ion coexisting in a sample solution. It can be suitably used. According to the device of the present invention, this can be realized by one device having one sensor.

【0039】[0039]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は回転電極式の酸化還元電流測定装
置のセンサの断面図である。図1に示すセンサ1Aは、
略円筒状のケース2が設けられ、このケース2の一方の
開口部には、軸中心部に貫通孔が穿設された支持基体3
が固着されている。この支持基体3の軸方向略中央部に
は、上下一対の円形の窓3a…が穿設されている。ま
た、その先端近くには凹部3bが周方向に形成され、か
つ、その凹部3bの全面にわたって対極5が巻き付けら
れている。また、この対極5の下方には、支持基体3の
先端を覆うようにしてメッシュからなるキャップ6が設
けられ、このキャップ6内には回転電極を洗浄するため
のビーズ7が多数収納されている。そして、先の窓3a
を内側から覆う位置に内網8が設けられ、ピーズ7の流
出を防ぐようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a sensor of a rotating electrode type oxidation-reduction current measuring device. The sensor 1A shown in FIG.
A substantially cylindrical case 2 is provided, and one opening of the case 2 has a support base 3 having a through hole formed in the center of the shaft.
Is fixed. A pair of upper and lower circular windows 3a are formed at substantially the center of the support base 3 in the axial direction. A concave portion 3b is formed in the circumferential direction near the tip, and a counter electrode 5 is wound around the entire surface of the concave portion 3b. A cap 6 made of a mesh is provided below the counter electrode 5 so as to cover the tip of the support base 3, and a large number of beads 7 for cleaning the rotating electrode are stored in the cap 6. . And the previous window 3a
The inner net 8 is provided at a position that covers from the inside to prevent the peas 7 from flowing out.

【0040】ケース2の内部にはモータ10が取付けら
れており、モータ10と支持基体3との間には支柱11
が介装されている。このモータ10の回転軸12には球
面軸受13が固着され、この球面軸受13に連結軸14
が連結されている。そして、この回転軸12と連結軸1
4とが作る角度は約3度に設定され、連結軸14の球面
軸受13に連結している部位が円運動を行うようになっ
ている。この連結軸14は、金属からなり、その下端に
は、支持棒15が後述する接続筒43を介して螺合され
て一体に構成されており、これら連結軸14と支持棒1
5とから、検知極支持体16が構成されている。また、
支持棒15の先端に複数の検知極18…が設けられてい
る。そして、検知極18のリード線を通すための下部案
内空間17が支持棒15内部の軸方向に形成されてい
る。
A motor 10 is mounted inside the case 2, and a support 11 is provided between the motor 10 and the support base 3.
Is interposed. A spherical bearing 13 is fixed to the rotating shaft 12 of the motor 10.
Are connected. The rotating shaft 12 and the connecting shaft 1
The angle formed by 4 is set to about 3 degrees, and the portion of the connecting shaft 14 connected to the spherical bearing 13 performs a circular motion. The connecting shaft 14 is made of metal, and a lower end thereof is integrally formed with a supporting rod 15 by being screwed through a connecting tube 43 to be described later.
5, the detection electrode support 16 is constituted. Also,
A plurality of detection poles 18 are provided at the tip of the support bar 15. A lower guide space 17 for passing the lead wire of the detection electrode 18 is formed in the support rod 15 in the axial direction.

【0041】連結軸14の中程には軸受19が設けら
れ、この軸受19を介して検知極支持体16は支持基体
3に取付けられている。この軸受19は、連結軸14方
向に円筒状の筒部19aと、この筒部19aの周囲にお
いて半径方向に広がったフランジ部19bとからなり、
ゴム材で形成されている。そして、筒部19aは連結軸
14に高い圧力をもって密着し完全に水密な状態となっ
ており、また、フランジ部19bは押さえリング20及
びカラー21、21で規定される空間においてフレキシ
ブルな状態になっている。したがって、一体となった連
結軸14と支持棒15、すなわち検知極支持体16は、
略フランジ部19bの位置する部位を中心として上下に
おいて歳差運動が可能な状態となっている。
A bearing 19 is provided in the middle of the connecting shaft 14, and the detection electrode support 16 is attached to the support base 3 via the bearing 19. The bearing 19 is composed of a cylindrical portion 19a having a cylindrical shape in the direction of the connecting shaft 14 and a flange portion 19b extending radially around the cylindrical portion 19a.
It is formed of a rubber material. The cylindrical portion 19a is in close contact with the connecting shaft 14 with high pressure and is completely watertight, and the flange portion 19b is in a flexible state in the space defined by the pressing ring 20 and the collars 21 and 21. ing. Therefore, the connecting shaft 14 and the support rod 15 integrated with each other, that is, the detection electrode support 16
It is in a state where precession can be performed up and down around the portion where the substantially flange portion 19b is located.

【0042】検知極18…のリード線41、42の導出
状態を図2を用いて説明する。図2は、検知極支持体1
6が、軸受19で保持されている近傍の部分拡大図であ
る。図2に示すように、連結軸14の下端部外周に金属
製の接続筒43が螺合され、この接続筒43の外周に、
支持棒15が螺合されている。また、連結軸14内部に
もリード線を通すための上部案内空間44が軸方向に形
成されている。
The lead-out state of the lead wires 41 and 42 of the detection electrodes 18 will be described with reference to FIG. FIG. 2 shows the detection electrode support 1
6 is a partially enlarged view of the vicinity held by the bearing 19. As shown in FIG. 2, a metal connection tube 43 is screwed around the lower end portion of the connection shaft 14.
The support rod 15 is screwed. An upper guide space 44 for passing a lead wire is formed in the connection shaft 14 in the axial direction.

【0043】また、上部案内空間44の下方から下部案
内空間17の上部にかけて、連結軸14と接続筒43の
中心軸に沿い、金属製の接続部材45が貫通している。
この接続部材45と連結軸14、接続筒43とは、各々
絶縁体51、52により電気的に絶縁されている。
A metal connecting member 45 extends from below the upper guide space 44 to above the lower guide space 17 along the center axis of the connecting shaft 14 and the connecting cylinder 43.
The connection member 45, the connection shaft 14, and the connection tube 43 are electrically insulated by insulators 51 and 52, respectively.

【0044】そして、リード線41の先端のチップ41
aは、接続部材45の下端部の凹部に挿嵌されている。
また、接続部材45の上端部の凹部には、導出側のリー
ド線53先端のチップ53aが挿嵌されている。このよ
うにして、リード線41とリード線53との導通が図ら
れている。すなわち、一方の検知極18の信号は、検知
極支持体16の軸受19による被保持箇所近傍におい
て、リード線41、接続部材45、リード線44とい
う、中心軸部を構成する部材を経由して導出されてい
る。
The tip 41 of the lead wire 41
“a” is inserted into a recess at the lower end of the connection member 45.
The tip 53a at the tip of the lead wire 53 on the lead-out side is inserted into the recess at the upper end of the connection member 45. Thus, conduction between the lead wire 41 and the lead wire 53 is achieved. That is, the signal of one of the detection poles 18 passes through a member constituting the central shaft portion such as the lead wire 41, the connection member 45, and the lead wire 44 in the vicinity of the position where the detection pole support 16 is held by the bearing 19. Derived.

【0045】一方、リード線42の先端のチップ42a
は、接続筒43の外周部に溶着されている。すなわち、
他方の検知極18の信号は、検知極支持体16の軸受1
9による被保持箇所近傍において、リード線42、接続
筒43、連結軸14という、外周部を構成する部材を経
由して導出されている。
On the other hand, the tip 42a at the tip of the lead wire 42
Are welded to the outer peripheral portion of the connection tube 43. That is,
The signal of the other sensing pole 18 is applied to the bearing 1 of the sensing pole support 16.
In the vicinity of the portion to be held by 9, the lead wire 42, the connection tube 43, and the connection shaft 14 are led out via members constituting the outer peripheral portion.

【0046】再び、図1に戻り、これら検知極18…の
信号は、最終的には、フレーム2上端のコネクタ25か
ら導出されるようになっている。なお、このコネクタ2
5には、モータ10、サーミスタ(図示せず)なども電
気的に接続されている。
Returning to FIG. 1 again, these signals of the detection poles 18 are finally derived from the connector 25 at the upper end of the frame 2. Note that this connector 2
The motor 5 and the thermistor (not shown) are also electrically connected to 5.

【0047】一方、コネクタ25の出力側は、図3に示
すように、電流計31…、加電圧回路32…などが組み
込まれた変換器に接続されている。なお、 図3は上記
センサ1Aを組み込んだ酸化還元電流測定装置全体を模
式的に示すもので、理解を容易にするため、対極5を支
持基体3から分離して図示してある。図3に示すよう
に、各々の検知極18…と対極5との間の印加電圧は個
別に設定できるようになっている。また、各々の検知極
18…と対極5との間の電流も個別に測定できるように
なっている。
On the other hand, as shown in FIG. 3, the output side of the connector 25 is connected to a converter in which ammeters 31,... FIG. 3 schematically shows the entire oxidation-reduction current measuring device incorporating the sensor 1A, and the counter electrode 5 is separated from the support base 3 for easy understanding. As shown in FIG. 3, the applied voltage between each of the detection electrodes 18 and the counter electrode 5 can be set individually. Also, the current between each of the detection electrodes 18 and the counter electrode 5 can be individually measured.

【0048】以上のようなセンサ1Aを用いた酸化還元
電流測定装置で酸化還元電流を測定するには、まず、セ
ンサ1Aの下端部をフローセル33内の試料液26に浸
漬する。そして、モータ10を作動させて回転軸12を
回転させる。すると、連結軸14の球面軸受13に連結
している部位は円運動を始めるが、連結軸14の略中央
は変形自在な軸受19で保持されているので略静止した
状態を維持する。したがって、一体となっている連結軸
14と支持棒15、すなわち、検知極支持体16は、軸
受け19による保持箇所を中心として歳差運動をし、検
知極18…は円運動をおこなう。そして、各々の検知極
18…と対極5との間に各々別個に電圧を印加して両極
に流れる拡散電流を各々測定する。なお、試薬の添加が
必要な場合には、試料液26をフローセル33に導入す
る前に添加しておく。
In order to measure the oxidation-reduction current with the oxidation-reduction current measuring device using the sensor 1A as described above, first, the lower end of the sensor 1A is immersed in the sample liquid 26 in the flow cell 33. Then, the motor 10 is operated to rotate the rotating shaft 12. Then, the portion of the connecting shaft 14 connected to the spherical bearing 13 starts a circular motion. However, since the substantially center of the connecting shaft 14 is held by the deformable bearing 19, it is kept almost stationary. Therefore, the integral connecting shaft 14 and support rod 15, that is, the detection pole support 16 perform precession about the holding position of the bearing 19, and the detection poles 18 perform circular movement. A voltage is separately applied between each of the detection electrodes 18 and the counter electrode 5 to measure a diffusion current flowing through each of the electrodes. When the reagent needs to be added, it is added before the sample liquid 26 is introduced into the flow cell 33.

【0049】次に、図4に基づき第2の実施形態に係る
センサについて説明する。図4は、センサ自体をフロー
セル型に構成した回転電極式の酸化還元電流測定装置の
センサ1Bの断面図である。図4において、図1と同一
の構成部材には、同一の符号を附して、その説明を省略
する。
Next, a sensor according to a second embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view of a sensor 1B of a rotary electrode type oxidation-reduction current measuring device in which the sensor itself is configured as a flow cell. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0050】本センサでは、先端部分が薄肉に形成され
た支持基体3の先端部に、周方向に4個の円形の窓4が
穿設されており、この窓4を含む周面に対極5が設けら
れている。さらに、支持基体3の基端部には、測定セル
を構成するためのセル用壁体9が固着されており、この
セル用壁体9の先端部の中央に試料液流入用の試料液流
入孔9aが穿設されるとともに、基端近傍の側壁には試
料液流出用の試料液流出孔9bが穿設されている。ま
た、支持基体3には、試料液の温度を検知するのための
サーミスタ24が設けられている。この他の点は第1の
実施形態と同様であり、リード線の導出状態は図2を用
いて説明したとおりである。また、センサ1Bを用いた
酸化還元電流測定装置の全体構成も図3を用いて説明し
たとおりである。
In this sensor, four circular windows 4 are formed in the circumferential direction at the front end of the support base 3 having a thin front end, and the counter electrode 5 is formed on the peripheral surface including the window 4. Is provided. Further, a cell wall 9 for constituting a measurement cell is fixed to the base end of the support base 3, and a sample liquid inflow for sample liquid inflow is provided at the center of the distal end of the cell wall 9. A hole 9a is formed, and a sample liquid outlet 9b for discharging the sample liquid is formed in a side wall near the base end. Further, the support base 3 is provided with a thermistor 24 for detecting the temperature of the sample liquid. The other points are the same as in the first embodiment, and the lead-out state of the lead wire is as described with reference to FIG. The overall configuration of the oxidation-reduction current measuring device using the sensor 1B is also as described with reference to FIG.

【0051】本実施形態のセンサを用いて酸化還元電流
を測定するには、まず、試料液流入孔9aから試料液2
6を連続的に導入するとともに、試料液排出孔9bから
排出する。また、モータ10を作動させて回転軸12を
回転させ検知極18…を円運動させる。このとき、軸受
19は、圧入されて大きな圧力を持って連結軸14に密
着しているので、試料液26がモータ10側へ浸入する
ことがない。そして、電流計、加電圧回路などが組み込
まれた変換器(図示せず)によって各々の検知極18…
と対極5との間に各々別個に電圧を印加して両極に流れ
る拡散電流を各々測定する。
To measure the oxidation-reduction current using the sensor of this embodiment, first, the sample liquid 2
6 is continuously introduced and discharged from the sample liquid discharge hole 9b. Further, the motor 10 is operated to rotate the rotary shaft 12 to make the detection poles 18 circularly move. At this time, since the bearing 19 is press-fitted and is in close contact with the connecting shaft 14 with a large pressure, the sample liquid 26 does not enter the motor 10 side. Then, a converter (not shown) in which an ammeter, an applied voltage circuit, and the like are incorporated is used to detect each detection electrode 18.
A voltage is separately applied between the electrode and the counter electrode 5, and the diffusion current flowing through both electrodes is measured.

【0052】上記各実施形態におけるセンサ1A、セン
サ1Bにおける検知極18…を、支持棒15にどのよう
に配置する形態としては、例えば、図5、図6に示す如
く構成することができる。図5は、検知極18…を、支
持棒15下端部に並べて配置した例である。一方、図6
は、検知極18…を、支持棒15下端部に同心円状に配
置した例である。この他、検知極18…を支持棒15に
どのように配置するかはついては特に限定はないが、支
持棒15の周面よりも下端部に配置した方が、ビーズ7
による洗浄効果が高い。また、支持棒15の下端部外周
の角の部分に配置すると、検知極18…ビーズ7により
摩耗しやすいと共に、電気的ノイズを生じやすいという
欠点がある。
The manner in which the detection electrodes 18 of the sensors 1A and 1B in the above embodiments are arranged on the support bar 15 can be configured as shown in FIGS. 5 and 6, for example. FIG. 5 shows an example in which the detection electrodes 18 are arranged side by side at the lower end of the support rod 15. On the other hand, FIG.
Is an example in which the detection electrodes 18 are arranged concentrically at the lower end of the support rod 15. In addition, there is no particular limitation on how the detection poles 18 are arranged on the support bar 15, but it is better to arrange the detection electrodes 18 at the lower end portion of the support bar 15 than at the peripheral surface.
High cleaning effect. Further, when the support rods 15 are arranged at the corners on the outer periphery of the lower end, there is a disadvantage that the detection poles 18...

【0053】[0053]

【実施例】遊離残留塩素と結合残留塩素の分別測定を目
的として、検知極18…として金製の検知極と白金製の
検知極、対極5として、銀/塩化銀電極を用い、各々の
検知極と対極との間の酸化還元電流を同時に測定した場
合のポーラログラムを求めた。図7は金製の検知極と対
極との間で得られる電流を、両極間の印加電圧を変化さ
せながら測定して得たポーラログラムである。一方、図
8は白金製の検知極と対極との間で得られる電流を、両
極間の印加電圧を変化させながら測定して得たポーラロ
グラムである。なお、このときの金製の検知極と対極と
の間の印加電圧、白金製の検知極と対極との間の印加電
圧は、同じ値で同時に変化させた。各々印加電圧の掃引
速度は100mV/分とした。検知極としては、直径2
mmの金電極又は白金電極を、その中心間を3mm離し
て支持棒15の下端部に配置した。そして、支持棒15
を歳差運動させ、線速度で30〜50cm/sが得られ
る程度の回転を与えた。
EXAMPLE For the purpose of separate measurement of free residual chlorine and bound residual chlorine, a gold detection electrode and a platinum detection electrode were used as the detection electrodes 18..., And a silver / silver chloride electrode was used as the counter electrode 5. A polarogram was obtained when the oxidation-reduction current between the pole and the counter electrode was measured simultaneously. FIG. 7 is a polarogram obtained by measuring the current obtained between the gold sensing electrode and the counter electrode while changing the applied voltage between the two electrodes. On the other hand, FIG. 8 is a polarogram obtained by measuring the current obtained between the platinum detection electrode and the counter electrode while changing the applied voltage between both electrodes. At this time, the applied voltage between the gold sensing electrode and the counter electrode and the applied voltage between the platinum sensing electrode and the counter electrode were simultaneously changed at the same value. The sweep speed of each applied voltage was 100 mV / min. Diameter 2
A gold electrode or a platinum electrode having a width of 3 mm was arranged at the lower end of the support rod 15 with a distance of 3 mm between the centers. And the support rod 15
Was precessed to give a rotation such that a linear velocity of 30 to 50 cm / s was obtained.

【0054】試料液としては、水道水を活性炭で濾過し
た試料αと、水道水をそのまま使用した試料βと、水道
水に次亜塩素酸ナトリウムを添加した試料γと、これに
さらに塩化アンモニウムを0.5mg/Lの割合で添加
した試料δを用意した。各々の試料液における遊離残留
塩素と結合残留塩素の各々の濃度の参照値は、米国のSt
andard Methodsに準じて、以下に示す手分析法で求め
た。まず、DPD(ジエチル−p−フェニレンジアミ
ン)溶液試薬1mL及び緩衝液(0.2mol/L K
H2PO4 300mLと、0.2mol/L NaO
H 106mLとを混合し、1,2シクロヘキサンジア
ミン4酢酸0.39gを溶解したもの)1mLを25m
L共栓付比色管に入れた。そして、ここに試料液20m
Lを加えて552nmの吸光度を測定した。この値か
ら、遊離残留塩素濃度を得た。次に、ヨウ化カリウムの
結晶0.2gを加え、溶解した後5分放置してから55
2nmの吸光度を測定した。この値から、全残留塩素の
濃度を求めた。そして、結合残留塩素の濃度は、全残留
塩素濃度と遊離残留塩素濃度との差から演算によって求
めた。その結果、試料液α、β、γ、δの各々につい
て、表1に示す手分析値が得られた。
As sample liquids, sample α in which tap water was filtered with activated carbon, sample β in which tap water was used as it was, sample γ in which tap water was added with sodium hypochlorite, and ammonium chloride were added thereto. A sample δ added at a rate of 0.5 mg / L was prepared. Reference values for the respective concentrations of free residual chlorine and bound residual chlorine in each sample solution are based on St.
It was determined by the following manual analysis method according to andard Methods. First, 1 mL of a DPD (diethyl-p-phenylenediamine) solution reagent and a buffer (0.2 mol / L K
H2PO4 300mL, 0.2mol / L NaO
H, 106 mL, and 0.39 g of 1,2-cyclohexanediaminetetraacetic acid dissolved therein).
It was placed in a colorimetric tube with an L stopper. And here, the sample liquid 20m
L was added and the absorbance at 552 nm was measured. From this value, the free residual chlorine concentration was obtained. Next, 0.2 g of potassium iodide crystal was added, dissolved and left for 5 minutes.
The absorbance at 2 nm was measured. From this value, the concentration of total residual chlorine was determined. Then, the concentration of the combined residual chlorine was determined by calculation from the difference between the total residual chlorine concentration and the free residual chlorine concentration. As a result, the hand analysis values shown in Table 1 were obtained for each of the sample liquids α, β, γ, and δ.

【0055】[0055]

【表1】 [Table 1]

【0056】図7、8に示すように、試料液α、β、
γ、δの各々について、検知極の材質の相違に基づき異
なるポーラログラムが得られた。これらのポーラログラ
ムは、いずれも、単独の検知極と対極との間で得られる
ものと同等である。まず、図7において得られるポーラ
ログラムは、概ね−0.2〜0.2Vにおいて、プラト
ー領域(印加電圧が若干ずれても、電流がほとんど変化
しない領域)が得られた。また、プラトー領域における
電流値は全残留塩素濃度に依存する。なお、試料液δは
添加した塩化アンモニウムのアンモニウムイオンと反応
して遊離残留塩素が結合残留塩素に変化しているが、遊
離残留塩素として存在している試料液β、γとは異なる
ポーラログラムが得られた。これは、プラトー領域の電
流が遊離残留塩素、結合塩素の両方に感度を有すること
を示している。
As shown in FIGS. 7 and 8, the sample liquids α, β,
For each of γ and δ, different polarograms were obtained based on the difference in the material of the sensing electrode. All of these polarograms are equivalent to those obtained between a single sensing electrode and a counter electrode. First, in the polarogram obtained in FIG. 7, a plateau region (a region where the current hardly changes even if the applied voltage is slightly shifted) was obtained at about −0.2 to 0.2 V. Further, the current value in the plateau region depends on the total residual chlorine concentration. Although the sample solution δ reacts with the ammonium ion of the added ammonium chloride to convert the free residual chlorine into bound residual chlorine, a polarogram different from the sample solutions β and γ present as free residual chlorine is obtained. Obtained. This indicates that the current in the plateau region is sensitive to both free residual chlorine and bound chlorine.

【0057】次に、図8において得られるポーラログラ
ムは、概ね0〜0.3Vにおいて、プラトー領域が得ら
れた。また、プラトー領域における電流値は遊離残留塩
素濃度に依存し、試料液δによって確認されるように、
結合残留塩素の影響を殆ど受けない。ただし、導電率等
といった試料液の性状によってプラトー領域は変動が見
られるので、実際の測定時に印加する電圧の値は、試料
液の性状等を充分に考慮して選択する必要がある。この
ように、2種類の異なる検知極における酸化還元電流値
から、遊離残留塩素濃度と結合残留塩素濃度を同時に求
めることが可能となるものである。
Next, in the polarogram obtained in FIG. 8, a plateau region was obtained at about 0 to 0.3 V. Also, the current value in the plateau region depends on the free residual chlorine concentration, and as confirmed by the sample solution δ,
Hardly affected by residual chlorine. However, since the plateau region varies depending on the properties of the sample liquid such as conductivity, the value of the voltage to be applied at the time of actual measurement needs to be selected in consideration of the properties of the sample liquid. Thus, the concentration of free residual chlorine and the concentration of combined residual chlorine can be determined simultaneously from the oxidation-reduction current values at the two different sensing electrodes.

【0058】[0058]

【発明の効果】本発明によれば、異なる成分、特に遊離
残留塩素、結合残留塩素、ジクロラミン等を短時間で分
別測定できると共に、測定作業が簡便であり、設置場所
や設置費用等を最小限に留めることができる。また、遊
泳用プールにおいて、塩素剤投入量や水の交換時期を判
断して、水質を適切に管理することができる。
According to the present invention, different components, in particular, free residual chlorine, bound residual chlorine, dichloramine, and the like can be separately measured in a short time, the measuring operation is simple, and the installation place and the installation cost are minimized. Can be kept. Further, in the swimming pool, the water quality can be appropriately managed by judging the amount of the chlorinated agent and the timing of water exchange.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係るセンサの断面図
である。
FIG. 1 is a sectional view of a sensor according to an embodiment of the present invention.

【図2】 本発明の一実施形態に係るセンサの断面図
の部分拡大図である。
FIG. 2 is a partially enlarged view of a cross-sectional view of a sensor according to an embodiment of the present invention.

【図3】 図1のセンサを組み込んだ酸化還元電流測
定装置の模式図である。
FIG. 3 is a schematic diagram of an oxidation-reduction current measuring device incorporating the sensor of FIG. 1;

【図4】 本発明の他の実施形態に係るセンサの断面
図である。
FIG. 4 is a cross-sectional view of a sensor according to another embodiment of the present invention.

【図5】 検知極の配置を示す平面図(a)及び断面
図(b)である。
FIGS. 5A and 5B are a plan view and a cross-sectional view illustrating an arrangement of a detection electrode.

【図6】 検知極の他の配置を示す平面図(a)及び
断面図(b)である。
FIGS. 6A and 6B are a plan view and a cross-sectional view illustrating another arrangement of the detection electrodes.

【図7】 本発明の実施例に係る酸化還元電流測定装
置において、金製の検知極と銀/塩化銀製の対極との間
で得られたポーラログラムである。
FIG. 7 is a polarogram obtained between a detection electrode made of gold and a counter electrode made of silver / silver chloride in the oxidation-reduction current measuring device according to the example of the present invention.

【図8】 本発明の実施例に係る酸化還元電流測定装
置において、白金製の検知極と銀/塩化銀製の対極との
間で得られたポーラログラムである。
FIG. 8 is a polarogram obtained between a platinum sensing electrode and a silver / silver chloride counter electrode in the oxidation-reduction current measuring device according to the example of the present invention.

【図9】 注入塩素量と全残留塩素濃度との関係を示
すグラフである。
FIG. 9 is a graph showing the relationship between the amount of injected chlorine and the concentration of total residual chlorine.

【符号の説明】[Explanation of symbols]

1A,1B センサ 5 対極 10 モータ 14 連結軸 15 支持棒 16 検知極支持体 17 下部案内空間 18 検知極 31 電流計 32 加電圧回路 41,42 リード線 43 接続筒 44 上部案内空間 45 接続部材 53 リード線 1A, 1B Sensor 5 Counter electrode 10 Motor 14 Connecting shaft 15 Support rod 16 Detecting electrode support 17 Lower guide space 18 Detecting electrode 31 Ammeter 32 Applied voltage circuit 41, 42 Lead wire 43 Connecting cylinder 44 Upper guiding space 45 Connecting member 53 Lead line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/48 311 G01N 33/18 C 33/18 27/52 27/46 316Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 27/48 311 G01N 33/18 C 33/18 27/52 27/46 316Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 単一の検知極支持体に設けられた2つ
の検知極と、これらの検知極に対する共通の対極と、前
記検知極支持体の所定箇所を保持する軸受けと、前記検
知極支持体の軸受けによる被保持箇所を支点として検知
極支持体を歳差運動させる駆動手段とを備え、 前記検知極支持体は、被保持箇所近傍に、互いに絶縁さ
れた中心軸部と外周部とを有し、前記2つの検知極のリ
ード線は、一方が中心軸部を経由して、他方が外周部を
経由して、各々導出され、 かつ、前記対極は、前記検知極支持体の外周側を周回す
るように設けられたことを特徴とする酸化還元電流測定
装置のセンサ。
1. A sensing electrode support comprising: two sensing poles provided on a single sensing pole support; a common counter electrode for these sensing poles; a bearing for holding a predetermined portion of the sensing pole support; Driving means for precessing the sensing pole support with the point held by the body bearing as a fulcrum, wherein the sensing pole support has a central shaft portion and an outer peripheral portion insulated from each other in the vicinity of the held portion. One of the lead wires of the two sensing electrodes is led out via the central shaft portion and the other via the outer peripheral portion, and the counter electrode is located on the outer peripheral side of the sensing electrode support. A sensor of the oxidation-reduction current measuring device, which is provided so as to go around.
【請求項2】 請求項1に記載のセンサと、このセン
サの各々の検知極と対極との間に流れる酸化還元電流を
測定する電流計と、前記各々の検知極と対極との間に、
各々所定の印加電圧を与える印加電圧付与手段とを備え
ることを特徴とする酸化還元電流測定装置。
2. The sensor according to claim 1, further comprising: an ammeter for measuring an oxidation-reduction current flowing between each detection electrode and a counter electrode of the sensor; and
An oxidation-reduction current measuring device, comprising: an applied voltage applying means for applying a predetermined applied voltage.
【請求項3】 前記2つの検知極が、材質が金である
第1の検知極と、材質が白金である第2の検知極とから
なり、前記共通の対極が銀/塩化銀製である請求項1に
記載のセンサと、 第1の検知極と対極との間に−0.2〜0.2Vの印加
電圧を与えると共に、第2の検知極と対極との間に、0
〜0.3Vの印加電圧を与える印加電圧付与手段と、 各々の検知極と対極との間に流れる酸化還元電流を測定
する電流計とを備え、 各々の検知極と対極との間に流れる酸化還元電流値から
遊離残留塩素濃度と、結合残留塩素濃度とを求めること
を特徴とする酸化還元電流測定装置。
3. The two sensing electrodes comprise a first sensing electrode made of gold and a second sensing electrode made of platinum, and the common counter electrode is made of silver / silver chloride. Item 1. An applied voltage of −0.2 to 0.2 V is applied between the sensor according to item 1, the first detection electrode and the counter electrode, and 0 is applied between the second detection electrode and the counter electrode.
An application voltage applying means for applying an applied voltage of up to 0.3 V; and an ammeter for measuring an oxidation-reduction current flowing between each detection electrode and the counter electrode. An oxidation-reduction current measuring apparatus, wherein a concentration of free residual chlorine and a concentration of combined residual chlorine are determined from a reduction current value.
【請求項4】 請求項3に記載の酸化還元電流測定装
置の測定結果を指標として水質是正措置をとることを特
徴とする遊泳用プールの水質管理方法。
4. A water quality management method for a swimming pool, comprising taking a water quality correction measure using the measurement result of the oxidation-reduction current measuring device according to claim 3 as an index.
【請求項5】 請求項3に記載の酸化還元電流測定装
置と、この酸化還元電流測定装置の測定結果を指標とし
て水質是正措置を行う水質是正機構とを備えることを特
徴とする遊泳用プールの水質管理システム。
5. A swimming pool comprising: the oxidation-reduction current measuring device according to claim 3; and a water quality correction mechanism that performs a water quality correction measure using a measurement result of the oxidation-reduction current measurement device as an index. Water quality management system.
【請求項6】 前記2つの検知極が、何れも材質が金
である第1と第2の検知極とからなり、前記共通の対極
が白金製である請求項1に記載のセンサと、 第1の検知極と対極との間に−0.4〜−0.6Vの印
加電圧を与えると共に、第2の検知極と対極との間に、
−0.7〜−1.0Vの印加電圧を与える印加電圧付与
手段と、 各々の検知極と対極との間に流れる酸化還元電流を測定
する電流計とを備え、ハロゲンイオンを添加した試料液
について各々の検知極と対極との間に流れる酸化還元電
流値から、ジクロラミン濃度を求めることを特徴とする
酸化還元電流測定装置。
6. The sensor according to claim 1, wherein each of the two detection electrodes includes first and second detection electrodes made of gold, and the common counter electrode is made of platinum. An applied voltage of -0.4 to -0.6 V is applied between the first detection electrode and the counter electrode, and between the second detection electrode and the counter electrode.
A sample solution provided with an applied voltage applying means for applying an applied voltage of -0.7 to -1.0 V, and an ammeter for measuring an oxidation-reduction current flowing between each detection electrode and a counter electrode, to which a halogen ion is added An oxidation-reduction current measuring device, wherein a dichloramine concentration is obtained from an oxidation-reduction current value flowing between each detection electrode and a counter electrode.
【請求項7】 前記2つの検知極が、何れも金、白
金、又はグラツシーカーボンの何れかである第1と第2
の検知極とからなり、前記共通の対極が銀又は銀/塩化
銀製である請求項1に記載のセンサと、 第1の検知極と対極との間に−0.4〜−0.4Vの印
加電圧を与えると共に、第2の検知極と対極との間に、
0.6〜−1.2Vの印加電圧を与える印加電圧付与手
段と、 各々の検知極と対極との間に流れる酸化還元電流を測定
する電流計とを備え、 第1の検知極と対極との間に流れる酸化還元電流値から
二酸化塩素濃度を、 第2の検知極と対極との間に流れる酸化還元電流値から
亜塩素酸イオン濃度を、各々求めることを特徴とする酸
化還元電流測定装置。
7. The first and second sensing electrodes, wherein each of the two sensing electrodes is made of one of gold, platinum, and glassy carbon.
The sensor according to claim 1, wherein the common counter electrode is made of silver or silver / silver chloride, and a voltage of -0.4 V to -0.4 V between the first detection electrode and the counter electrode. While applying an applied voltage, between the second detection electrode and the counter electrode,
An applied voltage applying means for applying an applied voltage of 0.6 to -1.2 V; and an ammeter for measuring an oxidation-reduction current flowing between each detection electrode and the counter electrode, wherein the first detection electrode and the counter electrode An oxidation-reduction current measuring device, which obtains a chlorine dioxide concentration from an oxidation-reduction current value flowing between the electrodes and a chlorite ion concentration from an oxidation-reduction current value flowing between the second detection electrode and the counter electrode, respectively. .
JP2000286164A 2000-09-20 2000-09-20 Sensor for redox current measuring device and redox current measuring device Expired - Fee Related JP4463405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286164A JP4463405B2 (en) 2000-09-20 2000-09-20 Sensor for redox current measuring device and redox current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286164A JP4463405B2 (en) 2000-09-20 2000-09-20 Sensor for redox current measuring device and redox current measuring device

Publications (2)

Publication Number Publication Date
JP2002090339A true JP2002090339A (en) 2002-03-27
JP4463405B2 JP4463405B2 (en) 2010-05-19

Family

ID=18770126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286164A Expired - Fee Related JP4463405B2 (en) 2000-09-20 2000-09-20 Sensor for redox current measuring device and redox current measuring device

Country Status (1)

Country Link
JP (1) JP4463405B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271472A (en) * 2003-03-12 2004-09-30 Suido Kiko Kaisha Ltd Portable water examination device
JP2008194676A (en) * 2006-11-21 2008-08-28 Crystal Lagoons Corp Llc Process for obtaining (realizing and maintaining) water body larger than 15,000 m3 for use at low cost in recreation characterized by the same color, transparency and cleanness as swimming pool or tropical sea
JP2010185678A (en) * 2009-02-10 2010-08-26 Dkk Toa Corp Oxidation-reduction current measuring device
CN102645466A (en) * 2011-02-16 2012-08-22 东亚Dkk株式会社 Electrolysis current measuring electrode
WO2015020188A1 (en) * 2013-08-08 2015-02-12 東亜ディーケーケー株式会社 Residual-chlorine measurement device, and residual-chlorine measurement method
US9051193B2 (en) 2011-03-30 2015-06-09 Crystal Lagoons (Curacao) B.V. System for treating water used for industrial process
US9062471B2 (en) 2011-03-30 2015-06-23 Crystal Lagoons (Curacao) B.V. Sustainable system for treating water bodies affected by bacteria and microalgae at low cost
JP2015117939A (en) * 2013-12-16 2015-06-25 東亜ディーケーケー株式会社 Oxidation-reduction current measuring apparatus
US9080342B2 (en) 2008-12-24 2015-07-14 Crystal Lagoons (Curacao) B.V. Suctioning device for travelling a tank bottom
US9120689B2 (en) 2011-03-30 2015-09-01 Crystal Lagoons (Curacao) B.V. System for providing high microbiological quality cooling water to an industrial processes
CN105092653A (en) * 2014-05-23 2015-11-25 翰信科技股份有限公司 Detector for detecting sodium hypochlorite concentration
JP2016080573A (en) * 2014-10-20 2016-05-16 東亜ディーケーケー株式会社 Free residual chlorine measurement device
US9470008B2 (en) 2013-12-12 2016-10-18 Crystal Lagoons (Curacao) B.V. System and method for maintaining water quality in large water bodies
US9920498B2 (en) 2013-11-05 2018-03-20 Crystal Lagoons (Curacao) B.V. Floating lake system and methods of treating water within a floating lake
US9957693B2 (en) 2014-11-12 2018-05-01 Crystal Lagoons (Curacao) B.V. Suctioning device for large artificial water bodies
CN109916986A (en) * 2019-04-15 2019-06-21 国弘环保仪器(昆山)有限公司 Self-cleaning digital residual chlorine sensor
US11453603B2 (en) 2019-06-28 2022-09-27 Crystal Lagoons Technologies, Inc. Low cost and sanitary efficient method that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162662U (en) * 1986-04-03 1987-10-16
JPH0252153U (en) * 1988-10-05 1990-04-13
JPH02296146A (en) * 1989-05-10 1990-12-06 Toa Denpa Kogyo Kk Method for simultaneously measuring chlorine dioxide and chlorite ion
JPH0436455U (en) * 1990-07-25 1992-03-26
JPH0630764U (en) * 1992-09-29 1994-04-22 電気化学計器株式会社 Rotating electrode analyzer
JPH09178699A (en) * 1995-12-28 1997-07-11 Kubota Corp Method and device for measuring residual chlorine
JPH1082761A (en) * 1996-09-05 1998-03-31 Merusu Giken:Kk Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
JPH11148914A (en) * 1997-11-18 1999-06-02 Kubota Corp Apparatus for measuring concentration of chlorine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162662U (en) * 1986-04-03 1987-10-16
JPH0252153U (en) * 1988-10-05 1990-04-13
JPH02296146A (en) * 1989-05-10 1990-12-06 Toa Denpa Kogyo Kk Method for simultaneously measuring chlorine dioxide and chlorite ion
JPH0436455U (en) * 1990-07-25 1992-03-26
JPH0630764U (en) * 1992-09-29 1994-04-22 電気化学計器株式会社 Rotating electrode analyzer
JPH09178699A (en) * 1995-12-28 1997-07-11 Kubota Corp Method and device for measuring residual chlorine
JPH1082761A (en) * 1996-09-05 1998-03-31 Merusu Giken:Kk Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
JPH11148914A (en) * 1997-11-18 1999-06-02 Kubota Corp Apparatus for measuring concentration of chlorine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271472A (en) * 2003-03-12 2004-09-30 Suido Kiko Kaisha Ltd Portable water examination device
JP2008194676A (en) * 2006-11-21 2008-08-28 Crystal Lagoons Corp Llc Process for obtaining (realizing and maintaining) water body larger than 15,000 m3 for use at low cost in recreation characterized by the same color, transparency and cleanness as swimming pool or tropical sea
US9708822B2 (en) 2006-11-21 2017-07-18 Crystal Lagoons (Curacao) B.V. Process to maintain large clean recreational bodies of water
US8062514B2 (en) 2006-11-21 2011-11-22 Crystal Lagoons Corporation, LLC Structure to contain a large water body of at least 15,000 m3
US8070942B2 (en) 2006-11-21 2011-12-06 Crystal Lagoons Corporation Llc Suction device for cleaning a bottom surface of a structure of at least 15,000 m3
US9080342B2 (en) 2008-12-24 2015-07-14 Crystal Lagoons (Curacao) B.V. Suctioning device for travelling a tank bottom
US9470007B2 (en) 2008-12-24 2016-10-18 Crystal Lagoons (Curacao) B.V. Efficient filtration process of water in a tank for recreational and ornamental uses, where the filtration is performed over a small volume of water and not over the totality of the water from the tank
JP2010185678A (en) * 2009-02-10 2010-08-26 Dkk Toa Corp Oxidation-reduction current measuring device
JP2012168110A (en) * 2011-02-16 2012-09-06 Dkk Toa Corp Electrolytic current measuring electrode
CN102645466A (en) * 2011-02-16 2012-08-22 东亚Dkk株式会社 Electrolysis current measuring electrode
US9051193B2 (en) 2011-03-30 2015-06-09 Crystal Lagoons (Curacao) B.V. System for treating water used for industrial process
US9062471B2 (en) 2011-03-30 2015-06-23 Crystal Lagoons (Curacao) B.V. Sustainable system for treating water bodies affected by bacteria and microalgae at low cost
US9120689B2 (en) 2011-03-30 2015-09-01 Crystal Lagoons (Curacao) B.V. System for providing high microbiological quality cooling water to an industrial processes
WO2015020188A1 (en) * 2013-08-08 2015-02-12 東亜ディーケーケー株式会社 Residual-chlorine measurement device, and residual-chlorine measurement method
JP2015034741A (en) * 2013-08-08 2015-02-19 東亜ディーケーケー株式会社 Residual chlorine measuring device and residual chlorine measuring method
US10017908B2 (en) 2013-11-05 2018-07-10 Crystal Lagoons (Curacao) B.V. Floating lake system and methods of treating water within a floating lake
US9920498B2 (en) 2013-11-05 2018-03-20 Crystal Lagoons (Curacao) B.V. Floating lake system and methods of treating water within a floating lake
US9470008B2 (en) 2013-12-12 2016-10-18 Crystal Lagoons (Curacao) B.V. System and method for maintaining water quality in large water bodies
US10364585B2 (en) 2013-12-12 2019-07-30 Crystal Lagoons (Curacao) B.V. System and method for maintaining water quality in large water bodies
JP2015117939A (en) * 2013-12-16 2015-06-25 東亜ディーケーケー株式会社 Oxidation-reduction current measuring apparatus
CN105092653A (en) * 2014-05-23 2015-11-25 翰信科技股份有限公司 Detector for detecting sodium hypochlorite concentration
JP2016080573A (en) * 2014-10-20 2016-05-16 東亜ディーケーケー株式会社 Free residual chlorine measurement device
US9957693B2 (en) 2014-11-12 2018-05-01 Crystal Lagoons (Curacao) B.V. Suctioning device for large artificial water bodies
CN109916986A (en) * 2019-04-15 2019-06-21 国弘环保仪器(昆山)有限公司 Self-cleaning digital residual chlorine sensor
US11453603B2 (en) 2019-06-28 2022-09-27 Crystal Lagoons Technologies, Inc. Low cost and sanitary efficient method that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities
US11649180B2 (en) 2019-06-28 2023-05-16 Crystal Lagoons Technologies, Inc. Low cost and sanitary efficient system that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities

Also Published As

Publication number Publication date
JP4463405B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
US20130313128A1 (en) Electrochemical Sensor Apparatus and Electrochemical Sensing Method
US4581121A (en) Free chlorine gas analyzer
JP6372302B2 (en) Free residual chlorine measuring device
JP6304677B2 (en) Residual chlorine measuring device and residual chlorine measuring method
WO2009055093A1 (en) Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine
JP4463382B2 (en) Residual chlorine measuring device
JP7231814B2 (en) Calibration method of residual chlorine measuring device
US4441979A (en) Nutating probe for gas analysis
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP4671565B2 (en) Diaphragm electrode
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP3469962B2 (en) Free chlorine measuring device
JP4869849B2 (en) Solution analysis method
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water
JP2004144662A (en) Apparatus and method for measuring oxidation-reduction current
JP2000131276A (en) Potable type residual chlorine meter
JP4603782B2 (en) Residual chlorine measuring device
JP6098427B2 (en) Electrode unit for redox current measurement and redox current measuring device
JP3838435B2 (en) Hypochlorous acid concentration measuring device
JP2005345222A (en) Residual chlorine meter
JP3459168B2 (en) Chlorine concentration measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees