JP4869849B2 - Solution analysis method - Google Patents

Solution analysis method Download PDF

Info

Publication number
JP4869849B2
JP4869849B2 JP2006259997A JP2006259997A JP4869849B2 JP 4869849 B2 JP4869849 B2 JP 4869849B2 JP 2006259997 A JP2006259997 A JP 2006259997A JP 2006259997 A JP2006259997 A JP 2006259997A JP 4869849 B2 JP4869849 B2 JP 4869849B2
Authority
JP
Japan
Prior art keywords
potential
analysis
working electrode
activation
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006259997A
Other languages
Japanese (ja)
Other versions
JP2007304081A (en
Inventor
昌司 藤田
敦尚 福泉
Original Assignee
北斗電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北斗電工株式会社 filed Critical 北斗電工株式会社
Priority to JP2006259997A priority Critical patent/JP4869849B2/en
Publication of JP2007304081A publication Critical patent/JP2007304081A/en
Application granted granted Critical
Publication of JP4869849B2 publication Critical patent/JP4869849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、作用電極,対電極,参照電極を構成したボルタンメトリーにより金属イオン等を測定(定性,定量)して分析することが可能な溶液分析方法であって、例えば水道水,環境水,土壌,食品等に含まれる水銀,銅,砒素等を測定して分析することが可能な方法に関するものである。   The present invention relates to a solution analysis method capable of measuring (qualitatively and quantitatively) analyzing metal ions and the like by voltammetry comprising a working electrode, a counter electrode, and a reference electrode, for example, tap water, environmental water, soil It relates to a method capable of measuring and analyzing mercury, copper, arsenic, etc. contained in foods.

水道水,環境水,土壌,食品等の溶液には意図しない種々の有害物質(有害金属等)が含まれている可能性があることから、特に水道水においては従来から問題提起され、例えば世界保健機構(WHO)による飲料水水質ガイドラインの改訂の検討や、厚生労働省による水道法の改正の検討(平成16年4月1日から改正水道法が施行(水質検査機関の登録制度関係は平成16年3月31日から施行)が行われている。   Since tap water, environmental water, soil, food, and other solutions may contain various unintentional harmful substances (hazardous metals, etc.), problems have been raised, especially in tap water. Examination of revision of drinking water quality guidelines by the Health Organization (WHO) and revision of water supply law by the Ministry of Health, Labor and Welfare (the revised water law has been enforced since April 1, 2004 Effective from March 31, 2013).

有害物質としては、例えば水銀(金属水銀,無機水銀化合物,有機水銀化合物(アルキル水銀(脂肪族水銀),アリール水銀(脂肪族水銀)等),銅,鉛,砒素等が挙げられ、その量の増加に伴って人体等に影響を及ぼす可能性が指摘されている。このようなことから、自然界(例えば、環境水や飲料水等)に存在する各種物質を測定(定性,定量)して分析し、監視する必要性が指摘されている。   Examples of harmful substances include mercury (metal mercury, inorganic mercury compounds, organic mercury compounds (alkyl mercury (aliphatic mercury), aryl mercury (aliphatic mercury), etc.)), copper, lead, arsenic, etc. It has been pointed out that there is a possibility that it will affect the human body, etc. With this increase, various substances existing in nature (for example, environmental water and drinking water) are measured (qualitative and quantitative) and analyzed. The need for monitoring is pointed out.

例えば水道水,環境水,土壌,食品等(被分析対象)に含まれる重金属等(測定対象)を分析する方法としては、原子吸光分析法,ICP発光分析法,ICP質量分析法等により特定の物質(測定対象)を測定(定性,定量)して分析する方法が知られている。   For example, as a method for analyzing heavy metals (measuring objects) contained in tap water, environmental water, soil, food, etc. (analyses), specific methods such as atomic absorption spectrometry, ICP emission spectrometry, ICP mass spectrometry, etc. A method of measuring (qualitative and quantitative) and analyzing a substance (measuring object) is known.

例えば測定対象が水銀の場合には、該被分析対象中に存在する水銀を還元または加熱によって気化した後、その気化された水銀を測定して分析する原子吸光法(密閉循環方式,開放送気方式)が従来から知られている。なお、前記の原子吸光法の場合、被分析対象中にベンゼン,アセトン等の揮発性物質が存在していると、その揮発性物質によって測定が阻害されてしまうため、分析可能な被分析対象は限定(揮発性物質を含まない被分析対象に限定)されていた。   For example, when the object to be measured is mercury, the atomic absorption method (sealed circulation method, open broadcast air) in which mercury present in the analyte is vaporized by reduction or heating, and then the vaporized mercury is measured and analyzed. Method) has been conventionally known. In the case of the atomic absorption method described above, if a volatile substance such as benzene or acetone is present in the analyte, the measurement is inhibited by the volatile substance. Limited (limited to analytes not containing volatile substances).

しかし、前記の公定分析法では、使用する装置が大型および高価であり、その装置の操作において技術的な熟練度や手間(長時間を要する等)を必要とするため一般的(容易)に扱えるものではない。   However, in the above-mentioned official analysis method, the apparatus to be used is large and expensive, and technical skill and effort (such as a long time) are required for operation of the apparatus. It is not a thing.

近年においては、溶液中に存在する有害物質の多くが電気化学的活性を有することに着目し、種々の有害物質を電気化学的な手法で分析する試み、例えば作用電極(水銀電極,炭素系電極,金電極,銅電極等),対電極,参照電極等を用いたアノーディック・ストリッピング・ボルタンメトリー法(以下、ボルタンメトリー法と称する)で分析する試みが行われている。このボルタンメトリー法は、前記の公定分析法よりも簡略化(例えば、使用装置の小型化,低コスト化)された方法であり、高感度および高精度の分析(例えば、微量金属イオン濃度の定量)が短時間で容易にできる可能性があり、電解質を多量に含んだ被分析対象(例えば、海水等)の分析にも有利とされている。   In recent years, paying attention to the fact that many of the harmful substances present in the solution have electrochemical activity, an attempt to analyze various harmful substances using electrochemical techniques, such as working electrodes (mercury electrodes, carbon-based electrodes) , A gold electrode, a copper electrode, etc.), an anodic stripping voltammetry method (hereinafter referred to as a voltammetry method) using a counter electrode, a reference electrode, and the like. This voltammetry method is simpler than the above-mentioned official analysis method (for example, downsizing and cost reduction of the apparatus used), and has high sensitivity and high accuracy (for example, determination of trace metal ion concentration). Therefore, it can be easily performed in a short time, and is also advantageous for analysis of an analyte (for example, seawater) containing a large amount of electrolyte.

例えば、測定対象が水銀の場合には、作用電極として金製の回転電極を用い、その回転電極にてアマルガムを形成して分析する方法が知られている(例えば、非特許文献1)。また、測定対象が銅の場合には、作用電極として水銀電極(水銀滴を用いる電極等)を用い、その水銀電極にてアマルガムを形成して分析する方法が知られている。なお、測定対象が鉛の場合においては、作用電極として銅電極を用い、その銅電極表面に鉛を還元濃縮させて分析する方法が知られている(例えば、特許文献1)。   For example, when the measurement object is mercury, a method is known in which a gold rotating electrode is used as a working electrode and an amalgam is formed by the rotating electrode and analyzed (for example, Non-Patent Document 1). In addition, when the object to be measured is copper, a method is known in which a mercury electrode (an electrode using a mercury drop or the like) is used as a working electrode, and amalgam is formed at the mercury electrode for analysis. In addition, when a measuring object is lead, the method of using a copper electrode as a working electrode and reducing and concentrating lead on the surface of the copper electrode is known (for example, Patent Document 1).

しかしながら、前記のボルタンメトリー法であっても、例えば水銀電極を用いる場合には、該水銀電極自体が危険物であり、その取扱方法や環境汚染等の観点において懸念されている。また、水銀電極以外の電極(グラッシーカーボン電極等の炭素系電極)を用いた場合であっても、例えば近年の飲料水水質ガイドライン,水道法の改正等に伴って、より高感度および高精度で分析できる分析方法の出現が求められている。
Y. Bonfil,M. Brand,E. Kirowa−Eisner,“Trace determination of anodic stripping voltammetry at rotating gold electrode”,(オランダ国),Analytica Chimica Acta,Elsevier,2000,Volume 424,P.65−76. 特開2004−294422
However, even in the voltammetry method described above, for example, when a mercury electrode is used, the mercury electrode itself is a dangerous substance, and there are concerns about the handling method and environmental pollution. In addition, even when using electrodes other than mercury electrodes (carbon-based electrodes such as glassy carbon electrodes), for example, with the recent revision of drinking water quality guidelines and revisions to the Waterworks Law, etc., with higher sensitivity and higher accuracy. The emergence of analytical methods that can be analyzed is required.
Y. Bonfil, M.M. Brand, E .; Kirowa-Eisner, “Trace determination of ananodic stripping voltametry at attorting gold electrode” (Netherlands), Analytica Chimica Acta, Elvisumer, 2000, Vol. 65-76. JP 2004-294422 A

以上示したようなことから、従来の分析法よりも簡略化(例えば、使用する装置の小型化,低コスト化)された方法であって、より高感度および高精度の分析(例えば、微量金属イオンの測定)が短時間で容易にでき、また危険物の取扱や環境汚染等を考慮する必要の無い分析方法の出現が望まれていた。   As described above, it is a simplified method (for example, downsizing and cost reduction of the apparatus to be used) compared to the conventional analysis method, and the analysis is more sensitive and accurate (for example, trace metal). It has been desired to develop an analysis method that can easily measure ions) in a short period of time, and that does not require handling of hazardous materials or environmental pollution.

本発明は、前記課題の解決を図るために、金電極を作用電極として用いたボルタンメトリー法であって、分析操作する前に作用電極を所定条件にて活性化処理することにより、該作用電極における電気的二重層容量が減少し、該作用電極のバックグラウンド電流(以下、BG電流と称する)が減衰してシグナル/バックグラウンド比(以下、S/B比と称する)が増加することにより、被分析対象中の少なくとも水銀,銅,砒素のうち一つを、より高感度および高精度で分析できるようにしたものである。   The present invention is a voltammetry method using a gold electrode as a working electrode in order to solve the above-mentioned problems, and the working electrode is activated under a predetermined condition before performing an analysis operation. The electric double layer capacitance decreases, the background current (hereinafter referred to as BG current) of the working electrode is attenuated, and the signal / background ratio (hereinafter referred to as S / B ratio) is increased. The analysis object can analyze at least one of mercury, copper, and arsenic with higher sensitivity and higher accuracy.

具体的に、請求項1記載の発明は、作用電極,対電極(例えば、例えば、後述の実施例では白金電極等),参照電極(例えば、後述の実施例ではAg/AgCl参照電極等)を被分析対象(例えば、水道水,環境水,土壌抽出液,食品抽出液等)中に配置してから、前記作用電極の電位を、被分析対象中の測定対象が還元し得る電位に保持する電位保持工程と、前記の保持された作用電極の電位を、前記の被分析対象中の測定対象が酸化し得る正方向に掃引(例えば、後述の実施例では微分パルスにて掃引)しながら、該作用電極における電位変化に対する電流変化を検出する電位掃引工程と、による分析操作を行う方法であって、前記の作用電極には金電極を用い、前記の分析操作前に、塩化物イオンを含んだ溶液(被分析対象以外の溶液)または塩化物イオンが共存する被分析対象中にて分析前活性化電位を印加して分析前活性化処理し、前記の分析操作を、前記の被分析対象中に塩化物イオンが共存する状態で行い、前記の分析前活性化電位が、塩化物イオン共存下にて金電極が酸化溶出反応を起こす電位であることを特徴とする。 Specifically, the invention described in claim 1 includes a working electrode, a counter electrode (for example, a platinum electrode in the embodiments described later), and a reference electrode (for example, an Ag / AgCl reference electrode in the embodiments described later). After being placed in an analysis target (for example, tap water, environmental water, soil extract, food extract, etc.), the potential of the working electrode is held at a potential that can be reduced by the measurement target in the analysis target. While sweeping the potential of the held working electrode and the potential of the held working electrode in a positive direction in which the measurement target in the analysis target can be oxidized (for example, in the embodiment described later, sweeping with a differential pulse), A potential sweep step for detecting a current change with respect to a potential change at the working electrode, wherein the working electrode uses a gold electrode and contains chloride ions before the analyzing operation. Solution (solution not subject to analysis) Alternatively, a pre-analysis activation potential is applied in an analyte to be analyzed in which chloride ions coexist, and the pre-analysis activation treatment is performed. There line analysis before activation potential of said, characterized in that the gold electrode under chloride ions coexist is potential to cause oxidation dissolution reaction.

請求項2記載の発明は、請求項1記載の発明において、前記の分析前活性化電位は、前記の酸化溶出反応を起こす電位のうち、酸素および塩素の気泡が発生する電位を除くことを特徴とする。 The invention according to claim 2 is characterized in that, in the invention according to claim 1 , the pre-analysis activation potential excludes a potential at which bubbles of oxygen and chlorine are generated from the potential causing the oxidation elution reaction. And

請求項3記載の発明は、請求項2記載の発明において、前記の分析前活性化電位は、塩化物イオン共存下にて金電極表面に酸化皮膜が形成される電位を除く範囲であることを特徴とする。 The invention according to claim 3 is the invention according to claim 2 , wherein the pre-analysis activation potential is within a range excluding the potential at which an oxide film is formed on the gold electrode surface in the presence of chloride ions. Features.

請求項4記載の発明は、請求項1〜3記載の発明において、前記の分析操作を繰り返し行う際、該分析操作間において、作用電極に対して分析間活性化電位を印加して分析間活性化処理を行うことを特徴とする。 According to a fourth aspect of the present invention, in the first to third aspects of the present invention, when the analysis operation is repeatedly performed, an inter-analysis activation potential is applied to the working electrode between the analysis operations to perform inter-analysis activity It is characterized by performing the conversion process.

請求項5記載の発明は、請求項4記載の発明において、前記の分析間活性化電位は、塩化物イオン共存下にて金電極が酸化溶出反応を起こす電位のうち、酸素および塩素の気泡が発生する電位を除くことを特徴とする。 The invention according to claim 5 is the invention according to claim 4 , wherein the inter-analysis activation potential includes oxygen and chlorine bubbles among the potential at which the gold electrode undergoes an oxidation elution reaction in the presence of chloride ions. It is characterized in that the generated potential is excluded.

請求項6記載の発明は、請求項5記載の発明において、前記の分析間活性化電位は、塩化物イオン共存下にて金電極表面に酸化皮膜が形成される電位であることを特徴とする。 The invention according to claim 6 is the invention according to claim 5 , wherein the inter-analysis activation potential is a potential at which an oxide film is formed on the gold electrode surface in the presence of chloride ions. .

請求項7記載の発明は、請求項1〜6記載の発明において、前記の測定対象は少なくとも水銀,銅,砒素のうち一つを含むことを特徴とする。 A seventh aspect of the invention is characterized in that, in the first to sixth aspects of the invention, the measurement object includes at least one of mercury, copper, and arsenic.

請求項1〜7記載の発明では、作用電極が金電極であって、塩化物イオン共存下(例えば、塩化物イオンを含む被分析対象中)での分析前活性化処理が行われるため、電位保持工程,電位掃引工程による分析操作で得られる電流特性のBG電流が安定化する。また、分析前活性化処理により、作用電極の酸化溶出反応が起こるだけでなく、前記のBG電流が減衰し、S/B比が高くなる。 In the inventions according to claims 1 to 7 , since the working electrode is a gold electrode and pre-analysis activation treatment is performed in the presence of chloride ions (for example, in an analysis target containing chloride ions), the potential is The BG current having current characteristics obtained by the analysis operation in the holding process and the potential sweep process is stabilized. In addition, the pre-analysis activation treatment not only causes the oxidative elution reaction of the working electrode, but also attenuates the BG current and increases the S / B ratio.

さらに、前記の酸化溶出反応が起こることにより、電極表面が粗化し作用電極表面積の増加に伴い電着効率が向上する。さらにまた、分析間活性化処理において、塩化物イオン共存下にて金電極表面に酸化皮膜が形成される電位を除く場合には、作用電極での電着物質の電着効率がより向上する。加えて、前記の分析前活性化電位や分析間活性化電位において、酸素や塩素等の気泡が発生する電位を除くことにより、該気泡発生による分析の影響を回避できる。   Furthermore, when the oxidation elution reaction occurs, the electrode surface is roughened, and the electrodeposition efficiency is improved as the working electrode surface area is increased. Furthermore, in the inter-analysis activation treatment, when the potential at which an oxide film is formed on the gold electrode surface in the presence of chloride ions is removed, the electrodeposition efficiency of the electrodeposition substance at the working electrode is further improved. In addition, by removing the potential at which bubbles such as oxygen and chlorine are generated in the pre-analysis activation potential and the inter-analysis activation potential, it is possible to avoid the influence of the analysis due to the generation of bubbles.

請求項1〜7記載の発明によれば、従来の分析法のように大型および高価で複雑な操作が必要な装置を必要とせず(簡略化)、また危険物の取扱や環境汚染等を考慮する必要の無い方法であり、作用電極が活性化処理され、被分析対象について高感度および高精度の分析を短時間で容易にできる。また、例えば作用電極2が劣化していた場合には分析開始前に電解研磨によって再生処理される。 According to the first to seventh aspects of the present invention, there is no need for a large-sized, expensive, and complicated operation device (simplification) as in the conventional analysis method, and the handling of hazardous materials and environmental pollution are taken into consideration. It is a method that does not need to be performed, the working electrode is activated, and high-sensitivity and high-precision analysis can be easily performed in a short time with respect to the analysis target. For example, when the working electrode 2 has deteriorated, it is regenerated by electrolytic polishing before the analysis is started.

また、請求項3〜6記載の発明によれば、たとえ分析操作を繰り返し行っても、電極が再生処理され、高感度および高精度な分析を維持し分析の再現性が得られる。 In addition, according to the invention described in claims 3 to 6 , even if the analysis operation is repeated, the electrode is regenerated, maintaining high sensitivity and high accuracy analysis, and reproducibility of analysis is obtained.

以下、本実施の形態における溶液分析方法を図面等に基づいて説明する。   Hereinafter, the solution analysis method in this Embodiment is demonstrated based on drawing etc. FIG.

本実施の形態は、作用電極,対電極,参照電極を用い、水道水等の被分析対象(例えば、水銀,銅,砒素等の測定対象を含んだ水道水等の溶液)を分析するボルタンメトリー法による分析方法であって、前記の作用電極として金電極を用い、塩化物イオンが共存する被分析対象中に浸漬された金電極を所定条件で活性化処理(後述の分析前活性化処理,分析間活性化処理)してから、被分析対象中の測定対象(少なくとも、水銀,銅,砒素のうち一つ)を測定し分析するものである。なお、前記の活性化処理(特に、後述の分析前活性化処理)においては、前記の被分析対象以外の溶液であっても、塩化物イオンを含んだ溶液であれば良い。   This embodiment uses a working electrode, a counter electrode, and a reference electrode, and uses a voltammetry method to analyze an analysis target such as tap water (for example, a solution such as tap water containing a measurement target such as mercury, copper, and arsenic). The gold electrode immersed in the analyte in which chloride ions coexist is activated under a predetermined condition using a gold electrode as the working electrode (pre-analysis activation treatment and analysis described later). Measurement object (at least one of mercury, copper, and arsenic) is measured and analyzed. In the activation process (especially, the pre-analysis activation process described later), even a solution other than the analysis target may be a solution containing chloride ions.

前記の活性化処理においては、前記の被分析対象中にアニオン種として塩化物イオンが共存した状態で、所定の大きさの電位を作用電極に印加(定電位を印加)することにより、該作用電極の電気的二重層容量が減少し、BG電流が減衰するものである。   In the activation treatment, a potential having a predetermined magnitude is applied to a working electrode (a constant potential is applied) in a state where chloride ions as anion species coexist in the analyte. The electric double layer capacity of the electrode is reduced, and the BG current is attenuated.

なお、非特許文献1においては、作用電極(金電極から成る回転電極)を研磨した後、該作用電極に対し比較的大きい定電流(150mA/cm2;ボルタンメトリー法の分野としては極めて大きい電流)を通電することにより、検出され得るピーク電流のベースラインを平坦にすること(BG電流の安定化)は読み取れるが、BG電流を低減することは何ら開示および示唆されていない。また、極めて大きい定電流を通電するため、作用電極表面に気泡(酸素)が発生し、その作用電極の形態は回転電極に制限されてしまうことが記載されている。さらに、単に定電流を通電する内容が開示されているだけでは、該通電時の作用電極に印加された電位(実際に印加された電位)を読み取ることは不可能である(非特許文献1の項目2.4.1“Activating tha gold electrode”,Fig.1等参照)。 In Non-Patent Document 1, after polishing the working electrode (a rotating electrode made of a gold electrode), a relatively large constant current (150 mA / cm 2 ; very large current in the field of voltammetry) with respect to the working electrode. Although it can be read that the baseline of the peak current that can be detected is made flat (stabilization of the BG current), there is no disclosure or suggestion of reducing the BG current. Further, it is described that bubbles (oxygen) are generated on the surface of the working electrode because a very large constant current is applied, and the form of the working electrode is limited to the rotating electrode. Furthermore, it is impossible to read the potential applied to the working electrode at the time of energization (potentially applied potential) simply by disclosing the contents of conducting a constant current (Non-Patent Document 1). Item 2.4.1 “Activating the gold electrode”, FIG. 1 etc.).

特許文献1においては、銅が卑金属(容易に酸化される金属)であって、電解質の種類に限らず容易に酸化溶出反応(Cu→Cu2++e-)を起こすこと(電解質の種類によらず±0V付近(vs.Ag/AgCl)の電位で容易に酸化溶出すること)に着目し、単に作用電極(銅電極)表面の汚れ等を清浄するために、その作用電極の電位を負電位側から正電位まで掃引(±0V付近(vs.Ag/AgCl)を僅かに超える程度(0〜150mV程度)の正電位で保持)し、該作用電極表面を分子レベルで酸化溶出し再生処理することが開示されているが、BG電流を低減することは何ら開示および示唆すらされていない(特許文献1の請求項14等)。 In Patent Document 1, copper is a base metal (a metal that is easily oxidized), and easily causes an oxidation elution reaction (Cu → Cu 2+ + e ) without being limited to the type of electrolyte (depending on the type of electrolyte). In order to clean the surface of the working electrode (copper electrode) simply, the potential of the working electrode is set to a negative potential, focusing on the fact that it is easily oxidized and eluted at a potential around ± 0 V (vs. Ag / AgCl). Sweep from the side to a positive potential (maintained at a positive potential slightly exceeding ± 0 V (vs. Ag / AgCl) (approximately 0 to 150 mV)), and the surface of the working electrode is oxidized and eluted at the molecular level for regeneration treatment However, there is no disclosure or suggestion of reducing the BG current (claim 14 of Patent Document 1).

一方、本実施形態は、作用電極として貴金属(酸化困難な金属)である金電極を用い、被分析対象中に塩化物イオンが共存する状態で分析を行うものであって、その塩化物イオンが共存する被分析対象中(または塩化物イオンを含んだ溶液)に浸漬された作用電極に対し比較的高い正方向の定電位(作用電極の酸化溶出反応が起こる電位;例えば、後述の実施例1の場合は約+1000mVよりも正方向の電位(好ましくは約+1400mVよりも正方向の電位))を印加して活性化処理を行うものである。   On the other hand, in this embodiment, a gold electrode that is a noble metal (a metal that is difficult to oxidize) is used as a working electrode, and analysis is performed in a state where chloride ions coexist in an analysis target. A relatively high positive potential at a working electrode immersed in a coexisting analyte (or a solution containing chloride ions) (potential at which the working electrode undergoes an oxidative elution reaction; for example, Example 1 described later) In this case, the activation process is performed by applying a potential in the positive direction from about +1000 mV (preferably a potential in the positive direction from about +1400 mV).

すなわち、本実施形態は、金電極が、塩化物イオン共存下においてのみ所定の電位にて酸化溶出し、電気化学的に活性状態になることにより、該金電極のBG電流が安定化するだけでなく、電気的二重層容量が減少しBG電流自体が低減されることを見出したものである。したがって、本実施形態における電極の活性化処理は印加電位に依存するものであって、非特許文献1のように定電流を通電するものとは異なる。   That is, in this embodiment, the gold electrode oxidizes and elutes at a predetermined potential only in the presence of chloride ions and becomes electrochemically active, whereby the BG current of the gold electrode is only stabilized. In other words, the present inventors have found that the electric double layer capacity is reduced and the BG current itself is reduced. Therefore, the electrode activation process in the present embodiment depends on the applied potential, and is different from that in which a constant current is applied as in Non-Patent Document 1.

また、前記の活性化処理の印加電位が例えば+2V超レベル(例えば5V)の場合には、作用電極表面に気泡が発生し得ることが考えられるが、+1V〜+2Vレベル(例えば、後述の実施例)であれば、該気泡の発生は殆ど考慮する必要は無く(特に、気泡発生による分析の妨げが殆ど無い測定対象(水銀等)の場合は必要無く)、電極の形態が制限されることも無い。なお、前記の印加電位は、前記のように気泡が発生しない電位に設定(例えば+2V以下)することが好ましいが、たとえ前記の印加電位が+2V超レベルであっても、例えば物質移動促進手段(後述のスターラー7,撹拌子7a等から成る手段)を適宜設定(例えば、撹拌子の回転速度を上げる等)することにより、作用電極表面に気泡が付着しないようにできれば、該気泡による影響(例えば、後述の実施例では、活性化処理が施されない可能性)を回避できる可能性がある。   Further, when the applied potential of the activation process is, for example, a level exceeding +2 V (for example, 5 V), it is considered that bubbles may be generated on the surface of the working electrode. However, a level of +1 V to +2 V (for example, an example described later) ), There is almost no need to consider the generation of bubbles (especially, in the case of a measurement target (mercury or the like) that hardly interferes with the analysis due to the generation of bubbles), and the shape of the electrode may be limited. No. The applied potential is preferably set to a potential at which bubbles do not occur as described above (for example, +2 V or less). However, even if the applied potential is higher than +2 V, for example, mass transfer promoting means ( By appropriately setting (for example, increasing the rotation speed of the stirrer) by appropriately setting a stirrer 7, a stirrer 7a, etc., which will be described later, the influence of the bubbles (for example, In the embodiments described later, there is a possibility that the activation process may not be performed).

また、特に分析前活性化処理では、金電極の酸化溶出反応等により、溶液(分析活性化処理に用いられる溶液)が明らかに呈色したり、塩素が多量に発生することがある。このような場合には、前記の分析前活性化処理を被分析対象中で行わずに、他の溶液中(塩化物イオンを含んだ溶液中)にて行うことが好ましい。   In particular, in the pre-analysis activation treatment, the solution (solution used for the analysis activation treatment) may be clearly colored or a large amount of chlorine may be generated due to the oxidation elution reaction of the gold electrode. In such a case, it is preferable to perform the pre-analysis activation process in another solution (in a solution containing chloride ions) without performing the pre-analysis activation process in the analysis target.

[分析方法に適用される装置例]
図1は、本実施の形態における分析方法に適用される装置の一例を示す概略図である。図1において、符号1は測定容器(セル)を示すものであり、その測定容器1内には被分析対象(例えば、水道水等)1aが入っており、封止部材1bにより封止される。符号2は金電極から成る作用電極(例えば、略円柱状,略平板状の電極)、符号3は対電極(例えば、白金やカーボンから成るコイル状の電極)、符号4は参照電極(基準電極;例えば、Ag/AgCl電極(飽和塩化カリウム)や飽和カロメル電極(Saturated Calomel Electrode)等)を示すものであり、それら作用電極2,対電極3,参照電極4はそれぞれ一定の距離を隔てて、前記測定容器1内の被分析対象1a中に浸漬されるように設けられる。
[Example of equipment applied to analysis method]
FIG. 1 is a schematic diagram showing an example of an apparatus applied to the analysis method in the present embodiment. In FIG. 1, reference numeral 1 denotes a measurement container (cell). The measurement container 1 contains an object to be analyzed (for example, tap water) 1a and is sealed by a sealing member 1b. . Reference numeral 2 is a working electrode made of a gold electrode (for example, a substantially cylindrical or substantially flat electrode), reference numeral 3 is a counter electrode (for example, a coiled electrode made of platinum or carbon), and reference numeral 4 is a reference electrode (a reference electrode). For example, an Ag / AgCl electrode (saturated potassium chloride) or a saturated calomel electrode), and the working electrode 2, the counter electrode 3, and the reference electrode 4 are separated from each other by a certain distance, It is provided so as to be immersed in the object 1a to be analyzed in the measurement container 1.

符号5はポテンシオスタットを示すものであり、そのポテンシオスタット5には前記作用電極2,対電極3,参照電極4が例えば配線2a,3a,4a等を介して接続される。また、前記ポテンシオスタット5には、該ポテンシオスタット5等を介して得た測定データに係る演算等が可能なコンピュータ(例えば、パーソナルコンピュータ)6の他に、必要に応じてレコーダ,ポテンシャルスイーパ等が接続される。符号7はスターラーを示すものであり、そのスターラー7によって前記測定容器1内の底部に位置する撹拌子7aを動作させて、前記測定容器1内の被分析対象1aを撹拌するものである。   Reference numeral 5 denotes a potentiostat, and the working electrode 2, the counter electrode 3, and the reference electrode 4 are connected to the potentiostat 5 through, for example, wirings 2a, 3a, 4a and the like. Further, the potentiostat 5 includes a computer (for example, a personal computer) 6 capable of performing calculations related to measurement data obtained through the potentiostat 5 and the like, and a recorder, a potential sweeper as necessary. Etc. are connected. Reference numeral 7 denotes a stirrer, and the stirrer 7 a located at the bottom of the measurement container 1 is operated by the stirrer 7 to stir the object 1 a to be analyzed in the measurement container 1.

次に、図1に示した装置による分析方法の概略を説明する。まず、作用電極2表面への測定対象の移動を促進するために、スターラー7,撹拌子7aを介して被分析対象1aを撹拌(乱流)することにより、該被分析対象1a中の物質移動(電気化学的活性物質の物質移動、すなわち後述の電着物質の電着効率(還元析出効率)またはアマルガム形成効率)を促進させながら、ポテンシオスタット5により作用電極2の電位(参照電極4によって規制された電位)を所望の電位(測定対象が還元(電着またはアマルガム形成)し得る電位)に設定して所定時間保持し、被分析対象1a中の測定対象を前記作用電極2表面にて還元し電着またはアマルガム形成する。その後、前記ポテンシオスタット5により、前記作用電極2の保持されていた電位を、正方向(測定対象が酸化し得る正電位側)に所定の条件(例えば、後述の実施例では微分パルス)で掃引して、前記の電着物質またはアマルガムを酸化反応により被分析対象1a中に溶出(アノードストリッピング)する。   Next, an outline of an analysis method using the apparatus shown in FIG. 1 will be described. First, in order to promote the movement of the measurement object to the surface of the working electrode 2, the substance movement in the analysis object 1a is performed by stirring (turbulent flow) the analysis object 1a via the stirrer 7 and the stirring bar 7a. While promoting the mass transfer of the electrochemically active substance, that is, the electrodeposition efficiency (reduction deposition efficiency) or amalgam formation efficiency of the electrodeposition substance described later), the potential of the working electrode 2 (by the reference electrode 4) by the potentiostat 5 The regulated potential is set to a desired potential (potential at which the measurement target can be reduced (electrodeposition or amalgam formation)) and held for a predetermined time, and the measurement target in the target 1a to be analyzed is on the surface of the working electrode 2 Reduce to form electrodeposition or amalgam. Thereafter, the potentiostat 5 causes the potential held by the working electrode 2 to move in the positive direction (the positive potential side on which the measurement target can be oxidized) under a predetermined condition (for example, a differential pulse in the embodiments described later). By sweeping, the electrodeposition material or amalgam is eluted (anode stripping) into the analyte 1a by an oxidation reaction.

前記の電着物質やアマルガムは、所定の電位でそれぞれ溶出することから、前記作用電極2の電位を掃引(該電着物質やアマルガムを被分析対象1a中に溶出)する際に、該作用電極2の電位変化に対する電流変化(酸化電流の変化;作用電極2と対電極3との間を流れる電流変化)を検出する。そして、その電流変化を積分計算して得られる電気量(クーロン量)もしくはピーク電流値を検量線と比較することにより、測定対象を測定(定量,定性)し前記被分析対象1aの分析(水銀,銅の濃度等の測定による分析)を行うことができる。   Since the electrodeposition substance and the amalgam are eluted at a predetermined potential, respectively, when the potential of the working electrode 2 is swept (the electrodeposition substance and the amalgam are eluted in the analyte 1a), the working electrode 2 detects a current change (change in oxidation current; change in current flowing between the working electrode 2 and the counter electrode 3) with respect to the potential change of 2. Then, by comparing the electric quantity (coulomb quantity) or peak current value obtained by integrating the change in current with a calibration curve, the measurement object is measured (quantitative, qualitative), and the analysis object 1a is analyzed (mercury , Analysis by measurement of copper concentration, etc.).

次に、種々の試料S1〜S12b(被分析対象1aに相当)を用いて、図1の概略説明図(図1と同様のものには同一符号等を用いて詳細な説明を省略)に示すような分析に適した支持電解質(種々のアニオン種,濃度),緩衝溶液のpH,作用電極2の電位(後述の電位保持工程での作用電極2の電位)等を以下に示す検証例1〜6により検証した。そして、実施例1〜15のように、作用電極2を活性化処理してから、銅イオン,水銀イオン,砒素イオン等を含んだ種々の試料S13〜S23(被分析対象1aに相当)の分析を行った。   Next, using various samples S1 to S12b (corresponding to the object 1a to be analyzed), shown in a schematic explanatory diagram of FIG. 1 (the same reference numerals are used for the same components as in FIG. 1 and the detailed description is omitted). Examples of the supporting electrolyte (various anion species and concentration) suitable for such analysis, pH of the buffer solution, potential of the working electrode 2 (potential of the working electrode 2 in the potential holding step described later), etc. 6 to verify. Then, as in Examples 1 to 15, after the working electrode 2 is activated, analysis of various samples S13 to S23 (corresponding to the analysis target 1a) containing copper ions, mercury ions, arsenic ions, and the like is performed. Went.

なお、図1に示す分析装置において、作用電極2,対電極3,参照電極4には、それぞれ収縮テフロン(登録商標)チューブ内に金電極を埋設させて形成した北斗電工社製の電極(OD;6mm,ID;3mm),Φ0.5mmのコイル状白金線,Ag/AgCl電極(北斗電工社製のHX−R6)を用いた。また、測定容器1には50mLガラスビーカー、ポテンシオスタット5には北斗電工社製のHOE−100を用いた。また、作用電極2は、表面をサンドペーパ(♯1200)で研磨してから用いた。   In the analysis apparatus shown in FIG. 1, the working electrode 2, the counter electrode 3 and the reference electrode 4 are electrodes (OD) manufactured by Hokuto Denko Co., Ltd., each of which is formed by embedding a gold electrode in a contracted Teflon (registered trademark) tube. 6 mm, ID; 3 mm), a Φ0.5 mm coiled platinum wire, and an Ag / AgCl electrode (HX-R6 manufactured by Hokuto Denko). The measuring vessel 1 was a 50 mL glass beaker, and the potentiostat 5 was HOE-100 manufactured by Hokuto Denko. The working electrode 2 was used after the surface was polished with sandpaper (# 1200).

(検証例1)
本検証例1では、塩化カリウム(KCl),硫酸カリウム(K2SO4),硝酸カリウム(KNO3)の溶液(それぞれ0.1M溶液)を試料S1〜S3として用い、それら試料S1〜S3のサイクリックボルタモグラムを検証した。まず、作用電極2,対電極3,参照電極4が浸漬されるように封止部材1bでそれぞれ封止した。
(Verification example 1)
In this verification example 1, a solution of potassium chloride (KCl), potassium sulfate (K 2 SO 4 ), and potassium nitrate (KNO 3 ) (each 0.1 M solution) was used as samples S1 to S3, and the samples S1 to S3 were used. The click voltammogram was verified. First, it sealed with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 4 might be immersed.

その後、試料S1〜S3について、前記参照電極4に対する作用電極2の電位を0V〜+1.6Vの範囲内で掃引すると共に、その作用電極2の電位変化に対する電流変化を検出することにより、それぞれ図2A〜図2Cに示すようなサイクリックボルタモグラムが得られた。   Thereafter, for the samples S1 to S3, the potential of the working electrode 2 with respect to the reference electrode 4 is swept within a range of 0 V to +1.6 V, and a current change with respect to the potential change of the working electrode 2 is detected, thereby obtaining a diagram. A cyclic voltammogram as shown in FIGS. 2A to 2C was obtained.

図2B,図2Cに示す結果から、硫酸カリウム溶液,硝酸カリウム溶液を用いた試料S2,S3では、何ら酸化溶出反応が起こっていないことを読み取れる。一方、図2Aに示す結果から、塩化カリウム溶液を用いた試料S1の場合は、+1V付近から所定の正電位までの間(図2Aでは+0.9V付近〜+1.6V付近)で酸化溶出反応が起こっていることを読み取れる。このように酸化溶出反応が起こる理由は、下記式に示すような金と塩化物イオンとの錯形成反応によるものと思われる。   From the results shown in FIGS. 2B and 2C, it can be read that no oxidation elution reaction occurs in the samples S2 and S3 using the potassium sulfate solution and the potassium nitrate solution. On the other hand, from the results shown in FIG. 2A, in the case of sample S1 using a potassium chloride solution, the oxidation elution reaction occurred between about +1 V and a predetermined positive potential (from about +0.9 V to about +1.6 V in FIG. 2A). I can read what is happening. The reason why the oxidation elution reaction occurs is considered to be due to a complex formation reaction between gold and chloride ions as shown in the following formula.

Au+4Cl-→AuCl4+3e-[+1000mV(vs.NHE)]……(1)
Au+2Cl-→AuCl2+e-[+1100mV(vs.NHE)]……(2)。
Au + 4Cl → AuCl 4 + 3e [+1000 mV (vs. NHE)] (1)
Au + 2Cl → AuCl 2 + e [+1100 mV (vs. NHE)] (2).


次に、試料S1と同様の塩化カリウム(KCl)の溶液(1M溶液)を試料S1aとして用い、該試料S1と同様の操作により、参照電極4に対する作用電極2の電位を0mV〜+2000mVの範囲内で掃引(掃引速度100mV/s)および作用電極2の電位変化に対する電流変化を検出したところ、図3に示すようなサイクリックボルタモグラムが得られた。図3に示す結果から、試料S1aの場合は、+900mV付近から所定の正電位までの間(図3では+900mV付近〜+2000mV付近)で酸化溶出反応が起こっていることを読み取れる。

Next, the same potassium chloride (KCl) solution (1M solution) as that of the sample S1 is used as the sample S1a, and the potential of the working electrode 2 with respect to the reference electrode 4 is within the range of 0 mV to +2000 mV by the same operation as the sample S1. 3 detected a current change with respect to the sweep (sweep speed 100 mV / s) and the potential change of the working electrode 2, and a cyclic voltammogram as shown in FIG. 3 was obtained. From the results shown in FIG. 3, it can be seen that in the case of the sample S1a, the oxidation elution reaction takes place from around +900 mV to a predetermined positive potential (in the vicinity of +900 mV to +2000 mV in FIG. 3).

前記のように酸化溶出反応が起こる場合、該酸化溶出反応の大きさに応じて作用電極2は消耗するものの、該作用電極2表面の表面粗度は大きくなり(作用電極2の表面積が大きくなり)、この表面粗度に応じて該作用電極2表面での電着物質の電着効率(還元析出効率)が大きくなることが考えられる(特に、銅,砒素等)。   When the oxidation elution reaction occurs as described above, the working electrode 2 is consumed according to the magnitude of the oxidation elution reaction, but the surface roughness of the surface of the working electrode 2 increases (the surface area of the working electrode 2 increases). ), It is considered that the electrodeposition efficiency (reduction deposition efficiency) of the electrodeposition material on the surface of the working electrode 2 increases according to the surface roughness (particularly, copper, arsenic, etc.).

なお、図2A,図3の結果において違いが観られる理由は、試料S1,S1aの塩化物イオン濃度,pH等の違いによるものと考えられる。   Note that the reason why the difference is observed in the results of FIGS. 2A and 3 is considered to be due to the difference in the chloride ion concentration, pH, etc. of the samples S1 and S1a.

また、図2A,図3に示すように、ピーク電流が生じた電位よりも正方向の電位において、酸化溶出反応が極めて小さい電位領域(例えば、図2Aでは+1.35V付近〜1.5V付近、図3では+1400mV付近〜+1700mV付近)が観られるが、この電位領域では作用電極2表面にて酸化皮膜が形成されているものと考えられる。この場合、前記の電着物質の電着効率は殆ど向上しないものの、作用電極2の消耗を抑制することはできる。   Further, as shown in FIGS. 2A and 3, a potential region in which the oxidation elution reaction is extremely small at a potential in the positive direction relative to the potential at which the peak current is generated (for example, in the vicinity of +1.35 V to about 1.5 V in FIG. In FIG. 3, around +1400 mV to around +1700 mV) is observed, but it is considered that an oxide film is formed on the surface of the working electrode 2 in this potential region. In this case, although the electrodeposition efficiency of the electrodeposition material is hardly improved, the consumption of the working electrode 2 can be suppressed.

さらに、前記の酸化溶出反応が極めて小さい電位領域よりも正方向の電位において、酸化溶出反応が比較的小さい電位領域(例えば、図2Aでは+1.5V付近〜1.6V付近、図3では+1700mV付近〜+2000mV付近)が観られるが、この電位領域では作用電極2表面にて酸素や塩素が発生したものと考えられる。ここで、酸素や塩素等によって分析が妨げられる測定対象の場合には、該気泡による影響(例えば、後述の実施例では、活性化処理が施されない可能性)を回避することが好ましいが、その他の測定対象(水銀等)においては十分良好な分析が可能となる。   Further, in the potential in the positive direction than the potential region in which the oxidation elution reaction is extremely small, a potential region in which the oxidation elution reaction is relatively small (for example, around +1.5 V to 1.6 V in FIG. 2A, around +1700 mV in FIG. 3). In the potential region, it is considered that oxygen and chlorine are generated on the surface of the working electrode 2. Here, in the case of a measurement object whose analysis is hindered by oxygen, chlorine, or the like, it is preferable to avoid the influence of the bubbles (for example, in the examples described below, the possibility of not being activated), It is possible to perform a sufficiently good analysis on the measurement target (such as mercury).

したがって、図1に示すような装置による分析においては、被分析対象1a中に塩化物イオンが共存する場合、金電極からなる作用電極2に対して、該作用電極の酸化溶出反応が起こる電位(例えば、本検証例1では約+0.9V〜+1V以上の電位)を印加することにより、該作用電極2において酸化溶出反応を起こすため、たとえ分析操作の繰り返し等により作用電極2が劣化(例えば、表面形状の変化,汚れ等(例えば、電極表面に付着し得るタンパク質等の有機物)が付着)しても、該作用電極2が再生処理(分析の再現性が維持)され得ることを判明した。   Therefore, in the analysis by the apparatus as shown in FIG. 1, when chloride ions coexist in the object 1a to be analyzed, the potential at which the oxidative elution reaction of the working electrode occurs with respect to the working electrode 2 made of a gold electrode ( For example, in this verification example 1, by applying a potential of about +0.9 V to +1 V or more), an oxidation elution reaction is caused in the working electrode 2, so that the working electrode 2 deteriorates due to repeated analysis operations (for example, It has been found that the working electrode 2 can be regenerated (maintaining the reproducibility of the analysis) even if the surface shape changes, dirt, etc. (for example, organic substances such as proteins that can adhere to the electrode surface).

(検証例2)
本検証例2では、種々のアニオン種が共存し銅イオンを含む被分析対象を用い、それぞれの分析を検証した。まず、0.1Mの塩化カリウム溶液に対し、10mM(緩衝作用を奏するのに必要な程度の濃度)の酢酸緩衝溶液(pH4.5),0〜200nMの銅イオンを配合して試料S4を得た。次に、前記の試料S4中に作用電極2,対電極3,参照電極4が浸漬されるように封止部材1bで封止した。
(Verification example 2)
In this verification example 2, each analysis was verified using the analyte to be analyzed in which various anion species coexist and containing copper ions. First, a sample S4 is obtained by blending 0.1 mM potassium chloride solution with 10 mM (concentration required to exhibit a buffering effect) acetate buffer solution (pH 4.5) and 0 to 200 nM copper ions. It was. Next, it sealed with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 4 might be immersed in the said sample S4.

その後、スターラー7,撹拌子7aを介して物質移動促進雰囲気下を保ちながら、前記参照電極4に対する作用電極2の電位を180秒間−50mVに保持することにより、試料S4中の銅イオンを作用電極2表面に電着させた(電位保持工程)。   Thereafter, the potential of the working electrode 2 with respect to the reference electrode 4 is maintained at −50 mV for 180 seconds while maintaining a mass transfer accelerating atmosphere via the stirrer 7 and the stirring bar 7a. 2 Electrodeposited on the surface (potential holding step).

そして、前記スターラー7,撹拌子7aを停止してから、前記参照電極4に対する作用電極2の電位を、リニアスイープモード(LSV条件25mV/s)にて−50mVから正方向(電着物質が酸化し得る正電位側)に掃引することにより、前記作用電極2表面の電着物質を試料S1中に溶出(アノードストリッピング)すると共に、その作用電極2の電位変化に対する電流変化を検出(電位掃引工程)し、その検出結果を銅イオン濃度毎に図4A〜図5Eの電位変化に対する電流変化特性図に示した。   Then, after the stirrer 7 and the stirring bar 7a are stopped, the potential of the working electrode 2 with respect to the reference electrode 4 is changed from -50 mV in the linear sweep mode (LSV condition 25 mV / s) in the positive direction (the electrodeposition material is oxidized). By sweeping to the positive potential side), the electrodeposition material on the surface of the working electrode 2 is eluted in the sample S1 (anode stripping), and a current change with respect to the potential change of the working electrode 2 is detected (potential sweep). The detection results are shown in the current change characteristic diagrams with respect to potential changes in FIGS. 4A to 5E for each copper ion concentration.

また、前記の試料S4の塩化カリウム溶液の替わりに硫酸カリウム溶液または硝酸カリウム溶液を用いて試料S5,S6を得て、該試料S4と同様の分析操作により、電位保持工程,電位掃引工程を行って電位変化に対する電流変化特性をそれぞれ求め、それら各結果を銅イオン濃度毎に図6A〜図8,図9A〜図11の電流変化特性図に示した。   Further, samples S5 and S6 are obtained using a potassium sulfate solution or a potassium nitrate solution instead of the potassium chloride solution of the sample S4, and the potential holding step and the potential sweep step are performed by the same analytical operation as the sample S4. The current change characteristics with respect to the potential change were obtained, and the respective results were shown in the current change characteristics diagrams of FIGS. 6A to 8 and FIGS. 9A to 11 for each copper ion concentration.

まず、図6A〜図7C,図9A〜図10Eに示すように、試料S5,S6の場合は、各銅イオン濃度における電流特性から十分なピーク電流が読み取れ、それぞれ図8,図11に示すように銅イオン濃度に対する各ピーク電流の電気量の特性線は直線性を有するものの、各々の切片が負の値を示した。この理由として、硫酸カリウム溶液,硝酸カリウム溶液を用いた場合は、電極に対する銅イオンの還元濃縮効率が低いため、定量性および再現性が劣るものと思われる。   First, as shown in FIGS. 6A to 7C and FIGS. 9A to 10E, in the case of samples S5 and S6, a sufficient peak current can be read from the current characteristics at each copper ion concentration, as shown in FIGS. 8 and 11, respectively. In addition, although the characteristic line of the electric quantity of each peak current with respect to the copper ion concentration has linearity, each intercept showed a negative value. For this reason, when a potassium sulfate solution or a potassium nitrate solution is used, it is considered that the quantitative and reproducibility is inferior because the reduction and concentration efficiency of copper ions with respect to the electrode is low.

一方、図4A〜図5Eに示すように、試料S4の場合は、各電流特性において濃度に応じたピーク強度の増加は観られるもののBG電流の安定性に欠けることが読み取れる。   On the other hand, as shown in FIGS. 4A to 5E, in the case of the sample S4, it can be read that although the increase in peak intensity corresponding to the concentration is observed in each current characteristic, the stability of the BG current is lacking.

そこで、塩化カリウム溶液を用いた試料S4について、前記のように電位保持工程を行った後、電位掃引工程の際に微分パルスモード(パルス条件…パルス周期100ms,パルス間隔50ms,パルス高さ50mV)にて−500mVから正方向に掃引することにより、その作用電極2の電位変化に対する電流変化を検出し、その検出結果を銅イオン濃度毎に図12A〜図14Bの電流変化特性図に示した。   Therefore, the sample S4 using the potassium chloride solution is subjected to the potential holding step as described above, and then the differential pulse mode (pulse condition: pulse period 100 ms, pulse interval 50 ms, pulse height 50 mV) in the potential sweep step. The current change with respect to the potential change of the working electrode 2 was detected by sweeping in the positive direction from -500 mV, and the detection results are shown in the current change characteristic diagrams of FIGS. 12A to 14B for each copper ion concentration.

図12A〜図14Bに示すように、試料S4の分析において電位掃引工程を微分パルスモードで行った場合は、リニアスイープモードで行った場合と比較して、各電流特性のBG電流が十分安定していることが読み取れる。また、図15に示すように、銅イオン濃度に対する各ピーク電流値の特性線は、直線性を有することが読み取れる。図15の特性線の切片は正の値を示したが、この理由としては試料S4中のコンタミによるものであって分析に支障のない程度と考えられ、電着効率も十分であることが読み取れる。   As shown in FIGS. 12A to 14B, when the potential sweep process is performed in the differential pulse mode in the analysis of the sample S4, the BG current of each current characteristic is sufficiently stable compared to the case where the potential sweep process is performed in the linear sweep mode. I can read that. Moreover, as shown in FIG. 15, it can be read that the characteristic line of each peak current value with respect to the copper ion concentration has linearity. The intercept of the characteristic line in FIG. 15 showed a positive value. The reason for this is due to contamination in the sample S4, which is considered to be a level that does not hinder the analysis, and it can be read that the electrodeposition efficiency is sufficient. .

なお、硝酸カリウム溶液,硫酸カリウム溶液を用いた試料S5,S6について、電位掃引工程を微分パルスモードで行い、作用電極2の電位変化に対する電流変化の結果(各ピーク電流値)から特性線(検量線に相当)を作成してみたところ、それぞれの特性線の切片は負の値を示した(図示省略)。この結果から、電位掃引工程における条件(リニアスイープモード,微分パルスモード)は、電着効率と無関係であることが考えられる。   For samples S5 and S6 using a potassium nitrate solution and a potassium sulfate solution, the potential sweep step is performed in the differential pulse mode, and a characteristic curve (calibration curve) is obtained from the result of current change (each peak current value) with respect to potential change of the working electrode 2. The characteristic line intercepts showed negative values (not shown). From this result, it is considered that the conditions (linear sweep mode, differential pulse mode) in the potential sweep process are independent of the electrodeposition efficiency.

したがって、図1に示すような装置による分析においては、被分析対象1a中に共存させるアニオン種が塩化物イオン(すなわち、分析時において、被分析対象に塩化物イオンが共存する場合)であれば、BG電流が安定して還元濃縮効率が十分となり、電位掃引工程の条件として微分パルスモードを選択した場合にはBG電流がより安定し、銅イオン濃度に対する各ピーク電流値特性線を信頼性の高い検量線として適用できることを判明した。なお、前記銅イオンの替わりに水銀イオンを含む被分析対象であっても、本検証例2と略同様の傾向を有するものと考えられる。   Therefore, in the analysis by the apparatus as shown in FIG. 1, if the anion species coexisting in the analyte 1a is chloride ions (that is, chloride ions coexist in the analyte at the time of analysis). When the differential pulse mode is selected as the condition for the potential sweep process, the BG current is more stable and each peak current value characteristic line with respect to the copper ion concentration is reliable. It was found that it can be applied as a high calibration curve. In addition, it is thought that even if it is a to-be-analyzed object containing mercury ion instead of the copper ion, it has a tendency similar to that in this verification example 2.

(検証例3)
本検証例3では、銅イオンまたは水銀イオンを含み種々の濃度の塩化物イオンが共存する被分析対象を用い、それぞれの分析結果を検証した。
(Verification Example 3)
In this verification example 3, each analysis result was verified using an analyte to be analyzed in which various concentrations of chloride ions including copper ions or mercury ions coexist.

まず、20mM〜150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),200nMの銅イオンを配合して試料S7を得た。そして、試料S7について、塩化カリウム溶液の濃度毎に、検証例2と同様の電位保持工程,電位掃引工程(微分パルスモード(パルス条件…パルス周期100ms,パルス間隔50ms,パルス高さ50mV)による分析操作を行って、電位変化に対する電流変化特性をそれぞれ検出し、それら各検出結果を図16の塩化カリウム溶液濃度に対するピーク電流値特性図に示した。   First, 20 mM to 150 mM potassium chloride solution was used as a supporting electrolyte, and 10 mM acetate buffer solution (pH 4.5) and 200 nM copper ions were blended to obtain sample S7. Then, for the concentration of the potassium chloride solution, the sample S7 is analyzed by the potential holding step and the potential sweep step (differential pulse mode (pulse condition: pulse period 100 ms, pulse interval 50 ms, pulse height 50 mV) similar to those in the verification example 2. The operation was performed to detect current change characteristics with respect to potential changes, and the respective detection results are shown in the peak current value characteristic chart with respect to the potassium chloride solution concentration in FIG.

また、20mM〜100mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),200nMの水銀イオンを配合して試料S8を得た。そして、試料S8について、塩化カリウム溶液の濃度毎に、検証例2同様の電位保持工程(作用電極2の電位は+300mVに保持),電位掃引工程(リニアスイープモードで+300mVから掃引(LSV条件25mV/s))による分析操作を行って、電位変化に対する電流変化特性をそれぞれ検出し、それら各検出結果を図17の塩化カリウム溶液濃度に対するピーク電流値特性図に示した。   A sample S8 was obtained by blending 20 mM to 100 mM potassium chloride solution as a supporting electrolyte and 10 mM acetate buffer solution (pH 4.5) and 200 nM mercury ions. Then, with respect to the sample S8, for each concentration of the potassium chloride solution, a potential holding step (the potential of the working electrode 2 is held at +300 mV), a potential sweep step (sweep from +300 mV in the linear sweep mode (LSV condition 25 mV / L). The current change characteristics with respect to the potential change were detected by performing the analysis operation according to s)), and the respective detection results are shown in the peak current value characteristic chart with respect to the potassium chloride solution concentration in FIG.

図16に示す特性曲線においては、塩化カリウム溶液濃度20mM〜150mMの範囲内にてそれぞれ十分な大きさのピーク電流が検出され、塩化カリウム溶液濃度が高くなるに連れて、ピーク電流の大きさは上昇する傾向を有することが読み取れる。   In the characteristic curve shown in FIG. 16, a sufficiently large peak current is detected in the potassium chloride solution concentration range of 20 mM to 150 mM, and as the potassium chloride solution concentration increases, the magnitude of the peak current increases. It can be seen that it has a tendency to rise.

図17に示す特性曲線においては、塩化カリウム溶液濃度が20mM〜30mMの範囲内にて比較的大きいピーク電流が検出されていることが読み取れる。また、前記の塩化カリウム濃度が30mMを超えて高くなるに連れて、ピーク電流の大きさは徐々に減少する傾向を有するものの、各ピーク電流は十分な大きさであることが読み取れる。   In the characteristic curve shown in FIG. 17, it can be seen that a relatively large peak current is detected in the potassium chloride solution concentration range of 20 mM to 30 mM. Further, it can be read that each peak current is sufficiently large although the magnitude of the peak current tends to gradually decrease as the potassium chloride concentration becomes higher than 30 mM.

したがって、図1に示すような分析においては、被分析対象1a中の塩化物イオン濃度が20mM〜150mMの範囲内(この範囲内で好ましくは例えば150mM)であれば、該被分析対象1a中の銅イオンを十分測定できることを判明した。また、被分析対象1a中の塩化物イオン濃度が20mM〜100mMの範囲内(この範囲内で好ましくは例えば20mM〜30mM)であれば、該被分析対象1a中の水銀イオンを十分測定できることを判明した。   Therefore, in the analysis as shown in FIG. 1, if the chloride ion concentration in the analyte 1a is within the range of 20 mM to 150 mM (preferably, for example, 150 mM within this range), the analyte in the analyte 1a It was found that copper ions can be measured sufficiently. It is also found that mercury ions in the analyte 1a can be sufficiently measured if the chloride ion concentration in the analyte 1a is within a range of 20 mM to 100 mM (preferably, for example, 20 mM to 30 mM within this range). did.

(検証例4)
本検証例4では、種々のpHの緩衝溶液、ならびに銅イオンまたは水銀イオンを含む被分析対象を用い、それぞれの分析結果を検証した。まず、150mMの塩化カリウム溶液を支持電解質とし、pH3.5〜pH5.5の範囲内に調整された10mMの酢酸緩衝溶液,200nMの銅イオンを配合して試料S9を得た。そして、試料S9について、使用した緩衝溶液のpH(異なるpH)毎に、検証例3の試料S7同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性をそれぞれ求め、それら各電流特性のピーク電流値を緩衝溶液のpHに対する特性として図18に示した。
(Verification Example 4)
In this verification example 4, the analysis results were verified using buffer solutions with various pH values and analytes containing copper ions or mercury ions. First, a 150 mM potassium chloride solution was used as a supporting electrolyte, and a 10 mM acetate buffer solution adjusted in the range of pH 3.5 to pH 5.5 and 200 nM copper ions were blended to obtain sample S9. Then, for each sample S9, for each pH (different pH) of the buffer solution used, the current change characteristics with respect to the potential change are obtained by performing the analysis operation by the potential holding step and the potential sweep step similar to those of the sample S7 in the verification example 3, The peak current values of these current characteristics are shown in FIG. 18 as characteristics with respect to the pH of the buffer solution.

また、25mMの塩化カリウム溶液を支持電解質とし、pH3.5〜pH4.5の範囲内に調整された10mMの酢酸緩衝溶液,200nMの水銀イオンを配合して試料S10を得た。そして、試料S10について、使用した緩衝溶液のpH(異なるpH)毎に、検証例3の試料S8同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性をそれぞれ求め、それら各電流特性のピーク電流値を緩衝溶液のpHに対する特性として図19に示した。   A sample S10 was obtained by using a 25 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution adjusted to a pH of 3.5 to 4.5 and 200 nM mercury ions. Then, for each sample S10, for each pH of the buffer solution used (different pH), the analysis operation by the potential holding step and the potential sweep step similar to those of the sample S8 in the verification example 3 is performed to obtain the current change characteristics with respect to the potential change, The peak current values of these current characteristics are shown in FIG. 19 as characteristics with respect to the pH of the buffer solution.

図18の特性曲線においては、各ピーク電流は十分な大きさであり、そのピーク電流の大きさは緩衝溶液のpHが高くなるに連れて徐々に上昇する傾向を有することが読み取れる。また、pH4〜pH5の範囲内では、各ピーク電流が略一定で安定していることが読み取れる。   In the characteristic curve of FIG. 18, it can be seen that each peak current is sufficiently large, and the peak current has a tendency to gradually increase as the pH of the buffer solution increases. Moreover, it can be read that each peak current is substantially constant and stable within the range of pH 4 to pH 5.

図19の特性曲線においては、緩衝溶液のpHが高くなるに連れて、ピーク電流の大きさは徐々に減少する傾向を有するものの、各ピーク電流は十分な大きさであることが読み取れる。   In the characteristic curve of FIG. 19, it can be read that each peak current is sufficiently large although the magnitude of the peak current tends to gradually decrease as the pH of the buffer solution increases.

したがって、図1に示すような分析においては、緩衝溶液としてpH3.5〜pH4.5(この範囲内で好ましくは、銅イオンの場合例えばpH4.5,水銀イオンの場合例えばpH3.5)のものを用いることにより、該被分析対象1a中の銅イオンまたは水銀イオンを十分測定できることを判明した。   Therefore, in the analysis as shown in FIG. 1, the buffer solution is pH 3.5 to pH 4.5 (preferably within this range, for example, pH 4.5 in the case of copper ions and pH 3.5 in the case of mercury ions). It was proved that copper ions or mercury ions in the analyte 1a can be sufficiently measured by using.

(検証例5)
本検証例5では、銅イオンと鉛イオンとの酸化電位が略近接していることを考慮して、電位保持工程での作用電極2の電位を種々の値に設定し、それぞれの分析結果を検証した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),200nMの銅イオンを配合して試料S11aを得た。また、試料S11aと同様の支持電解質,酢酸緩衝溶液を用い、銅イオンの替わりに鉛イオンを200nM配合して試料S11bを得た。
(Verification Example 5)
In this verification example 5, in consideration of the fact that the oxidation potentials of copper ions and lead ions are substantially close to each other, the potential of the working electrode 2 in the potential holding step is set to various values, and the respective analysis results are obtained. Verified. First, a sample S11a was obtained by blending a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 200 nM copper ions. In addition, using the same supporting electrolyte and acetate buffer solution as sample S11a, 200 nM of lead ion was used instead of copper ion to obtain sample S11b.

その後、試料S11a,S11bについて、検証例3の試料S7同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性をそれぞれ求めた。本検証例5の電位保持工程での作用電極2の電位は、試料S11aの場合は+250mV〜−300mVの範囲内、試料S11bの場合は−50mV〜−300mVの範囲内に設定して行った。そして、作用電極2の設定電位(異なる作用電極2の電位)毎に各電流特性のピーク電流値を求め、それら各ピーク電流値を作用電極2の電位に対する特性として図20に示した。   Thereafter, the sample S11a and S11b were subjected to the analysis operation by the potential holding process and the potential sweep process similar to the sample S7 of the verification example 3, and current change characteristics with respect to the potential change were respectively obtained. The potential of the working electrode 2 in the potential holding step of this verification example 5 was set in the range of +250 mV to −300 mV in the case of the sample S11a and in the range of −50 mV to −300 mV in the case of the sample S11b. Then, the peak current value of each current characteristic was obtained for each set potential of the working electrode 2 (potential of different working electrode 2), and these peak current values were shown in FIG. 20 as characteristics with respect to the potential of the working electrode 2.

図20に示すように、特性曲線11a(試料S11aの場合)においては、電位保持工程での作用電極2の電位が+200mVから負方向側になるに連れてピーク電流値が上昇し(+200mV未満から電着が始まり)、約±0V以下にて略一定になることが読み取れる。一方、特性曲線11b(試料S11bの場合)においては、電位保持工程での作用電極2の電位が−100mVから負方向側になるに連れてピーク電流値が上昇する(−100mV未満から電着が始まる)ことが読み取れる。   As shown in FIG. 20, in the characteristic curve 11a (in the case of the sample S11a), the peak current value increases (below +200 mV) as the potential of the working electrode 2 in the potential holding step is changed from +200 mV to the negative direction side. It can be seen that electrodeposition starts and becomes substantially constant at about ± 0 V or less. On the other hand, in the characteristic curve 11b (in the case of the sample S11b), the peak current value increases as the potential of the working electrode 2 in the potential holding step is changed from −100 mV to the negative direction (the electrodeposition starts from less than −100 mV). It can be read.

したがって、図1に示すような分析においては、被分析対象1aが銅イオン,鉛イオンを含み電位保持工程での作用電極2の電位が−100mV未満の場合、銅イオンの他に鉛イオンも還元濃縮されるため、該濃縮時に銅と鉛との合金が形成される可能性がある。そして、該被分析対象1a中の銅イオンのみを測定する場合には、該電位保持工程での作用電極2の電位を±0mV〜−100mVの範囲内(この範囲内で好ましくは例えば−50mV)に設定すれば良いことを判明した。   Therefore, in the analysis as shown in FIG. 1, when the analyte 1a contains copper ions and lead ions and the potential of the working electrode 2 in the potential holding step is less than −100 mV, lead ions are reduced in addition to copper ions. Due to the concentration, an alloy of copper and lead may be formed during the concentration. When measuring only copper ions in the analyte 1a, the potential of the working electrode 2 in the potential holding step is within a range of ± 0 mV to −100 mV (preferably within this range, for example, −50 mV). It turned out to be good to set to.

(検証例6)
本検証例6では、水銀イオンと銅イオンとの酸化電位が略近接していることを考慮して、電位保持工程での作用電極2の電位を種々の値に設定し、それぞれの分析結果を検証した。まず、25mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH3.5),200nMの水銀イオンを配合して試料S12aを得た。また、試料S12aと同様の支持電解質,酢酸緩衝溶液を用い、水銀イオンの替わりに銅イオンを200nM配合して試料S12bを得た。
(Verification Example 6)
In this verification example 6, in consideration of the fact that the oxidation potentials of mercury ions and copper ions are substantially close to each other, the potential of the working electrode 2 in the potential holding step is set to various values, and the respective analysis results are obtained. Verified. First, a sample S12a was obtained by blending a 10 mM acetate buffer solution (pH 3.5) and 200 nM mercury ions with a 25 mM potassium chloride solution as a supporting electrolyte. Further, using the same supporting electrolyte and acetate buffer solution as in sample S12a, 200 nM of copper ion was used instead of mercury ion to obtain sample S12b.

その後、試料S12a,S12bについて、検証例3の試料S8同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性をそれぞれ求めた。本検証例6の電位保持工程での作用電極2の電位は、試料S12aの場合は+600mV〜−100mVの範囲内、試料S12bの場合は+400mV〜−50mVの範囲内に設定して行った。そして、作用電極2の設定電位(異なる作用電極2の電位)毎に各電流特性のピーク電流値を求め、それら各ピーク電流値を作用電極2の電位に対する特性として図21に示した。   Thereafter, for the samples S12a and S12b, the analysis operation by the potential holding step and the potential sweep step similar to those of the sample S8 in the verification example 3 was performed, and current change characteristics with respect to the potential change were respectively obtained. The potential of the working electrode 2 in the potential holding step of this verification example 6 was set in the range of +600 mV to −100 mV in the case of the sample S12a and in the range of +400 mV to −50 mV in the case of the sample S12b. And the peak current value of each current characteristic was calculated | required for every setting electric potential (potential of different working electrode 2) of the working electrode 2, and these each peak current value was shown in FIG. 21 as the characteristic with respect to the electric potential of the working electrode 2. FIG.

図21に示すように、特性曲線12a(試料S12aの場合)においては、電位保持工程での作用電極2の電位が+450mVから負方向になるに連れてピーク電流値が上昇(+450mV未満から電着)することが読み取れる。一方、特性曲線12b(試料S12bの場合)においては、電位保持工程での作用電極2の電位が+300mVから負方向になるに連れてピーク電流値が上昇(+300mV未満から電着)することが読み取れる。   As shown in FIG. 21, in the characteristic curve 12a (in the case of the sample S12a), the peak current value increases as the potential of the working electrode 2 in the potential holding process becomes negative from +450 mV (electrodeposition from less than +450 mV). ) Can be read. On the other hand, in the characteristic curve 12b (in the case of the sample S12b), it can be seen that the peak current value increases (electrodeposition from less than +300 mV) as the potential of the working electrode 2 in the potential holding step becomes negative from +300 mV. .

したがって、図1に示すような分析においては、被分析対象1aが水銀イオン,銅イオンを含む場合、電位保持工程での作用電極2の電位が+300mV未満では水銀イオンと銅イオンとのアマルガムが形成される可能性がある。そして、該被分析対象1a中の水銀イオンのみを測定する場合には、該電位保持工程での作用電極2の電位を+450mV〜+300mVの範囲内(この範囲内で好ましくは例えば+300mV)に設定すれば良いことを判明した。   Therefore, in the analysis as shown in FIG. 1, when the analyte 1a contains mercury ions and copper ions, an amalgam of mercury ions and copper ions is formed when the potential of the working electrode 2 in the potential holding step is less than +300 mV. There is a possibility that. When measuring only mercury ions in the analyte 1a, the potential of the working electrode 2 in the potential holding step is set within a range of +450 mV to +300 mV (preferably, for example, +300 mV within this range). It turned out to be good.

(実施例1)
本実施例1では、分析前(測定前)に、銅イオンを含む被分析対象(塩化物イオン共存下)1a中にて作用電極2に種々の正電位を印加(定電位を印加)することにより、該作用電極2を活性化処理(以下、分析前活性化処理と称する)し、それぞれの分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),200nMの銅イオンを配合して試料S13を得た。
Example 1
In the first embodiment, before analysis (before measurement), various positive potentials are applied to the working electrode 2 (applying constant potential) in the analyte 1a containing copper ions (in the presence of chloride ions) 1a. Thus, the working electrode 2 was activated (hereinafter referred to as pre-analysis activation treatment), and each analysis was performed. First, 150 mM potassium chloride solution was used as a supporting electrolyte, and 10 mM acetate buffer solution (pH 4.5) and 200 nM copper ions were blended to obtain sample S13.

次に、前記の試料S13中に作用電極2,対電極3,参照電極4が浸漬されるように封止部材1bで封止した後、前記参照電極4に対する作用電極2の電位を+700mV〜+1600mVに30秒間保持(定電位を保持)した(試料S13に浸漬された作用電極の分析前活性化処理)。   Next, after sealing with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 4 are immersed in the sample S13, the potential of the working electrode 2 with respect to the reference electrode 4 is +700 mV to +1600 mV. For 30 seconds (holding constant potential) (pre-analysis activation treatment of working electrode immersed in sample S13).

その後、試料S13について、検証例3の試料S7同様の電位保持工程(作用電極2の電位は−50mVに保持),電位掃引工程による分析操作を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を分析前活性化処理の電位(以下、分析前活性化電位と称する)毎に図22A〜図23Bに示した。なお、図22A〜図23Bにおける各図中の電位(+700mV〜+1600mV)は、分析前活性化電位を示すものである。   Thereafter, the sample S13 is subjected to the analysis operation by the potential holding step (the potential of the working electrode 2 is held at −50 mV) and the potential sweep step in the same manner as the sample S7 in the verification example 3, and the current change characteristics with respect to the potential change are respectively obtained. The results are shown in FIGS. 22A to 23B for each potential of the pre-analysis activation treatment (hereinafter referred to as pre-analysis activation potential). Note that the potentials (+700 mV to +1600 mV) in each of FIGS. 22A to 23B indicate the pre-analysis activation potential.

図22A〜図23Bの特性曲線に示すように、各ピーク電流が十分な大きさで検出され、分析前活性化電位が約+1000mVから正方向側になるに連れて、BG電流が減衰し各ピーク電流が明瞭かつシャープになっていることが読み取れる。この傾向(活性化反応)は、前記の分析前活性化電位が約+1600mVから正方向側になるに連れて、より強くなることが読み取れる。   As shown in the characteristic curves of FIGS. 22A to 23B, each peak current is detected with a sufficient magnitude, and as the pre-analysis activation potential is shifted from about +1000 mV to the positive direction, the BG current is attenuated and each peak is detected. It can be seen that the current is clear and sharp. It can be seen that this tendency (activation reaction) becomes stronger as the pre-analysis activation potential increases from about +1600 mV to the positive direction.

この理由として、分析前活性化処理によって電気的二重層容量が減少しS/B比が高くなっていることが考えられる。また、試料S13中には塩化物イオンが共存するため、分析前活性化電位が約+1000mV以上の場合には、検証例1でも示したように、作用電極2が再生処理(例えば、作用電極2が劣化していた場合には分析開始前に電解研磨によって再生)され得ることが読み取れる。さらに、検証例1,本実施例1(および後述の実施例7)の結果から、分析前活性化電位が約+1400mVから正方向側になるに連れて、酸化溶出反応が抑制される傾向を有するものの、活性化反応はより高まることが読み取れる。   This may be because the electrical double layer capacity is reduced and the S / B ratio is increased by the pre-analysis activation treatment. In addition, since chloride ions coexist in the sample S13, when the pre-analysis activation potential is about +1000 mV or more, the working electrode 2 is regenerated (for example, the working electrode 2 as shown in Verification Example 1). It can be seen that the material can be regenerated by electropolishing before the start of the analysis when it has deteriorated. Furthermore, from the results of Verification Example 1 and Example 1 (and Example 7 to be described later), the oxidation elution reaction tends to be suppressed as the pre-analysis activation potential is shifted from about +1400 mV to the positive direction side. However, it can be read that the activation reaction is higher.

なお、前記の分析前活性化電位が+1600mVを遥かに超える電位(例えば+2V超レベル)であっても、S/B比が高くなってBG電流が減衰および各ピーク電流が明瞭かつシャープになる可能性はあるものの、作用電極2表面に気泡が発生してしまう可能性がある。この気泡が作用電極表面に付着している場合には、その付着した部分に応じて分析前活性化処理が施されない可能性がある。   Even when the pre-analysis activation potential is much higher than +1600 mV (for example, higher than +2 V level), the S / B ratio can be increased to attenuate the BG current and make each peak current clear and sharp. Although there is a possibility, bubbles may be generated on the surface of the working electrode 2. When the bubbles are attached to the surface of the working electrode, there is a possibility that the pre-analysis activation process is not performed depending on the attached part.

したがって、図1に示すような分析においては、電位保持工程の前段にて、塩化物イオン共存下で作用電極2に対し例えば+1000mV以上の分析前活性化電位(本実施例1で好ましくは+1400mV〜+2000mV程度(作用電極から気泡が発生する直前の電位))を印加して分析前活性化処理を行うことにより、BG電流が安定するだけでなく減衰し、より明瞭なピーク電流が検出されることから、より高感度および高精度での分析が可能であることを判明した。また、分析前活性化処理での分析前活性化電位が約+1000mV以上(本実施例1で好ましくは約+1400mV〜+2000mV程度)の場合には、該分析前活性化処理の際に作用電極2が再生処理(分析開始前に再生処理)され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, before the potential holding step, for example, a pre-analysis activation potential of +1000 mV or more with respect to the working electrode 2 in the presence of chloride ions (preferably from +1400 mV in Example 1). Applying about +2000 mV (potential immediately before bubbles are generated from the working electrode)), pre-analysis activation treatment not only stabilizes the BG current but also attenuates it, and a clearer peak current is detected. Thus, it was found that analysis with higher sensitivity and higher accuracy is possible. When the pre-analysis activation potential in the pre-analysis activation process is about +1000 mV or more (preferably about +1400 mV to +2000 mV in the first embodiment), the working electrode 2 is used during the pre-analysis activation process. Regeneration processing (regeneration processing before the start of analysis) was carried out, and it was found that the activated state was maintained and the analysis was reproducible.

(実施例2)
本実施例2では、銅イオンを含む被分析対象1aにおいて分析前活性化電位の印加時間(以下、分析前活性化時間と称する)を種々の時間に設定し、前記の試料S13についての分析を実施した。まず、試料S13に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位+1600mV,分析前活性化時間10秒〜70秒に設定して行った。そして、試料S13について、前記の実施例1同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の結果を各分析前活性化時間毎に図24に示した。
(Example 2)
In the present Example 2, the application time of the pre-analysis activation potential (hereinafter referred to as pre-analysis activation time) is set to various times in the analyte 1a containing copper ions, and the analysis of the sample S13 is performed. Carried out. First, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S13 was performed by setting the pre-analysis activation potential + 1600 mV and the pre-analysis activation time of 10 seconds to 70 seconds. Then, the sample S13 is subjected to the analysis operation by the potential holding step and the potential sweep step similar to those of the first embodiment to obtain the current change characteristics with respect to the potential change, and the results of the respective current change characteristics are obtained for each activation time before the analysis. This is shown in FIG.

図24に示すように、各特性曲線23a〜23hの各ピーク電流は十分な大きさで検出され、分析前活性化時間が長くなるに連れてBG電流が減衰し各ピーク電流が明瞭になっていることが読み取れる。また、分析前活性化時間が40秒以上の特性曲線23e〜23hにおいてはBG電流が十分減衰し、それぞれの減衰度合いは略一定になることが読み取れる。なお、前記の分析前活性化時間を70秒超に設定しても、前記BG電流は略一定または更に減衰する可能性はあるものの、分析時間が長くなってしまうことになる。   As shown in FIG. 24, the peak currents of the characteristic curves 23a to 23h are detected with a sufficient magnitude, and as the pre-analysis activation time increases, the BG current decays and the peak currents become clear. I can read that Further, it can be read that the BG current is sufficiently attenuated in the characteristic curves 23e to 23h whose activation time before analysis is 40 seconds or more, and the degree of attenuation is substantially constant. Even if the pre-analysis activation time is set to more than 70 seconds, the BG current may be substantially constant or further attenuated, but the analysis time becomes long.

したがって、図1に示すような分析においては、分析前活性化時間を40秒以上(本実施例2では好ましくは例えば50秒)に設定することによりBG電流が十分減衰し、十分明瞭なピーク電流が検出されることから、さらに高感度および高精度での分析が可能であることを判明した。   Therefore, in the analysis as shown in FIG. 1, the BG current is sufficiently attenuated by setting the pre-analysis activation time to 40 seconds or more (preferably, for example, 50 seconds in the second embodiment), and the peak current is sufficiently clear. It was found that analysis with higher sensitivity and higher accuracy is possible.

(実施例3)
本実施例3では、銅イオンを含む被分析対象1aにおいて前記のような分析前活性化処理を行った後、電位保持工程,電位掃引工程を含む分析操作を繰り返し行って、それぞれ分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),150nMの銅イオンを配合して試料S14を得た。
(Example 3)
In Example 3, after performing the pre-analysis activation process as described above on the analyte 1a containing copper ions, the analysis operation including the potential holding step and the potential sweep step was repeatedly performed, and the analysis was performed. . First, a sample S14 was obtained by blending a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 150 nM copper ions.

その後、試料S14に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位+1600mV,分析前活性化時間50秒に設定して行った。そして、試料S14について、前記の実施例1同様の電位保持工程,電位掃引工程による分析操作を40回繰り返し行って、それぞれの電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を分析操作毎に図25に示した。   Thereafter, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S14 was performed by setting the pre-analysis activation potential + 1600 mV and the pre-analysis activation time of 50 seconds. Then, for the sample S14, the analysis operation by the potential holding process and the potential sweep process similar to those in the first embodiment is repeated 40 times to obtain the current change characteristics with respect to the respective potential changes, and the respective peak currents of the respective current change characteristics. The values are shown in FIG. 25 for each analysis operation.

なお、本実施例3では、各分析操作(電位保持工程,電位掃引工程)毎に、試料S14に浸漬された作用電極2に対し所定の電位(参照電極4に対する電位)を短時間印加して、該作用電極2の活性化処理(以下、分析操作毎の活性化処理を分析間活性化処理と称する)を行った。この分析間活性化処理で印加する電位(以下、分析間活性化電位と称する)を+1600mVとし、その印加時間(以下、分析間活性化時間と称する)を10秒に設定した。   In Example 3, a predetermined potential (potential with respect to the reference electrode 4) is applied to the working electrode 2 immersed in the sample S14 for a short time for each analysis operation (potential holding step, potential sweeping step). Then, activation processing of the working electrode 2 (hereinafter, activation processing for each analysis operation is referred to as inter-analysis activation processing). The potential applied in this inter-analysis activation treatment (hereinafter referred to as inter-analysis activation potential) was set to +1600 mV, and the application time (hereinafter referred to as inter-analysis activation time) was set to 10 seconds.

図25に示すように、各ピーク電流値を比較すると、それぞれ略同一であり、各ピーク電流値の変動率を求めたところ1.7%(極めて微差)であった。   As shown in FIG. 25, when the peak current values were compared, they were substantially the same, and the fluctuation rate of each peak current value was determined to be 1.7% (very small difference).

したがって、銅イオン濃度を含む被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例3で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, when the analysis of the analyte 1a including the copper ion concentration is repeatedly performed, a relatively simple inter-analysis activation process (for example, without performing a process such as a pre-analysis activation process for each analysis operation) (for example, It has been found that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the third embodiment), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例4)
本実施例4では、被分析対象1a中の銅イオン濃度を種々の値に設定し、それぞれの分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),0〜400nMの銅イオンを配合して試料S15を得た。
Example 4
In Example 4, the copper ion concentration in the analysis target 1a was set to various values, and each analysis was performed. First, a sample S15 was obtained by using a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 0 to 400 nM copper ions.

そして、試料S15に浸漬された作用電極2の分析前活性化処理を実施例3同様に行ってから、該試料S15について、該実施例3同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の結果を各銅イオン濃度毎に図26A〜図27Eに示した。また、前記の各電流変化特性の各ピーク電流値において、銅イオン濃度に対する特性線として図28に示した。なお、本実施例4においても、各銅イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例3と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S15 is performed in the same manner as in Example 3, and then the sample S15 is subjected to the analysis operation by the potential holding process and the potential sweep process similar to those in Example 3. The current change characteristics with respect to the potential change were obtained, and the results of these current change characteristics are shown in FIGS. 26A to 27E for each copper ion concentration. In addition, each peak current value of each current change characteristic is shown in FIG. 28 as a characteristic line with respect to the copper ion concentration. Also in the present Example 4, the same inter-analysis activation process as in Example 3 was performed for each analysis operation (potential holding process, potential sweep process) of each copper ion concentration.

図26A〜図27Eの特性曲線に示すように、各ピーク電流が十分な大きさおよび明瞭に検出され、銅イオン濃度の増加に伴って大きくなっていることが読み取れる。また、図28に示すように、銅イオン濃度に対する前記の各ピーク電流値の特性線は、相関係数R2が0.99以上で良好な相関性を有し、直線性が高いことを読み取れる。   As shown in the characteristic curves of FIGS. 26A to 27E, it can be read that each peak current is sufficiently large and clearly detected, and increases as the copper ion concentration increases. Further, as shown in FIG. 28, it can be read that the characteristic line of each peak current value with respect to the copper ion concentration has a good correlation when the correlation coefficient R2 is 0.99 or more and has a high linearity.

したがって、図1に示したような分析においては、被分析対象1a中の銅イオン(例えば0〜400nMの銅イオン)を十分測定でき、その銅イオン濃度に対する各ピーク電流値特性線を信頼性の高い検量線として適用できることを判明した。また、銅イオン濃度が低く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例4で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, copper ions (for example, 0 to 400 nM copper ions) in the analysis target 1a can be sufficiently measured, and each peak current value characteristic line with respect to the copper ion concentration can be reliably measured. It was found that it can be applied as a high calibration curve. In addition, when the analysis of the analyte 1a having a different copper ion concentration is repeated, a relatively simple inter-analysis activation process (without the pre-analysis activation process for each analysis operation) ( For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the fourth embodiment), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例5)
本実施例5では、被分析対象1a中の銅イオン濃度を比較的低く設定し、それぞれの分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),0〜30nMの銅イオンを配合して試料S16を得た。
(Example 5)
In Example 5, the copper ion concentration in the analysis target 1a was set to be relatively low, and each analysis was performed. First, a sample S16 was obtained by using a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 0 to 30 nM copper ions.

そして、試料S16に浸漬された作用電極2の分析前活性化処理を実施例3同様に行ってから、該試料S16について、該実施例3同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を銅イオン濃度に対する特性線として図29に示した。なお、本実施例5においても、各銅イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例3と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S16 is performed in the same manner as in Example 3. Then, the sample S16 is subjected to the analysis operation by the potential holding process and the potential sweep process similar to those in Example 3. FIG. 29 shows the current change characteristics with respect to the potential change, and shows the peak current values of the current change characteristics as characteristic lines with respect to the copper ion concentration. Also in Example 5, the same inter-analysis activation process as in Example 3 was performed for each analysis operation (potential holding step, potential sweeping step) of each copper ion concentration.

図29の特性線に示すように、各ピーク電流値が銅イオン濃度の増加に伴って大きくなり、その特性線が十分な直線性を有することが読み取れる。   As shown by the characteristic line in FIG. 29, each peak current value increases as the copper ion concentration increases, and it can be read that the characteristic line has sufficient linearity.

したがって、図1に示したような分析においては、銅イオン濃度が比較的低濃度(例えば0〜30nM程度)であっても、該被分析対象1a中の銅イオンを十分測定でき、その銅イオン濃度に対する各ピーク電流値特性線を信頼性のある検量線として十分適用できることを判明した。なお、電位保持工程において、作用電極2の電位の保持時間(すなわち、還元濃縮時間)を180秒よりも長く設定したところ、極めて低濃度(数100pMレベル)の銅イオンの測定,分析が可能であることを確認した。   Therefore, in the analysis as shown in FIG. 1, even if the copper ion concentration is relatively low (for example, about 0 to 30 nM), the copper ion in the analyte 1a can be sufficiently measured. It was found that each peak current value characteristic line with respect to the concentration can be sufficiently applied as a reliable calibration curve. In the potential holding step, when the holding time of the potential of the working electrode 2 (that is, the reduction concentration time) is set longer than 180 seconds, it is possible to measure and analyze copper ions at an extremely low concentration (several hundred pM level). I confirmed that there was.

また、銅イオン濃度が低く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例5で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   In addition, when the analysis of the analyte 1a having a different copper ion concentration is repeated, a relatively simple inter-analysis activation process (without the pre-analysis activation process for each analysis operation) ( For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the fifth embodiment), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例6)
本実施例6では、被分析対象1a中の銅イオン濃度を比較的高く設定し、それぞれの分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),0〜7μMの銅イオンを配合して試料S17を得た。
(Example 6)
In Example 6, the copper ion concentration in the analysis target 1a was set to be relatively high, and each analysis was performed. First, a sample S17 was obtained by using a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 0 to 7 μM copper ions.

そして、試料S17に浸漬された作用電極2の分析前活性化処理を実施例3同様に行ってから、該試料S17について、実施例3同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を銅イオン濃度に対する特性図として図30に示した。なお、本実施例6においても、各銅イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例3と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S17 is performed in the same manner as in Example 3. Then, the sample S17 is subjected to the analysis operation by the potential holding process and the potential sweep process in the same manner as in Example 3. FIG. 30 shows current change characteristics with respect to potential changes, and shows peak current values of the current change characteristics as characteristic diagrams with respect to the copper ion concentration. Also in Example 6, the same inter-analysis activation process as in Example 3 was performed for each analysis operation (potential holding step, potential sweeping step) of each copper ion concentration.

図30の特性図に示すように、各ピーク電流値が銅イオン濃度の増加に伴って大きくなり、例えば0〜3μM程度の特性線であれば十分な直線性を有し、該特性線は検量線として十分適用できることを判明した。   As shown in the characteristic diagram of FIG. 30, each peak current value increases as the copper ion concentration increases. For example, a characteristic line of about 0 to 3 μM has sufficient linearity, and the characteristic line is calibrated. It turns out that it can be applied sufficiently as a line.

したがって、図1に示したような分析においては、銅イオン濃度が比較的高濃度(例えば0〜3μM程度)であっても、該被分析対象1a中の銅イオンを十分測定でき、その銅イオン濃度に対する各ピーク電流値特性線を信頼性のある検量線として十分適用できることを判明した。なお、電位保持工程において、作用電極2の電位の保持時間(すなわち、還元濃縮時間)を180秒よりも短く設定したところ、極めて高濃度(数10μMレベル)の銅イオンの測定,分析が可能であることを確認した。   Therefore, in the analysis as shown in FIG. 1, even if the copper ion concentration is relatively high (for example, about 0 to 3 μM), the copper ion in the analyte 1a can be sufficiently measured. It was found that each peak current value characteristic line with respect to the concentration can be sufficiently applied as a reliable calibration curve. In the potential holding step, when the holding time of the potential of the working electrode 2 (that is, the reduction concentration time) is set shorter than 180 seconds, it is possible to measure and analyze copper ions at extremely high concentrations (several tens of μM level). I confirmed that there was.

また、銅イオン濃度が高く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例6で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   In addition, when the analysis of the analysis target 1a having a high copper ion concentration is repeatedly performed, a relatively simple inter-analysis activation process (e.g., without performing a pre-analysis activation process for each analysis operation) For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the sixth embodiment), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例7)
本実施例7では、水銀イオンを含む被分析対象(塩化物イオン共存下)1aに浸漬された作用電極2を、種々の分析前活性化電位で分析前活性化処理し、それぞれの分析を実施した。まず、25mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH3.5),200nMの水銀イオンを配合して試料S18を得た。
(Example 7)
In Example 7, the working electrode 2 immersed in the analyte 1a containing mercury ions (in the presence of chloride ions) 1a is subjected to pre-analysis activation treatment at various pre-analysis activation potentials, and each analysis is performed. did. First, using a 25 mM potassium chloride solution as a supporting electrolyte, a 10 mM acetate buffer solution (pH 3.5) and 200 nM mercury ions were blended to obtain sample S18.

その後、試料S18に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位0〜+1800mV,分析前活性化時間30秒に設定して行った。そして、試料S18について、実施例1同様の電位保持工程(作用電極2の電位は+300mVに保持),電位掃引工程による分析操作を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を分析前活性化電位毎に図31A〜図32Cに示した。なお、図31A〜図32Cにおける各図中の電位(0mV〜+1800mV)は、分析前活性化電位を示すものである。   Thereafter, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S18 was performed by setting the pre-analysis activation potential from 0 to +1800 mV and the pre-analysis activation time of 30 seconds. Then, the sample S18 is subjected to the analysis operation by the potential holding step (the potential of the working electrode 2 is held at +300 mV) and the potential sweep step in the same manner as in Example 1 to obtain the current change characteristics with respect to the potential change, and the results are analyzed. The preactivation potential is shown in FIGS. 31A to 32C. The potentials (0 mV to +1800 mV) in each of FIGS. 31A to 32C indicate the pre-analysis activation potential.

図31A〜図32Cの特性曲線に示すように、各ピーク電流が十分な大きさで検出され、分析前活性化電位が約+1000mVから正方向側になるに連れて、BG電流が減衰し各ピーク電流が明瞭かつシャープになっていることが読み取れる。この傾向(活性化反応)は、前記の分析前活性化電位が約+1400mVから正方向側になるに連れて、強くなることが読み取れる。   As shown in the characteristic curves of FIGS. 31A to 32C, each peak current is detected with a sufficient magnitude, and as the pre-analysis activation potential goes from about +1000 mV to the positive side, the BG current decays and each peak It can be seen that the current is clear and sharp. It can be seen that this tendency (activation reaction) becomes stronger as the pre-analysis activation potential increases from about +1400 mV to the positive direction.

この理由として、分析前活性化処理によってS/B比が高くなると共に、電極反応速度が向上していることが考えられる。また、試料S18中には塩化物イオンが共存するため、分析前活性化電位が約+1000mV以上の場合には、検証例1でも示したように、作用電極2が再生処理(例えば、作用電極2が劣化していた場合には分析開始前に電解研磨によって再生)され得ることが読み取れる。さらに、検証例1,本実施例7(および実施例1)の結果から、分析前活性化電位が約+1400mVから正方向側になるに連れて、酸化溶出反応が抑制される傾向を有するものの、活性化反応はより高まることが読み取れる。   This may be because the S / B ratio is increased by the pre-analysis activation treatment and the electrode reaction rate is improved. In addition, since chloride ions coexist in the sample S18, when the pre-analysis activation potential is about +1000 mV or more, the working electrode 2 is regenerated (for example, the working electrode 2 as shown in the verification example 1). It can be seen that the material can be regenerated by electropolishing before the start of the analysis when it has deteriorated. Furthermore, from the results of Verification Example 1 and Example 7 (and Example 1), the oxidation elution reaction tends to be suppressed as the pre-analysis activation potential is shifted from about +1400 mV to the positive direction side. It can be read that the activation reaction is higher.

なお、前記の分析前活性化電位が+1800mVを遥かに超える電位(例えば+2V超レベル)を超える高電位であっても、S/B比が高くなりBG電流が減衰および各ピーク電流が明瞭かつシャープになる可能性はあるものの、作用電極2表面に気泡が発生してしまう恐れがある。   Even if the pre-analysis activation potential is a high potential exceeding +1800 mV (for example, a level exceeding +2 V), the S / B ratio is increased, the BG current is attenuated, and each peak current is clear and sharp. However, there is a possibility that bubbles may be generated on the surface of the working electrode 2.

したがって、図1に示すような分析においては、電位保持工程の前段にて、塩化物イオン共存下で作用電極2に対し例えば+1000mV以上の分析前活性化電位(本実施例7で好ましくは+1400mV〜+2000mV程度(作用電極から気泡が発生する直前の電位))を印加して分析前活性化処理を行うことにより、BG電流が安定するだけでなく減衰し、より明瞭なピーク電流が検出されることから、より高感度および高精度での分析が可能であることを判明した。また、分析前活性化処理での分析前活性化電位が約+1000mV以上(本実施例7で好ましくは+1400mV〜+2000mV程度)の場合には、該分析前活性化処理の際に作用電極2が再生処理(分析開始前に再生処理)され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, before the potential holding step, for example, a pre-analysis activation potential of +1000 mV or higher with respect to the working electrode 2 in the presence of chloride ions (preferably from +1400 mV in Example 7). Applying about +2000 mV (potential immediately before bubbles are generated from the working electrode)), pre-analysis activation treatment not only stabilizes the BG current but also attenuates it, and a clearer peak current is detected. Thus, it was found that analysis with higher sensitivity and higher accuracy is possible. When the pre-analysis activation potential in the pre-analysis activation process is about +1000 mV or more (preferably about +1400 mV to +2000 mV in Example 7), the working electrode 2 is regenerated during the pre-analysis activation process. It was proved to have reproducibility of analysis because it was processed (regeneration treatment before the start of analysis) and the activated state was maintained.

(実施例8)
本実施例8では、実施例7同様に、水銀イオンを含む被分析対象(塩化物イオン共存下)1aに浸漬された作用電極2を、種々の分析前活性化電位で分析前活性化処理、または研磨処理(分析前活性化処理を行わずに表面を研磨処理(金電極から成る作用電極2をアルミナによりバフ研磨して処理)し、それぞれの分析を実施した。まず、0.1Mの塩酸溶液を支持電解質とし、20ppbの水銀イオンを配合して試料S18aを得た。
(Example 8)
In the present Example 8, as in Example 7, the working electrode 2 immersed in the analysis target 1a containing mercury ions (in the presence of chloride ions) 1a is subjected to pre-analysis activation treatment at various pre-analysis activation potentials. Alternatively, polishing was performed (the surface was polished without performing pre-analysis activation (the working electrode 2 made of a gold electrode was buffed with alumina) and each analysis was performed. Sample S18a was obtained by using the solution as a supporting electrolyte and blending 20 ppb mercury ions.

その後、試料S18aに浸漬された作用電極2の分析前活性化処理を行う場合には、分析前活性化電位+0.8〜+2.0V,分析前活性化時間5分間に設定して行った。そして、試料S18aについて、実施例7同様の電位保持工程(作用電極2の電位は+300mVに保持),電位掃引工程(サンプリング条件;15ms積算)による分析操作を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を図33に示した。   Thereafter, when the pre-analysis activation treatment of the working electrode 2 immersed in the sample S18a was performed, the pre-analysis activation potential was set to +0.8 to +2.0 V, and the pre-analysis activation time was set to 5 minutes. Then, the sample S18a is subjected to an analysis operation by the same potential holding step (the potential of the working electrode 2 is held at +300 mV) and the potential sweep step (sampling condition: 15 ms integration) as in Example 7, and the current change characteristic with respect to the potential change is obtained. Each was calculated | required and those results were shown in FIG.

図33に示すように、各条件においてピーク電流が検出されているものの、作用電極2を研磨処理のみ行った場合,分析前活性化電位が+0.8Vの場合は、BG電流の減衰が不十分であることが読み取れる。一方、分析前活性化電位が+1.2V〜+2.0Vの場合(特に、+1.2V,+2.0Vの場合)は、BG電流が十分に減衰し各ピーク電流が明瞭かつシャープになり、実施例7の場合と同様の結果が得られたことを読み取れる。   As shown in FIG. 33, although the peak current is detected in each condition, the BG current is not sufficiently attenuated when the working electrode 2 is subjected only to the polishing treatment and the activation potential before analysis is + 0.8V. It can be read that. On the other hand, when the pre-analysis activation potential is +1.2 V to +2.0 V (particularly when +1.2 V or +2.0 V), the BG current is sufficiently attenuated and each peak current becomes clear and sharp. It can be read that the same result as in Example 7 was obtained.

なお、検証例1を参照すると、分析前活性化電位が+1.2Vの場合には、作用電極の酸化溶出反応が比較的大きいため、該作用電極2の消耗が比較的早いことが考えられる。また、分析前活性化電位が+1.8Vの場合は、分析前活性化電位が+1.2Vの場合と比較して作用電極2の消耗は抑制されるものの、酸化皮膜が形成され得るためBG電流の減衰が抑制されることが考えられる。さらに、前記の分析前活性化電位が+2.0Vを超える高電位であっても、S/B比が高くなりBG電流が減衰および各ピーク電流が明瞭かつシャープになる可能性はある。   Referring to Verification Example 1, when the pre-analysis activation potential is +1.2 V, the working electrode 2 may be consumed relatively quickly because the oxidation elution reaction of the working electrode is relatively large. In addition, when the pre-analysis activation potential is +1.8 V, the consumption of the working electrode 2 is suppressed as compared with the case where the pre-analysis activation potential is +1.2 V, but an oxide film can be formed. It is conceivable that the attenuation of is suppressed. Furthermore, even when the pre-analysis activation potential is a high potential exceeding +2.0 V, there is a possibility that the S / B ratio is increased, the BG current is attenuated, and each peak current is clear and sharp.

したがって、図1に示すような分析においては、電位保持工程の前段にて、塩化物イオン共存下で作用電極2に対し例えば+1.2V以上の分析前活性化電位(本実施例8では、例えば作用電極の消耗を抑制することを考慮すると、好ましくは約+1.8Vよりも正方向の電位)を印加して分析前活性化処理を行うことにより、BG電流が安定するだけでなく減衰し、より明瞭なピーク電流が検出されることから、より高感度および高精度での分析が可能であることを判明した。また、分析前活性化処理での分析前活性化電位が、作用電極の酸化溶出反応が起こる程度(本実施例8では,+1.2mV〜+2.0V程度)の場合には、該分析前活性化処理の際に作用電極2が再生処理(分析開始前に再生処理)され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, the pre-analysis activation potential of +1.2 V or more with respect to the working electrode 2 in the presence of chloride ions in the pre-stage of the potential holding step (in Example 8, for example, In consideration of suppressing the consumption of the working electrode, the BG current is preferably attenuated as well as stabilized by applying a pre-analysis activation process by applying a potential in the positive direction (preferably about +1.8 V), Since a clearer peak current was detected, it was found that analysis with higher sensitivity and higher accuracy was possible. When the pre-analysis activation potential in the pre-analysis activation treatment is such that an oxidative elution reaction of the working electrode occurs (in this Example 8, about +1.2 mV to +2.0 V), the pre-analysis activity It was found that the working electrode 2 was regenerated (regenerated before the start of analysis) during the activation process and the activated state was maintained, so that the analysis was reproducible.

(実施例9)
本実施例9では、分析前活性化時間を種々の時間に設定し、前記の試料S18についての分析を実施した。まず、試料S18に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位+1800mV,分析前活性化時間0秒〜180秒に設定して行った。そして、試料S18について、前記の実施例7同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の結果を各分析前活性化時間毎に図34A〜図34Dに示した。
Example 9
In Example 9, the activation time before analysis was set to various times, and the analysis for the sample S18 was performed. First, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S18 was performed by setting the pre-analysis activation potential + 1800 mV and the pre-analysis activation time of 0 seconds to 180 seconds. Then, the sample S18 is subjected to the analysis operation in the same potential holding step and potential sweeping step as in Example 7 to obtain the current change characteristic with respect to the potential change, and the result of each current change characteristic is obtained for each activation time before analysis. 34A to 34D.

図34A〜図34Dに示すように、各特性曲線の各ピーク電流は十分な大きさで検出され、分析前活性化時間が長くなるに連れてBG電流が減衰し各ピーク電流が明瞭になっていることが読み取れる。なお、前記の分析前活性化時間を180秒超に設定しても、前記BG電流は略一定または更に減衰する可能性はあるものの、分析時間が長くなってしまう恐れはある。   As shown in FIG. 34A to FIG. 34D, each peak current of each characteristic curve is detected with a sufficient magnitude, and as the pre-analysis activation time becomes longer, the BG current decays and each peak current becomes clear. I can read that Even if the pre-analysis activation time is set to more than 180 seconds, the BG current may be substantially constant or further attenuated, but the analysis time may be prolonged.

したがって、図1に示すような分析においては、分析前活性化時間を所定時間(本実施例9では好ましくは例えば180秒)設定することによりBG電流が十分減衰し、十分明瞭なピーク電流が検出されることから、さらに高感度および高精度での分析が可能であることを判明した。   Therefore, in the analysis as shown in FIG. 1, the BG current is sufficiently attenuated by setting the pre-analysis activation time to a predetermined time (preferably, for example, 180 seconds in this embodiment 9), and a sufficiently clear peak current is detected. Therefore, it was found that analysis with higher sensitivity and higher accuracy is possible.

(実施例10)
本実施例10では、試料S18について、水銀イオンを含む被分析対象1aにおいて前記のような分析前活性化処理を行った後、電位保持工程,電位掃引工程を含む分析操作を繰り返し行って、それぞれ分析を実施した。まず、試料S18に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位+1800mV,分析前活性化時間180秒に設定して行った。そして、試料S18について、前記の実施例7同様の電位保持工程,電位掃引工程による分析操作を5回繰り返し行って、それぞれの電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を分析操作毎に図35に示した。なお、本実施例10では、各銅イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例3と同様の分析間活性化処理(分析間活性化電位+1400mV,分析間活性化時間10秒)を行った。
(Example 10)
In Example 10, after performing the pre-analysis activation process as described above on the analyte 1a containing mercury ions for the sample S18, the analysis operation including the potential holding step and the potential sweep step is repeatedly performed. Analysis was performed. First, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S18 was performed by setting the pre-analysis activation potential + 1800 mV and the pre-analysis activation time of 180 seconds. Then, for the sample S18, the analysis operation by the potential holding process and the potential sweep process similar to those in Example 7 is repeated five times to obtain current change characteristics for each potential change, and each peak current of each current change characteristic is obtained. The values are shown in FIG. 35 for each analysis operation. In this Example 10, the inter-analysis activation process (inter-analysis activation potential + 1400 mV, inter-analysis activation time) similar to that in Example 3 for each analysis operation (potential holding step, potential sweep step) of each copper ion concentration. 10 seconds).

図35に示すように、各ピーク電流値を比較すると、それぞれ略同一であり、各ピーク電流値の変動率を求めたところ0.2%(極めて微差)であった。   As shown in FIG. 35, when the peak current values were compared, they were substantially the same, and the fluctuation rate of each peak current value was determined to be 0.2% (very small difference).

したがって、水銀イオン濃度を含む被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例10で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, when the analysis of the analyte 1a including the mercury ion concentration is repeatedly performed, a relatively simple inter-analysis activation process (for example, without performing a process such as a pre-analysis activation process for each analysis operation) (for example, It has been found that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the tenth embodiment), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例11)
本実施例11では、被分析対象1a中の水銀イオン濃度を種々の値に設定し、それぞれの分析を実施した。まず、25mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH3.5),0〜50nMの水銀イオンを配合して試料S19を得た。
(Example 11)
In Example 11, the mercury ion concentration in the analysis target 1a was set to various values, and each analysis was performed. First, a sample S19 was obtained by using a 25 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 3.5) and 0 to 50 nM mercury ions.

そして、試料S19に浸漬された作用電極2の分析前活性化処理を実施例10同様に行ってから、該試料S19について、該実施例10同様の電位保持工程(作用電極2の電位の保持時間は300秒に設定),電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値において水銀イオン濃度に対する特性図として図36に示した。なお、本実施例11においても、各水銀イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例10と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S19 is performed in the same manner as in Example 10, and then the potential holding step (the holding time of the potential of the working electrode 2) in the same manner as in Example 10 is applied to the sample S19. Is set to 300 seconds), the current change characteristics with respect to the potential change are obtained by performing the analysis operation by the potential sweep process, and the characteristic diagram with respect to the mercury ion concentration in each peak current value of each current change characteristic is shown in FIG. In Example 11 as well, the same inter-analysis activation process as in Example 10 was performed for each analysis operation (potential holding step, potential sweeping step) of each mercury ion concentration.

図36の特性図に示すように、各ピーク電流が十分な大きさおよび明瞭に検出され、水銀イオン濃度の増加に伴って大きくなっていることが読み取れる。また、図36に示すように、水銀イオン濃度に対する前記の各ピーク電流値の特性線は、相関係数R2が0.99以上で良好な相関性を有し、直線性が高いことを読み取れる。   As shown in the characteristic diagram of FIG. 36, it can be seen that each peak current is sufficiently large and clearly detected, and increases as the mercury ion concentration increases. Further, as shown in FIG. 36, it can be read that the characteristic line of each peak current value with respect to the mercury ion concentration has a good correlation and a high linearity when the correlation coefficient R2 is 0.99 or more.

したがって、図1に示したような分析においては、被分析対象1a中の水銀イオン(例えば0〜50nMの水銀イオン)を十分測定でき、その水銀イオン濃度に対する各ピーク電流値特性線を信頼性の高い検量線として適用できることを判明した。また、水銀イオン濃度が低く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例11で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, mercury ions (for example, 0 to 50 nM mercury ions) in the analyte 1a can be sufficiently measured, and each peak current value characteristic line with respect to the mercury ion concentration is reliable. It was found that it can be applied as a high calibration curve. In addition, when the analysis of the analyte 1a having a different mercury ion concentration is repeated, a relatively simple inter-analysis activation process (without the pre-analysis activation process for each analysis operation) is performed. For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the embodiment 11), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例12)
本実施例12では、被分析対象1a中の水銀イオン濃度を比較的低く設定し、それぞれの分析を実施した。まず、25mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH3.5),0〜4.5nMの水銀イオンを配合して試料S20を得た。
(Example 12)
In Example 12, the mercury ion concentration in the analysis target 1a was set to be relatively low, and each analysis was performed. First, a sample S20 was obtained by using a 25 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 3.5) and 0 to 4.5 nM mercury ions.

そして、試料S20に浸漬された作用電極2の分析前活性化処理を実施例10同様に行ってから、該試料S20について、該実施例11同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を銅イオン濃度に対する特性線として図37に示した。なお、本実施例12においても、各銅イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例10と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S20 is performed in the same manner as in Example 10, and then the sample S20 is subjected to the analysis operation by the potential holding process and the potential sweep process similar to those in the Example 11. FIG. 37 shows the current change characteristics with respect to the potential change, and the peak current values of these current change characteristics are shown as characteristic lines with respect to the copper ion concentration. Also in the present Example 12, the same inter-analysis activation process as in Example 10 was performed for each analysis operation (potential holding process, potential sweep process) of each copper ion concentration.

図37の特性線に示すように、各ピーク電流値が銅イオン濃度の増加に伴って大きくなり、相関係数R2が0.98以上で良好な相関性を有し、その特性線が高い直線性を有することが読み取れる。   As shown in the characteristic line of FIG. 37, each peak current value increases as the copper ion concentration increases, and the correlation coefficient R2 is 0.98 or more, and has a good correlation. It can be read that it has sex.

したがって、図1に示したような分析においては、水銀イオン濃度が比較的低濃度(例えば0〜4.5nM程度)であっても、該被分析対象1a中の水銀イオンを十分測定でき、その銅イオン濃度に対する各ピーク電流値特性線を信頼性の高い検量線として適用できることを判明した。なお、電位保持工程において、作用電極2の電位の保持時間(すなわち、還元濃縮時間)を300秒よりも長く設定したところ、極めて低濃度(数100pMレベル)の水銀イオンの測定,分析が可能であることを確認した。   Therefore, in the analysis as shown in FIG. 1, even if the mercury ion concentration is relatively low (for example, about 0 to 4.5 nM), the mercury ion in the analyte 1a can be sufficiently measured. It was found that each peak current value characteristic line for copper ion concentration can be applied as a highly reliable calibration curve. In the potential holding step, when the holding time of the potential of the working electrode 2 (that is, the reduction concentration time) is set longer than 300 seconds, it is possible to measure and analyze mercury ions at a very low concentration (several hundred pM level). I confirmed that there was.

また、水銀イオン濃度が低く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例12で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   In addition, when the analysis of the analyte 1a having a different mercury ion concentration is repeated, a relatively simple inter-analysis activation process (without the pre-analysis activation process for each analysis operation) is performed. For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). When the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the embodiment 12), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例13)
本実施例13では、被分析対象1a中の水銀イオン濃度を比較的高く設定し、それぞれの分析を実施した。まず、150mMの塩化カリウム溶液を支持電解質とし、10mMの酢酸緩衝溶液(pH4.5),0〜500nMの水銀イオンを配合して試料S21を得た。
(Example 13)
In Example 13, the mercury ion concentration in the analyte 1a was set to be relatively high, and each analysis was performed. First, a sample S21 was obtained by using a 150 mM potassium chloride solution as a supporting electrolyte and a 10 mM acetate buffer solution (pH 4.5) and 0 to 500 nM mercury ions.

そして、試料S21に浸漬された作用電極2の分析前活性化処理を実施例10同様に行ってから、該試料S21について、該実施例11同様の電位保持工程,電位掃引工程による分析操作を行って電位変化に対する電流変化特性を求め、それら各電流変化特性の各ピーク電流値を銅イオン濃度に対する特性線として図38に示した。なお、本実施例13においても、各水銀イオン濃度の分析操作(電位保持工程,電位掃引工程)毎に実施例10と同様の分析間活性化処理を行った。   Then, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S21 is performed in the same manner as in Example 10, and then the sample S21 is subjected to the analysis operation by the potential holding process and the potential sweep process similar to those in Example 11. The current change characteristics with respect to the potential change were obtained, and each peak current value of each current change characteristic was shown in FIG. 38 as a characteristic line with respect to the copper ion concentration. In Example 13, the same inter-analysis activation process as in Example 10 was performed for each mercury ion concentration analysis operation (potential holding step, potential sweep step).

図38の特性線に示すように、各ピーク電流値が水銀イオン濃度の増加に伴って大きくなり、例えば0〜150nM程度であれば十分な直線性を有し、該特性線は検量線として十分適用できることを判明した。   As shown in the characteristic line of FIG. 38, each peak current value increases as the mercury ion concentration increases. For example, if it is about 0 to 150 nM, the linearity is sufficient, and the characteristic line is sufficient as a calibration curve. It turns out that it is applicable.

したがって、図1に示したような分析においては、水銀イオン濃度が比較的高濃度(例えば0〜150nM程度)であっても、該被分析対象1a中の水銀イオンを十分測定でき、その水銀イオン濃度に対する各ピーク電流値特性線を信頼性のある検量線として十分適用できることを判明した。なお、電位保持工程において、作用電極2の電位の保持時間(すなわち、還元濃縮時間)を300秒よりも短く設定したところ、極めて高濃度(数10μMレベル)の水銀イオンの測定,分析が可能であることを確認した。   Therefore, in the analysis as shown in FIG. 1, even if the mercury ion concentration is relatively high (for example, about 0 to 150 nM), the mercury ion in the analyte 1a can be sufficiently measured. It was found that each peak current value characteristic line with respect to the concentration can be sufficiently applied as a reliable calibration curve. In the potential holding step, when the holding time of the potential of the working electrode 2 (that is, the reduction concentration time) is set to be shorter than 300 seconds, it is possible to measure and analyze extremely high concentration (several tens of μM level) mercury ions. I confirmed that there was.

また、水銀イオン濃度が高く異なる被分析対象1aの分析を繰り返し行う場合、その分析操作毎に分析前活性化処理のような処理を行わなくても、比較的簡易的な分析間活性化処理(例えば、短時間の分析間活性化処理)のみを行うだけで、十分高いS/B比を確保し、高感度および高精度な分析を維持できることを判明した。また、分析間活性化電位が約+1000mV以上(本実施例13で好ましくは約+1400mV以上)の場合には、分析間活性化処理毎に作用電極2が再生処理され、活性化状態が維持されるため分析の再現性を有することを判明した。   In addition, when the analysis of the analyte 1a having different mercury ion concentrations is repeated, a relatively simple inter-analysis activation process (without the pre-analysis activation process for each analysis operation) ( For example, it has been proved that a sufficiently high S / B ratio can be ensured and high-sensitivity and high-precision analysis can be maintained only by performing a short inter-analysis activation process). Further, when the inter-analysis activation potential is about +1000 mV or more (preferably about +1400 mV or more in the embodiment 13), the working electrode 2 is regenerated for each inter-analysis activation process, and the activated state is maintained. Therefore, it was found that the analysis has reproducibility.

(実施例14)
本実施例14では、砒素イオンを含む被分析対象(塩化物イオン共存下)1aに浸漬された作用電極2を、種々の分析前活性化電位で分析前活性化処理、または研磨処理(分析前活性化処理を行わずに表面を研磨処理(金電極から成る作用電極2をアルミナによりバフ研磨して処理))し、それぞれの分析を実施した。なお、本実施例14では、ポテンシオスタット5として北斗電工社製のHZ−5000(HAG3001)を用いた。まず、1Mの塩酸溶液を支持電解質とし、60ppbの砒素イオンを配合して試料S22を得た。
(Example 14)
In the fourteenth embodiment, the working electrode 2 immersed in the analysis target 1a containing arsenic ions (in the presence of chloride ions) 1a is subjected to pre-analysis activation treatment or polishing treatment (before analysis) at various pre-analysis activation potentials. The surface was polished without performing the activation treatment (the working electrode 2 made of a gold electrode was buffed with alumina) and each analysis was performed. In Example 14, HZ-5000 (HAG3001) manufactured by Hokuto Denko Co., Ltd. was used as the potentiostat 5. First, a 1M hydrochloric acid solution was used as a supporting electrolyte, and 60 ppb arsenic ions were blended to obtain a sample S22.

その後、試料S22に浸漬された作用電極2の分析前活性化処理を行う場合には、分析前活性化電位+0.8〜+3.0V,分析前活性化時間5分間に設定して行った。そして、試料S22について、実施例8と同様の電位保持工程,電位掃引工程による分析操作を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を図39A,Bと図40に示した。   Thereafter, when the pre-analysis activation treatment of the working electrode 2 immersed in the sample S22 was performed, the pre-analysis activation potential was set to +0.8 to +3.0 V, and the pre-analysis activation time was set to 5 minutes. And about the sample S22, the analysis operation by the electric potential holding process and electric potential sweep process similar to Example 8 was performed, the electric current change characteristic with respect to an electric potential change was each calculated | required, and those results were shown to FIG. 39A, B, and FIG.

また、比較例として、前記の作用電極2に金メッキカーボン電極(1000ppm金メッキ浴中にカーボン電極(直径3mmのグラッシーカーボン電極(ビーエーエス社製))を浸漬し、−0.4Vの電位を15分間印加して得た電極)を用い、試料S22について実施例8同様の電位保持工程,電位掃引工程による分析操作(分析前活性化処理を行わない分析操作)を行って、電位変化に対する電流変化特性を求め、それら結果を図41に示した。   As a comparative example, a gold-plated carbon electrode (a carbon electrode (glassy carbon electrode with a diameter of 3 mm (manufactured by BAS)) in a 1000 ppm gold-plated bath) is immersed in the working electrode 2 and a potential of −0.4 V is applied for 15 minutes. The sample S22 was subjected to an analysis operation (analysis operation without performing the pre-analysis activation process) in the potential holding process and the potential sweep process similar to those of Example 8, and the current change characteristic with respect to the potential change was obtained. The results are shown in FIG.

図39A〜図41に示すように、作用電極として金メッキカーボン電極を用いた場合,作用電極2を研磨処理のみ行った場合,分析前活性化電位が+0.8V〜+2.0Vの場合は、それぞれピーク電流が検出されている。しかしながら、該金メッキカーボン電極を用いた場合,該研磨処理のみ行った場合,分析前活性化電位が+0.8Vの場合は、BG電流の減衰が不十分であることが読み取れる。   As shown in FIGS. 39A to 41, when a gold-plated carbon electrode is used as the working electrode, when the working electrode 2 is only polished, and when the activation potential before analysis is +0.8 V to +2.0 V, Peak current is detected. However, when the gold-plated carbon electrode is used, it can be read that the BG current is insufficiently attenuated when only the polishing treatment is performed and the activation potential before analysis is + 0.8V.

一方、分析前活性化電位が+1.2V〜+2.0Vの場合(特に、+1.2V,+2.0Vの場合)は、BG電流が十分に減衰し各ピーク電流が明瞭かつシャープになり、実施例8等の場合と同様の結果が得られたことを読み取れる。   On the other hand, when the pre-analysis activation potential is +1.2 V to +2.0 V (particularly when +1.2 V or +2.0 V), the BG current is sufficiently attenuated and each peak current becomes clear and sharp. It can be read that the same result as in Example 8 was obtained.

なお、検証例1を参照すると、分析前活性化電位が+1.2Vの場合には、作用電極の酸化溶出反応が比較的大きいため、該作用電極2の消耗が比較的早いことが考えられる。また、分析前活性化電位が+1.8Vの場合は、分析前活性化電位が+1.2Vの場合と比較して作用電極2の消耗は抑制されるものの、BG電流の減衰が抑制されることが考えられる。さらに、前記の分析前活性化電位が+2.0Vを超える電位(本実施例14では+2.5V,+3.0V)の場合、BG電流は減衰するものの、砒素イオンの還元濃縮が行われないことが考えられる。   Referring to Verification Example 1, when the pre-analysis activation potential is +1.2 V, the working electrode 2 may be consumed relatively quickly because the oxidation elution reaction of the working electrode is relatively large. Further, when the pre-analysis activation potential is +1.8 V, the consumption of the working electrode 2 is suppressed as compared with the case where the pre-analysis activation potential is +1.2 V, but the attenuation of the BG current is suppressed. Can be considered. Furthermore, when the pre-analysis activation potential exceeds +2.0 V (+2.5 V, +3.0 V in Example 14), the BG current is attenuated, but arsenic ions are not reduced and concentrated. Can be considered.

したがって、図1に示すような分析においては、電位保持工程の前段にて、塩化物イオン共存下で作用電極2に対し例えば+1.2V以上の分析前活性化電位(本実施例14では、例えば作用電極の消耗を抑制することを考慮すると、好ましくは+1.8V〜+2.0V程度(作用電極から気泡(酸素や塩素等)が発生する直前の電位))を印加して分析前活性化処理を行うことにより、BG電流が安定するだけでなく減衰し、より明瞭なピーク電流が検出されることから、より高感度および高精度での分析が可能であることを判明した。また、分析前活性化処理での分析前活性化電位が、作用電極の酸化溶出反応が起こる程度(本実施例14では,+1.2V〜+2.0V程度)の場合には、該分析前活性化処理の際に作用電極2が再生処理(分析開始前に再生処理)され、活性化状態が維持されるため分析の再現性を有することを判明した。   Therefore, in the analysis as shown in FIG. 1, the pre-analysis activation potential (for example, +1.2 V or more) with respect to the working electrode 2 in the presence of chloride ions in the pre-stage of the potential holding step (in Example 14, for example, In consideration of suppressing the consumption of the working electrode, the pre-analysis activation process is preferably performed by applying about +1.8 V to +2.0 V (potential immediately before bubbles (oxygen, chlorine, etc.) are generated from the working electrode). By performing the above, the BG current is not only stabilized but also attenuated, and a clearer peak current is detected. Thus, it has been found that analysis with higher sensitivity and higher accuracy is possible. In addition, when the pre-analysis activation potential in the pre-analysis activation treatment is such that an oxidative elution reaction of the working electrode occurs (in Example 14, about +1.2 V to +2.0 V), the pre-analysis activity It was found that the working electrode 2 was regenerated (regenerated before the start of analysis) during the activation process and the activated state was maintained, so that the analysis was reproducible.

(実施例15)
本実施例15では、被分析対象1a中の砒素イオン濃度を種々の値に設定し、それぞれの分析を実施した。なお、本実施例15では、ポテンシオスタット5として北斗電工社製の水銀フリー・ボルタンメトリー分析計FIELDER HOE−100を用いた。まず、1Mの塩酸溶液を支持電解質とし、0〜100ppbの砒素イオンを配合して試料S23を得た。その後、試料S23に浸漬された作用電極2の分析前活性化処理を、分析前活性化電位+1.2V,分析前活性化時間5分間に設定して行った。
(Example 15)
In Example 15, the arsenic ion concentration in the analysis target 1a was set to various values, and each analysis was performed. In Example 15, a mercury-free voltammetric analyzer FIELDER HOE-100 manufactured by Hokuto Denko Co., Ltd. was used as the potentiostat 5. First, a 1M hydrochloric acid solution was used as a supporting electrolyte, and 0-100 ppb arsenic ions were blended to obtain a sample S23. Thereafter, the pre-analysis activation treatment of the working electrode 2 immersed in the sample S23 was performed by setting the pre-analysis activation potential +1.2 V and the pre-analysis activation time of 5 minutes.

そして、試料S23について、実施例8同様の電位保持工程,電位掃引工程による分析操作を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を図42Aに示した。また、前記の各電流変化特性の各ピーク面積,各ピーク電流値をそれぞれ砒素イオン濃度に対する特性線として図42B,Cに示した。   And about the sample S23, the analysis operation by the electric potential holding process similar to Example 8 and an electric potential sweep process were performed, the current change characteristic with respect to an electric potential change was each calculated | required, and those results were shown to FIG. 42A. 42B and 42C show the respective peak areas and the respective peak current values of the respective current change characteristics as characteristic lines with respect to the arsenic ion concentration.

さらに、比較例として、前記の作用電極2に前記の金メッキカーボン電極を用い、試料S23について実施例8同様の電位保持工程,電位掃引工程による分析操作(分析前活性化処理を行わない分析操作)を行って、電位変化に対する電流変化特性をそれぞれ求め、それら結果を図43に示した。   Further, as a comparative example, the gold-plated carbon electrode is used as the working electrode 2 and the sample S23 is analyzed by the same potential holding step and potential sweeping step as in Example 8 (analysis operation without performing pre-analysis activation processing). The current change characteristics with respect to the potential change were obtained, and the results are shown in FIG.

図42A,図43に示すように、それぞれ砒素イオン濃度に応じたピーク電流が検出されているが、金メッキカーボン電極を用いた場合はBG電流の減衰が不十分であり、BG電流が複雑に重なるためピーク電流を算出することが難しいことを読み取れる。   As shown in FIGS. 42A and 43, peak currents corresponding to arsenic ion concentrations are detected, respectively. However, when gold-plated carbon electrodes are used, the attenuation of the BG current is insufficient and the BG currents overlap in a complicated manner. Therefore, it can be read that it is difficult to calculate the peak current.

一方、金電極を用いた場合は、BG電流が十分に減衰し各ピーク電流が明瞭かつシャープになり、実施例8等の場合と同様の結果が得られたことを読み取れる。また、図42B,Cに示すように、各特性線の相関係数R2が0.99以上で良好な相関性を有し、例えばピーク面積の場合は0〜160ppb程度,ピーク電流値の場合は0〜100ppb程度であれば十分な直線性を有し、該特性線は検量線として十分適用できることを判明した。   On the other hand, when the gold electrode is used, the BG current is sufficiently attenuated and each peak current becomes clear and sharp, and it can be read that the same result as in Example 8 is obtained. Further, as shown in FIGS. 42B and 42C, the correlation coefficient R2 of each characteristic line has a good correlation with 0.99 or more. For example, in the case of a peak area, about 0 to 160 ppb, and in the case of a peak current value It has been found that if it is about 0 to 100 ppb, it has sufficient linearity, and the characteristic line can be sufficiently applied as a calibration curve.

したがって、図1に示したような分析においては、被分析対象1a中の砒素イオン(例えば、数ppb〜数100ppbレベルの砒素イオン)を十分測定でき、その砒素イオン濃度に対する各ピーク面積特性線,各ピーク電流値特性線を信頼性の高い検量線として適用できることを判明した。   Therefore, in the analysis as shown in FIG. 1, arsenic ions (for example, arsenic ions of several ppb to several hundred ppb level) in the analysis target 1a can be sufficiently measured, and each peak area characteristic line with respect to the arsenic ion concentration, It was found that each peak current value characteristic line can be applied as a highly reliable calibration curve.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、少なくとも作用電極(金電極から成る作用電極),対電極,参照電極から構成され、被分析対象中に前記の各電極を配置し、電位保持工程によって前記作用電極の電位を所定電位に保持し、電位掃引工程にて前記の作用電極の電位を高電位側に掃引しながら該作用電極における電位変化に対する電流変化を検出することが可能なものであれば、たとえ技術常識の範囲内で適宜設計変更(例えば、各電極の形態や、分析条件(例えば、微分パルスモード,リニアスイープモードの条件)等の変更)等を行ったとしても、本実施例等と同様の作用効果が得られることは明らかである。   For example, it is composed of at least a working electrode (working electrode made of a gold electrode), a counter electrode, and a reference electrode, and each of the electrodes is arranged in an analysis target, and the potential of the working electrode is held at a predetermined potential by a potential holding step. If the potential change of the working electrode can be detected while the potential of the working electrode is swept to the high potential side in the potential sweeping step, it is appropriately within the scope of common technical knowledge. Even if a design change (for example, change of each electrode form, analysis condition (for example, differential pulse mode, linear sweep mode), etc.), etc., etc., the same effect as the present embodiment can be obtained. Is clear.

本実施の形態における溶液分析方法に適用可能な装置の概略説明図。Schematic explanatory drawing of the apparatus applicable to the solution analysis method in this Embodiment. 検証例1のサイクリックボルタモグラム(試料S1〜S3)。Cyclic voltammogram of verification example 1 (samples S1 to S3). 検証例1のサイクリックボルタモグラム(試料S1a)。The cyclic voltammogram of verification example 1 (sample S1a). 検証例2の電位変化に対する電流変化特性図(塩化カリウム溶液(0〜100nM),リニアスイープモードの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium chloride solution (0-100 nM) and a linear sweep mode). 検証例2の電位変化に対する電流変化特性図(塩化カリウム溶液(120〜200nM),リニアスイープモードの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium chloride solution (120-200 nM) and a linear sweep mode). 検証例2の電位変化に対する電流変化特性図(硫酸カリウム溶液(0〜100nM)の場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium sulfate solution (0-100 nM)). 検証例2の電位変化に対する電流変化特性図(硫酸カリウム溶液(120〜200nM)の場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium sulfate solution (120-200 nM)). 検証例2の銅イオン濃度に対するピーク電流の特性線図(硫酸カリウム溶液の場合)。The characteristic diagram of the peak current with respect to the copper ion concentration of Verification Example 2 (in the case of a potassium sulfate solution). 検証例2の電位変化に対する電流変化特性図(硝酸カリウム溶液(0〜100nM)の場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium nitrate solution (0-100 nM)). 検証例2の電位変化に対する電流変化特性図(硝酸カリウム溶液(120〜200nM)の場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium nitrate solution (120-200 nM)). 検証例2の銅イオン濃度に対するピーク電流の特性線図(硝酸カリウム溶液の場合)。The characteristic diagram of the peak current with respect to the copper ion concentration of Verification Example 2 (in the case of a potassium nitrate solution). 検証例2の電位変化に対する電流変化特性図(塩化カリウム溶液(0〜50nM),微分パルスモードの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium chloride solution (0-50 nM) and differential pulse mode). 検証例2の電位変化に対する電流変化特性図(塩化カリウム溶液(60〜160nM),微分パルスモードの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium chloride solution (60-160 nM) and differential pulse mode). 検証例2の電位変化に対する電流変化特性図(塩化カリウム溶液(180〜200nM),微分パルスモードの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 2 (in the case of a potassium chloride solution (180-200 nM) and differential pulse mode). 検証例2の銅イオン濃度に対するピーク電流の特性線図(塩化カリウム溶液,微分パルスモードの場合)。The characteristic diagram of the peak current with respect to the copper ion concentration of Verification Example 2 (in the case of potassium chloride solution and differential pulse mode). 検証例3の塩化カリウム濃度に対するピーク電流(ピーク電流値)特性図(銅イオンの場合)。The peak current (peak current value) characteristic diagram with respect to the potassium chloride concentration in Verification Example 3 (in the case of copper ions). 検証例3の塩化カリウム濃度に対するピーク電流(ピーク電流値)特性図(水銀イオンの場合)。The peak current (peak current value) characteristic diagram with respect to the potassium chloride concentration in Verification Example 3 (in the case of mercury ions). 検証例4の緩衝溶液のpHに対するピーク電流値特性図(銅イオンの場合)。The peak current value characteristic view with respect to pH of the buffer solution of Verification Example 4 (in the case of copper ions). 検証例4の緩衝溶液のpHに対するピーク電流値特性図(水銀イオンの場合)。The peak current value characteristic view with respect to pH of the buffer solution of Verification Example 4 (in the case of mercury ions). 検証例5の電位変化に対する電流変化特性図(銅イオン,鉛イオンの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 5 (in the case of copper ion and lead ion). 検証例5の電位変化に対する電流変化特性図(水銀イオン,銅イオンの場合)。The electric current change characteristic view with respect to the electric potential change of the verification example 5 (in the case of mercury ion and copper ion). 実施例1の電位変化に対する電流変化特性図(銅イオン,分析前活性化電位700〜1200mVの場合)。The electric current change characteristic view with respect to the electric potential change of Example 1 (in the case of the copper ion and the activation potential before analysis 700-1200 mV). 実施例1の電位変化に対する電流変化特性図(銅イオン,分析前活性化電位1300〜1600mVの場合)。FIG. 4 is a current change characteristic diagram with respect to potential change in Example 1 (in the case of copper ions, pre-analysis activation potential of 1300 to 1600 mV). 実施例2の電位変化に対する電流変化特性図(銅イオンの場合)。The electric current change characteristic view with respect to the electric potential change of Example 2 (in the case of copper ion). 実施例3の分析操作毎のピーク電流値特性図(銅イオンの場合)。The peak current value characteristic figure for every analysis operation of Example 3 (in the case of copper ion). 実施例4の電位変化に対する電流変化特性および検量線図(銅イオン(0〜200nM)の場合)。The electric current change characteristic with respect to the electric potential change of Example 4 and a calibration curve (in the case of a copper ion (0-200 nM)). 実施例4の電位変化に対する電流変化特性および検量線図(銅イオン(240〜400nM)の場合)。The electric current change characteristic with respect to the electric potential change of Example 4 and a calibration curve (in the case of a copper ion (240-400 nM)). 実施例4の銅イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current to the copper ion concentration of Example 4. 実施例5の銅イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current to the copper ion concentration of Example 5. 実施例6の銅イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current to the copper ion concentration of Example 6. 実施例7の電位変化に対する電流変化特性図(水銀イオン,分析前活性化電位0〜1600mVの場合)。The electric current change characteristic view with respect to the electric potential change of Example 7 (in the case of mercury ion and activation potential before analysis of 0 to 1600 mV). 実施例7の電位変化に対する電流変化特性図(水銀イオン,分析前活性化電位1400〜1800mVの場合)。The current change characteristic view with respect to the potential change of Example 7 (in the case of mercury ion, activation potential before analysis 1400 to 1800 mV). 実施例8の電位変化に対する電流変化特性図(水銀イオン,0.1Mの塩酸溶液を支持電解質の場合)。The electric current change characteristic view with respect to the electric potential change of Example 8 (in the case of mercury ion and 0.1 M hydrochloric acid solution as a supporting electrolyte). 実施例9の電位変化に対する電流変化特性図(水銀イオンの場合)。The current change characteristic view with respect to the potential change of Example 9 (in the case of mercury ion). 実施例10の分析操作毎のピーク電流値特性図(水銀イオンの場合)。The peak current value characteristic figure for every analysis operation of Example 10 (in the case of mercury ion). 実施例11の水銀イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current with respect to the mercury ion concentration of Example 11. 実施例12の水銀イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current with respect to the mercury ion concentration of Example 12. 実施例13の水銀イオン濃度に対するピーク電流の特性線図。The characteristic line figure of the peak current with respect to the mercury ion concentration of Example 13. 実施例14の電位変化に対する電流変化特性図(砒素イオンの場合)。The current change characteristic view with respect to the potential change of Example 14 (in the case of arsenic ions). 実施例14の分析前活性化電位に対するS/B比特性図(砒素イオンの場合)。The S / B ratio characteristic figure with respect to the activation potential before analysis of Example 14 (in the case of arsenic ion). 実施例14における比較例の分析前活性化電位に対するS/B比特性図(実施例,金メッキカーボン電極の場合)。The S / B ratio characteristic figure with respect to the activation potential before the analysis of the comparative example in Example 14 (Example, in the case of a gold plating carbon electrode). 実施例15の電位変化に対する電流変化特性,ピーク面積特性,ピーク電流値特性図(砒素イオンの場合)。The electric current change characteristic with respect to the electric potential change of Example 15, a peak area characteristic, and a peak electric current value characteristic figure (in the case of arsenic ion). 実施例15における比較例の電位変化に対する電流変化特性図(金メッキカーボン電極の場合)。The electric current change characteristic view with respect to the electric potential change of the comparative example in Example 15 (in the case of a gold plating carbon electrode).

符号の説明Explanation of symbols

1…容器
1a…被分析対象
2…作用電極
3…対電極
4…参照電極
5…ポテンシオスタット
6…コンピュータ
7…スターラー
DESCRIPTION OF SYMBOLS 1 ... Container 1a ... Analyte 2 ... Working electrode 3 ... Counter electrode 4 ... Reference electrode 5 ... Potentiostat 6 ... Computer 7 ... Stirrer

Claims (7)

作用電極,対電極,参照電極を被分析対象中に配置してから、
前記作用電極の電位を、被分析対象中の測定対象が還元し得る電位に保持する電位保持工程と、
前記の保持された作用電極の電位を、前記の被分析対象中の測定対象が酸化し得る正方向に掃引しながら、該作用電極における電位変化に対する電流変化を検出する電位掃引工程と、による分析操作を行う方法であって、
前記の作用電極には金電極を用い、前記の分析操作前に、塩化物イオンを含んだ溶液または塩化物イオンが共存する被分析対象中にて分析前活性化電位を印加して分析前活性化処理し、
前記の分析操作を、前記の被分析対象中に塩化物イオンが共存する状態で行い、
前記の分析前活性化電位が、塩化物イオン共存下にて金電極が酸化溶出反応を起こす電位であることを特徴とする溶液分析方法。
After placing the working electrode, counter electrode, and reference electrode in the analyte,
A potential holding step of holding the potential of the working electrode at a potential that can be reduced by the measurement target in the analyte;
A potential sweeping step of detecting a current change with respect to a potential change in the working electrode while sweeping the held potential of the working electrode in a positive direction in which the measurement target in the analysis target can be oxidized. A method of performing an operation,
A gold electrode is used as the working electrode, and before the analysis operation, a pre-analysis activation potential is applied by applying a pre-analysis activation potential in a solution containing chloride ions or an analyte in the presence of chloride ions. Process
The analytical procedures of the, are performed by the state chloride ions coexisting in the analyte above,
The solution analysis method, wherein the pre-analysis activation potential is a potential at which a gold electrode undergoes an oxidation elution reaction in the presence of chloride ions .
前記の分析前活性化電位は、前記の酸化溶出反応を起こす電位のうち、酸素および塩素の気泡が発生する電位を除くことを特徴とする請求項1記載の溶液分析方法。 2. The solution analysis method according to claim 1 , wherein the pre-analysis activation potential excludes a potential at which oxygen and chlorine bubbles are generated from the potential that causes the oxidation elution reaction. 前記の分析前活性化電位は、塩化物イオン共存下にて金電極表面に酸化皮膜が形成される電位を除く範囲であることを特徴とする請求項2記載の溶液分析方法。 3. The solution analysis method according to claim 2, wherein the pre-analysis activation potential is in a range excluding the potential at which an oxide film is formed on the gold electrode surface in the presence of chloride ions. 前記の分析操作を繰り返し行う際、該分析操作間において、作用電極に対して分析間活性化電位を印加して分析間活性化処理を行うことを特徴とする請求項1〜3のうち何れかに記載の溶液分析方法。 When repeating the analysis operation of the, between the analysis operation, any one of the claims 1 to 3, characterized in that the application to analyze between activation analysis between activating potential to the working electrode The solution analysis method described in 1. 前記の分析間活性化電位は、塩化物イオン共存下にて金電極が酸化溶出反応を起こす電位のうち、酸素および塩素の気泡が発生する電位を除くことを特徴とする請求項4記載の溶液分析方法。 5. The solution according to claim 4, wherein the inter-analysis activation potential excludes a potential at which oxygen and chlorine bubbles are generated from a potential at which the gold electrode undergoes an oxidation elution reaction in the presence of chloride ions. Analysis method. 前記の分析間活性化電位は、塩化物イオン共存下にて金電極表面に酸化皮膜が形成される電位であることを特徴とする請求項5記載の溶液分析方法。 6. The solution analysis method according to claim 5, wherein the inter-analysis activation potential is a potential at which an oxide film is formed on the gold electrode surface in the presence of chloride ions. 前記の測定対象は少なくとも水銀,銅,砒素のうち一つを含むことを特徴とする請求項1〜6の何れかに記載の溶液分析方法。 The solution analysis method according to claim 1 , wherein the measurement object includes at least one of mercury, copper, and arsenic.
JP2006259997A 2006-04-10 2006-09-26 Solution analysis method Active JP4869849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259997A JP4869849B2 (en) 2006-04-10 2006-09-26 Solution analysis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006108044 2006-04-10
JP2006108044 2006-04-10
JP2006259997A JP4869849B2 (en) 2006-04-10 2006-09-26 Solution analysis method

Publications (2)

Publication Number Publication Date
JP2007304081A JP2007304081A (en) 2007-11-22
JP4869849B2 true JP4869849B2 (en) 2012-02-08

Family

ID=38838105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259997A Active JP4869849B2 (en) 2006-04-10 2006-09-26 Solution analysis method

Country Status (1)

Country Link
JP (1) JP4869849B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097742B2 (en) * 2009-04-07 2012-12-12 株式会社日立製作所 Probe microscope and measuring method using the same
JP5281481B2 (en) * 2009-05-22 2013-09-04 学校法人慶應義塾 Method and apparatus for electrochemical measurement of arsenic ion, and reagent set
RU2467321C1 (en) * 2011-07-26 2012-11-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Method for stripping voltammetry definition of nitrite- and chloride-ions with their joint presence

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131690A (en) * 1975-05-13 1976-11-16 Mitsubishi Chem Ind Ltd Voltammetry apparatus
JPH04289027A (en) * 1991-03-19 1992-10-14 Hokuto Denko Kk Manufacture of metallic probe
JPH10185871A (en) * 1996-12-26 1998-07-14 Kyoto Electron Mfg Co Ltd Method for cleaning electrode of residual chlorine meter, and residual chlorine meter
JP3810760B2 (en) * 2003-02-06 2006-08-16 北斗電工株式会社 SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD
JP2005156543A (en) * 2003-11-05 2005-06-16 Toto Ltd Electrochemical measuring method and apparatus
JP2005351677A (en) * 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd Electrode and device for electrochemical test/analysis

Also Published As

Publication number Publication date
JP2007304081A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Kopanica et al. Determination of traces of arsenic (III) by anodic stripping voltammetry in solutions, natural waters and biological material
Taillefert et al. The application of electrochemical tools for in situ measurements in aquatic systems
Jagner Instrumental approach to potentiometric stripping analysis of some heavy metals
Tercier et al. In situ voltammetric measurements in natural waters: future prospects and challenges
Dehghanzade et al. Voltammetric determination of diazepam using a bismuth modified pencil graphite electrode
US8702957B2 (en) Electrochemical detection of silica species
Rico et al. A novel cell design for the improved stripping voltammetric detection of Zn (II), Cd (II), and Pb (II) on commercial screen-printed strips by bismuth codeposition in stirred solutions
Billon et al. Gold and Silver Micro‐Wire Electrodes for Trace Analysis of Metals
Prakash et al. Direct estimation of total arsenic using a novel metal side disk rotating electrode
Fadrná Polished silver solid amalgam electrode: Further characterization and applications in voltammetric measurements
JP4869849B2 (en) Solution analysis method
Barek et al. Voltammetric Determination of N, N‐Dimethyl‐4‐amine‐carboxyazobenzene at a Silver Solid Amalgam Electrode
CN108291890B (en) Pulse potential gas sensor
Tesařová et al. Potentiometric stripping analysis at antimony film electrodes
Jagner et al. Coulometric stripping potentiometry
Martínez‐Paredes et al. Lead Sensor Using Gold Nanostructured Screen‐Printed Carbon Electrodes as Transducers
JP2007309802A (en) Solution analyzer and analysis method
Liu et al. Electrochemical stripping analysis from micro-counter electrode
JP3810760B2 (en) SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD
JP5276737B2 (en) Solution analysis method
Granado Rico et al. A novel cell design for the improved stripping voltammetric detection of Zn (II), Cd (II), and Pb (II) on commercial screen‐printed strips by bismuth codeposition in stirred solutions
Faridbod et al. Principles of Electroanalytical Methods
RU2338184C1 (en) Method for voltage curve registration
Chýlková et al. Proposal for a mercury isolation procedure using cold vapor method in combination with voltammetric determination using a rotating gold electrode
Sahlin et al. Faradaic Reactions at Glassy Carbon Surfaces Studied by Coulometric Stripping Potentiometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250