JP2007309802A - Solution analyzer and analysis method - Google Patents

Solution analyzer and analysis method Download PDF

Info

Publication number
JP2007309802A
JP2007309802A JP2006139604A JP2006139604A JP2007309802A JP 2007309802 A JP2007309802 A JP 2007309802A JP 2006139604 A JP2006139604 A JP 2006139604A JP 2006139604 A JP2006139604 A JP 2006139604A JP 2007309802 A JP2007309802 A JP 2007309802A
Authority
JP
Japan
Prior art keywords
potential
electrode
working electrode
analysis
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006139604A
Other languages
Japanese (ja)
Inventor
Masashi Fujita
昌司 藤田
Atsuhisa Fukumizu
敦尚 福泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuto Denko Corp
Original Assignee
Hokuto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuto Denko Corp filed Critical Hokuto Denko Corp
Priority to JP2006139604A priority Critical patent/JP2007309802A/en
Publication of JP2007309802A publication Critical patent/JP2007309802A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform microanalysis (for example, measurement of a trace amount of metal ions) with high sensitivity and high accuracy of solution such as service water or environmental water, or solution or the like eluting from soil, food, waste or the like. <P>SOLUTION: A working electrode (copper electrode) 2, a counter electrode 3 and a reference electrode 4 are dipped into an analysis object 1a, and while keeping the potential of the working electrode 2 at a prescribed potential (potential keeping process), the potential of the working electrode 2 is swept in a differential pulse mode, to thereby elute a measuring object deposited by the working electrode 2 into the analysis object, and a current change to a voltage change of the working electrode 2 is detected (potential sweeping process). In the potential sweeping process, an electrolytic current is sampled on a sampling position (for example, within 23 ms) except a sufficient attenuation position (namely, on an insufficient attenuation position) wherein attenuation of a charge current is not sufficient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、作用電極,対電極,参照電極を構成したボルタンメトリーにより金属イオン等を測定(定性,定量)して分析することが可能な溶液分析装置および溶液分析方法であって、例えば水道水,環境水等の溶液や、土壌,食品,廃棄物等から溶出する溶液等に含まれる微量(100pptレベル以上)な鉛,カドミウム,亜鉛等を測定して分析することが可能な装置および方法に関するものである。   The present invention relates to a solution analyzer and a solution analysis method that can measure (qualitatively and quantitatively) analyze metal ions and the like by voltammetry comprising a working electrode, a counter electrode, and a reference electrode. Related to an apparatus and method capable of measuring and analyzing trace amounts (100 ppt level or more) of lead, cadmium, zinc, etc. contained in solutions such as environmental water and solutions eluted from soil, food, waste, etc. It is.

水道水,環境水(例えば、海水,河川,湖沼,地下水)等の溶液や、土壌,食品,廃棄物等から溶出する溶液等には、意図しない種々の有害物質(例えば、有害金属等)が含まれている可能性があり、従来から問題提起されている。   Various unintended hazardous substances (for example, toxic metals) are present in solutions such as tap water and environmental water (for example, seawater, rivers, lakes, and groundwater), and solutions that elute from soil, food, waste, etc. It may have been included and has been raised in the past.

例えば、世界保健機構(WHO)による飲料水水質ガイドラインの改訂の検討、厚生労働省による水道法の改正の検討(平成16年4月1日から改正水道法が施行(水質検査機関の登録制度関係は平成16年3月31日から施行)、土壌汚染対策法の改正の検討(平成15年2月15日から土壌汚染対策法の施行)が行われている。   For example, the review of drinking water quality guidelines by the World Health Organization (WHO), the revision of the water supply law by the Ministry of Health, Labor and Welfare (the revised water law has been enforced since April 1, 2004 Effective March 31, 2004), revision of the Soil Contamination Countermeasures Law (enforcement of the Soil Contamination Countermeasures Law from February 15, 2003) is underway.

有害金属としては、例えば水銀,亜鉛,カドミウム,鉛等の重金属が挙げられ、その量の増加に伴って人体等に影響を及ぼす可能性が指摘されている。このようなことから、自然界に存在する各種物質を測定(定性,定量)して分析し、監視する必要性が指摘されている。   Examples of harmful metals include heavy metals such as mercury, zinc, cadmium, and lead, and it has been pointed out that they may affect the human body and the like as the amount increases. For these reasons, it has been pointed out that various substances existing in nature need to be measured (qualitative and quantitative), analyzed, and monitored.

例えば水道水,環境水等の溶液や、土壌,食品,廃棄物等から溶出する溶液等(被分析対象)に含まれる重金属(測定対象)を分析する方法としては、公定分析法である原子吸光分析法,ICP発光分析法,ICP質量分析法等により特定の物質(測定対象)を測定して分析する方法が知られている。   For example, atomic absorption is an official analytical method for analyzing heavy metals (measurement target) contained in solutions such as tap water and environmental water, and solutions eluted from soil, food, waste, etc. (analysis target) A method for measuring and analyzing a specific substance (measurement target) by an analysis method, an ICP emission analysis method, an ICP mass spectrometry method, or the like is known.

この公定分析法は被分析対象中の微量な測定対象を測定して分析(以下、微量分析と称する)できるものの、使用する装置が大型(例えば、作業者が手軽に運搬できない程度の形態)および高価であり、その装置の操作において技術的な熟練度や手間(長時間を要する等)を必要とするため一般的(容易)に扱えるものではない。このため、公定分析法と比較して、使用する装置が小型および安価であって、煩雑な操作等を要しない簡易分析法等の適用も試みられている。   Although this official analysis method can measure and analyze a very small amount of measurement object in the object to be analyzed (hereinafter referred to as microanalysis), the apparatus to be used is large (for example, in a form that cannot be easily transported by an operator) and Since it is expensive and requires technical skill and effort (such as requiring a long time) in operating the apparatus, it cannot be handled generally (easily). For this reason, compared with the official analysis method, application of a simple analysis method or the like in which an apparatus to be used is small and inexpensive and does not require complicated operations has been attempted.

近年においては、溶液中に存在する有害物質の多くが電気化学的活性を有することに着目し、種々の有害物質を電気化学的な手法で分析する試み、例えば作用電極(水銀電極,炭素系電極,金電極,銅電極等),対電極,参照電極等を用いたアノーディック(またはカソーディック)・ストリッピング・ボルタンメトリー法(以下、ボルタンメトリー法と称する)で分析する試みが行われている。このボルタンメトリー法は、前記の公定分析法よりも簡略化(例えば、使用装置の小型化,低コスト化)された方法であって、微量分析(例えば、微量金属イオン濃度の定量)が短時間で容易にできる可能性があり、電解質を多量に含んだ被分析対象(例えば、海水等)の分析にも有利とされている。   In recent years, paying attention to the fact that many of the harmful substances present in the solution have electrochemical activity, an attempt to analyze various harmful substances using electrochemical techniques, such as working electrodes (mercury electrodes, carbon-based electrodes) , Gold electrode, copper electrode, etc.), counter electrode, reference electrode, etc., an attempt has been made to analyze by an anodic (or cathodic) stripping voltammetry method (hereinafter referred to as voltammetry method). This voltammetry method is simpler than the above-mentioned official analysis method (for example, downsizing and cost reduction of the apparatus used), and can be used for trace analysis (for example, determination of trace metal ion concentration) in a short time. There is a possibility that it can be easily performed, and it is also advantageous for analysis of an analyte (for example, seawater) containing a large amount of electrolyte.

例えば、作用電極として水銀電極(水銀滴を用いる電極等)を用い、その水銀電極にてアマルガムを形成して分析する方法(極めて低濃度の分析方法;(例えば、非特許文献1))や、作用電極として銅電極を用い、その銅電極表面に測定対象を析出(還元等による濃縮)させて分析する方法(比較的低濃度(100nMレベル)を想定した分析方法)が知られている(例えば、特許文献1)。これらのボルタンメトリー法は、例えば作用電極の電位を所定電位に保持し該作用電極にて測定対象を析出する工程(以下、電位保持工程と称する)を経てから、その作用電極の電位を一方向(測定対象に応じて正方向または負方向)に掃引することにより、該作用電極で析出された測定対象を被分析対象中に溶出すると共に、その作用電極の電位変化に対する電流変化を検出(サンプリング)する工程(以下、電位掃引工程と称する)を行うものである。   For example, a mercury electrode (such as an electrode using a mercury drop) is used as a working electrode, an amalgam is formed at the mercury electrode and analyzed (an extremely low concentration analysis method; (for example, Non-Patent Document 1)), A method is known in which a copper electrode is used as a working electrode and an object to be measured is deposited (concentrated by reduction or the like) on the surface of the copper electrode (analysis method assuming a relatively low concentration (100 nM level)) (for example, Patent Document 1). In these voltammetry methods, for example, a potential of the working electrode is maintained at a predetermined potential and a measurement object is deposited on the working electrode (hereinafter referred to as a potential holding step), and then the potential of the working electrode is changed in one direction ( By sweeping in the positive or negative direction according to the measurement object, the measurement object deposited on the working electrode is eluted into the object to be analyzed, and the current change with respect to the potential change of the working electrode is detected (sampling) This step is performed (hereinafter referred to as potential sweep step).

前記の電位掃引工程では、作用電極に対して、電解電流の他に充電電流(荷電電流)が通電されるため、微分パルスモードを適用し該充電電流の影響を回避(例えば、S/N比を向上)する手法が慣用されている。   In the potential sweep step, since a charging current (charging current) is applied to the working electrode in addition to the electrolytic current, the differential pulse mode is applied to avoid the influence of the charging current (for example, the S / N ratio). The method of improving is used conventionally.

例えば、作用電極として水銀電極を用いた微分パルスポーラログラフィーの場合、作用電極の電位がパルス状に掃引されると、ファラデー電流の他に充電電流が通電される。この充電電流は所定時間経過後に十分減衰するため、その十分減衰した以降のサンプリング位置(以下、減衰十分位置と称する)にて電解電流をそれぞれサンプリングする。一般的には、特に極めて低濃度の被分析対象を分析を想定した場合には、例えば水銀電極を用い、パルス幅を50ms以上に設定し、例えば40ms〜50msのサンプリング位置(すなわち、各パルス期間の前縁からの時間(40ms〜50ms)に相当)で電解電流をサンプリングし、If(ファラデー電流)とIB(バックグランド電流)の電流差(各パルス期間にてサンプリングした電解電流の差)ΔIに基づいたポーラログラム(電位変化に対する電流変化特性)を得ている(例えば、非特許文献2)。このポーラログラムのピーク電流値は測定対象の濃度に応じて変化するため、種々の濃度(測定対象の濃度)に対する各ピーク電流値の特性線(以下、ピーク電流特性線と称する)が直線性を有する場合には、該ピーク電流特性線を検量線として適用することができる。 For example, in the case of differential pulse polarography using a mercury electrode as the working electrode, when the potential of the working electrode is swept in pulses, a charging current is applied in addition to the Faraday current. Since this charging current is sufficiently attenuated after a predetermined time has elapsed, the electrolytic current is sampled at a sampling position (hereinafter referred to as an attenuation sufficient position) after the sufficient attenuation. In general, when analysis of an analysis target of an extremely low concentration is assumed, for example, a mercury electrode is used, and a pulse width is set to 50 ms or more, for example, a sampling position of 40 ms to 50 ms (that is, each pulse period) The electrolysis current is sampled at a time from the leading edge (corresponding to 40 ms to 50 ms), and the current difference between I f (Faraday current) and I B (background current) (difference in electrolysis current sampled in each pulse period) ) A polarogram (current change characteristic with respect to potential change) based on ΔI is obtained (for example, Non-Patent Document 2). Since the peak current value of this polarogram changes according to the concentration of the measurement target, the characteristic line of each peak current value (hereinafter referred to as the peak current characteristic line) for various concentrations (concentration of the measurement target) has linearity. When it has, the peak current characteristic line can be applied as a calibration curve.

しかしながら、前記のボルタンメトリー法であっても、例えば水銀電極を用いる場合には、該水銀電極自体が危険物であり、その取扱方法や環境汚染(側定時の溶出や廃棄等による汚染)等の観点において懸念されている。また、水銀電極以外の電極(銅電極,グラッシーカーボン電極等の炭素系電極)を用いた場合であっても、例えば近年の環境問題の提起等に伴って、より高感度および高精度で微量分析できる分析方法の出現が求められている。
特開2004−294422 Daniel F. Tibbetts,James Davis,Richard G. Compton,“Sonoelectroanalytical detection of lead at a bare copper electrode”,(独国),Fresenius’ Journal Analytical Chemistry,Springer−Verlag,2000,368,p.412−414。 鈴木繁喬,吉森孝良著、「電気分解法‐電解分析・ボルタンメトリー」、初版、共立出版株式会社、1987年7月20日、p.105−108。
However, even when the above voltammetry method is used, for example, when a mercury electrode is used, the mercury electrode itself is a dangerous substance, and its handling method and environmental pollution (contamination due to elution or disposal etc. at a fixed time) Is concerned. Even when electrodes other than mercury electrodes (carbon electrodes such as copper electrodes and glassy carbon electrodes) are used, trace analysis with higher sensitivity and higher accuracy, for example, due to recent environmental issues, etc. There is a need for the emergence of analytical methods that can be used.
JP 2004-294422 A Daniel F. Tibbetts, James Davis, Richard G. Compton, “Sonoelectroanalytical detection of lead at a bare copper electrode” (Germany), Fresenius' Journal Analytical Chemistry, Springer-Verlag. 2000. 412-414. Suzuki Shigeaki and Yoshimori Takayoshi, “Electrolysis-Electrolytic Analysis / Voltammetry”, first edition, Kyoritsu Publishing Co., Ltd., July 20, 1987, p. 105-108.

以上示したようなことから、前記の公定分析法よりも簡略化(例えば、使用する装置の小型化,低コスト化)された装置および方法であって、より高感度および高精度の微量分析(例えば、微量金属イオンの測定)が容易にでき(例えば、公定分析法のような煩雑な作業を要さず短時間ででき)、また危険物の取扱や環境汚染等を考慮する必要の無い分析装置および分析方法の出現が望まれていた。   As described above, the apparatus and method are simplified (for example, downsizing and cost reduction of the apparatus to be used) compared to the official analysis method described above, and more sensitive and accurate microanalysis ( For example, trace metal ions can be easily measured (for example, it can be done in a short time without the need for cumbersome work like official analysis methods), and there is no need to consider the handling of hazardous materials or environmental pollution. The advent of instruments and analytical methods has been desired.

本発明は、前記課題の解決を図るために、電位保持工程,電位掃引工程を行うボルタンメトリー法に基づいたものであって、作用電極として銅電極を用い、該電位掃引工程を新たな微分パルスモードで行うことにより、被分析対象中の極めて低濃度の測定対象を測定でき、該被分析対象をより高感度および高精度で微量分析できるものである。   The present invention is based on a voltammetry method in which a potential holding step and a potential sweep step are performed in order to solve the above-described problems, and a copper electrode is used as a working electrode, and the potential sweep step is performed in a new differential pulse mode. In this way, it is possible to measure a very low concentration measuring object in the object to be analyzed, and to analyze the object to be analyzed with higher sensitivity and higher accuracy.

具体的に、請求項1記載の発明は、少なくとも作用電極,対電極(例えば、例えば、後述の実施例では白金電極等),参照電極(Ag/AgCl参照電極)から構成され、測定対象を含んだ被分析対象中(例えば、水道水,環境水等の溶液や、土壌,食品,廃棄物等から溶出する溶液等)に前記の各電極を配置し、該作用電極の電位を被分析対象中の測定対象が析出し得る電位に保持でき、その保持された電位によって析出された測定対象が溶出し得る方向に微分パルスモードにより掃引でき、該作用電極における電位変化に対する電流変化を検出でき、100ppt以上レベルの被分析対象を分析することが可能な溶液分析装置において、前記作用電極は銅電極であることを特徴とする。   Specifically, the invention described in claim 1 is composed of at least a working electrode, a counter electrode (for example, a platinum electrode in the embodiments described later), a reference electrode (Ag / AgCl reference electrode), and includes a measurement object. Each of the above electrodes is placed in a subject to be analyzed (for example, a solution such as tap water or environmental water, or a solution eluted from soil, food, waste, etc.), and the potential of the working electrode is being analyzed. Can be held at a potential at which the measurement object can be deposited, and can be swept in a differential pulse mode in a direction in which the measurement object deposited by the held potential can be eluted, and a current change with respect to a potential change at the working electrode can be detected. In the solution analyzer capable of analyzing the analyte to be analyzed at the above level, the working electrode is a copper electrode.

請求項2記載の発明は、作用電極,対電極,参照電極を被分析対象中に配置してから、前記作用電極の電位を、被分析対象中の測定対象が析出し得る電位に保持する電位保持工程と、前記の保持された作用電極の電位を、前記の電位保持工程で析出した測定対象が溶出し得る方向に微分パルスモードにより掃引しながら、該作用電極における電位変化に対する電流変化を検出する電位掃引工程と、による分析操作を行い数100ppt以上レベルの被分析対象を分析することが可能な方法であって、前記の作用電極には銅電極を用いたことを特徴とする。   According to the second aspect of the present invention, after the working electrode, the counter electrode, and the reference electrode are arranged in the analysis target, the potential of the working electrode is maintained at a potential at which the measurement target in the analysis target can be deposited. Detects current change in response to potential change at the working electrode while sweeping the potential of the held working electrode in the differential pulse mode in the direction in which the measurement object deposited in the potential holding step can elute. And a potential sweeping step to analyze an object to be analyzed at a level of several hundreds of ppt or more, wherein the working electrode is a copper electrode.

請求項3記載の発明は、請求項2記載の発明において、前記の被分析対象中に塩化物イオンが含まれていることを特徴とする。   The invention described in claim 3 is characterized in that, in the invention described in claim 2, chloride ions are contained in the analyte.

請求項4記載の発明は、請求項3記載の発明において、前記の電位保持工程で測定対象が析出し得る電位に保持する前に、−100mV(vs.Ag/AgCl)より正方向の電位で前記作用電極に電位析出前電位印加を行うことを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, before the potential to be measured can be deposited in the potential maintaining step, the potential is more positive than −100 mV (vs. Ag / AgCl). A potential application before potential deposition is performed on the working electrode.

請求項5記載の発明は、請求項4記載の発明において、前記の析出前電位印加の電位は±0V(vs.Ag/AgCl)より正方向であることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, the potential of the pre-deposition potential application is more positive than ± 0 V (vs. Ag / AgCl).

請求項6記載の発明は、請求項2〜5記載の発明において、前記の被分析対象は鉛,カドミウム,亜鉛のうち少なくとも何れか一つ以上が含まれていることを特徴とする。   The invention according to claim 6 is the invention according to claims 2 to 5, characterized in that the object to be analyzed contains at least one of lead, cadmium, and zinc.

請求項7記載の発明は、請求項6記載の発明において、前記の被分析対象中に少なくとも鉛が測定対象として含まれ、前記の電位保持工程において微分パルスモードによりパルス印加後23ms以内(すなわち、減衰不十分位置)で電解電流をサンプリングすることを特徴とする。   The invention according to claim 7 is the invention according to claim 6, wherein at least lead is included in the object to be analyzed as an object to be measured, and within 23 ms after pulse application by the differential pulse mode in the potential holding step (that is, The electrolytic current is sampled at an attenuation insufficient position).

請求項8記載の発明は、請求項7記載の発明において、前記の被分析対象が鉛を含まないものであって、測定対象がカドミウムの場合には、該被分析対象に対し鉛を添加することを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein when the object to be analyzed does not contain lead and the object to be measured is cadmium, lead is added to the object to be analyzed. It is characterized by that.

請求項1,2記載の発明では、作用電極が銅電極であり、作用電極に析出された測定対象が溶出し得る方向に微分パルスモードにより掃引することにより、100pptレベル以上の測定対象を測定できる。   In the first and second aspects of the invention, the working electrode is a copper electrode, and a measuring object of 100 ppt level or more can be measured by sweeping in a direction in which the measuring object deposited on the working electrode can be eluted. .

請求項3記載の発明では、塩化物イオン共存下(例えば、塩化カリウム溶液を含む被分析対象中)での電位保持工程が行われるため、該塩化物イオンが銅電極表面に特異吸着、すなわち1価の塩化銅が形成されるため、測定対象(鉛,カドミウム,亜鉛等)と電極である銅との合金が形成され易くなる。また、前記の塩化物イオンの特異吸着により、被分析対象中における溶存酸素の還元反応が抑制、および水素発生が抑制され、電位窓が広くなり、検出感度が向上する。   In the third aspect of the invention, since the potential holding step is performed in the presence of chloride ions (for example, in an analysis target containing a potassium chloride solution), the chloride ions are specifically adsorbed on the copper electrode surface, that is, 1 Since valent copper chloride is formed, an alloy of the measurement object (lead, cadmium, zinc, etc.) and copper as an electrode is easily formed. Further, due to the specific adsorption of chloride ions, the reduction reaction of dissolved oxygen in the analyte is suppressed and the generation of hydrogen is suppressed, the potential window is widened, and the detection sensitivity is improved.

請求項4記載の発明では、析出前電位印加によって、電位保持工程の際に被分析対象中の塩化物イオンが銅電極表面に対して特異吸着し易くなるため、測定対象(鉛,カドミウム,亜鉛等)と電極である銅との合金がより形成され易くなる。また、被分析対象中における溶存酸素の還元反応、および水素発生がより抑制されるため、電位窓(負電位側の電位窓)がより広くなり、検出感度がより向上する。   In the invention according to claim 4, since the chloride ion in the analyte is easily adsorbed to the copper electrode surface during the potential holding step by applying the potential before deposition, the measurement object (lead, cadmium, zinc) Etc.) and copper as an electrode are more easily formed. In addition, since the reduction reaction of dissolved oxygen and the generation of hydrogen in the analysis target are further suppressed, the potential window (negative potential side potential window) becomes wider, and the detection sensitivity is further improved.

請求項5記載の発明では、作用電極表面自体が分子レベルで酸化溶出する。   In the invention according to claim 5, the working electrode surface itself is oxidized and eluted at the molecular level.

請求項7記載の発明では、電位掃引工程でのサンプリング位置が減衰十分位置でない条件において、測定対象濃度の増加に伴って大きくなるピーク電流が得られ、そのピーク電流特性線において十分良好な直線性が得られる。   According to the seventh aspect of the present invention, a peak current that increases with an increase in the concentration to be measured can be obtained under conditions where the sampling position in the potential sweep step is not sufficiently attenuated, and sufficiently good linearity is obtained in the peak current characteristic line. Is obtained.

請求項8記載の発明では、鉛を含まない被分析対象中のカドミウムを測定する際において、該被分析対象に鉛を添加(添加剤として使用)すれば、バックグランド電流を減衰して安定できる(S/B比が高くなる)。   In the invention described in claim 8, when cadmium in an analyte to be analyzed that does not contain lead is measured, if lead is added (used as an additive) to the analyte, the background current can be attenuated and stabilized. (S / B ratio increases).

請求項1〜8記載の発明によれば、公定分析法等のように大型および高価で複雑な操作が必要な分析とは異なり(簡略化された分析であって)、また危険物の取扱や環境汚染等を考慮する必要の無い分析であり、極めて低濃度(例えば、数100pptレベル以上)の測定対象を含む被分析対象について高感度および高精度の微量分析が可能となる。   According to the inventions described in claims 1 to 8, unlike analysis that requires a large, expensive, and complicated operation such as official analysis, etc. (this is a simplified analysis), It is an analysis that does not require consideration of environmental pollution and the like, and a highly sensitive and highly accurate microanalysis can be performed on an analysis target including a measurement target having an extremely low concentration (for example, several hundreds of ppt level or more).

また請求項3記載の発明によれば、例えば被分析対象が複数の測定対象を含むものや夾雑物を多く含むものであっても、析出時に電極である銅と選択的に合金を形成するため、それら測定対象同士の相互作用を回避(少なくとも抑制)しながら選択的に測定でき、より高感度(特に、検出感度等)および高精度な微量分析が再現性良くできる。また、電位窓が広くなることにより、微量分析できる範囲が広くなる。   According to the invention described in claim 3, for example, even if the object to be analyzed includes a plurality of objects to be measured or a large amount of impurities, an alloy is selectively formed with copper as an electrode at the time of deposition. In addition, the measurement can be performed selectively while avoiding (at least suppressing) the interaction between the measurement objects, and higher sensitivity (in particular, detection sensitivity) and high-accuracy microanalysis can be performed with high reproducibility. In addition, since the potential window becomes wider, the range in which trace analysis can be performed becomes wider.

さらに、請求項4記載の発明によれば、被分析対象中の複数の測定対象をより選択的に測定し易くなり、より高感度および高精度な微量分析がより再現性良くでき、微量分析できる範囲がより広くなる。   Furthermore, according to the invention described in claim 4, it becomes easier to selectively measure a plurality of measurement objects in the analysis target, and a highly sensitive and highly accurate trace analysis can be performed with higher reproducibility and a trace analysis can be performed. The range becomes wider.

さらにまた、請求項5記載の発明によれば、作用電極表面が清浄(再生)される。   Furthermore, according to the invention described in claim 5, the surface of the working electrode is cleaned (regenerated).

加えて、請求項7記載の発明によれば、特に極めて低濃度(例えば、数100pptレベル以上)の鉛に係る微量分析においてさらに高感度および高精度で行うことが可能となる。   In addition, according to the seventh aspect of the present invention, it is possible to carry out the analysis with extremely high sensitivity and high accuracy especially in the trace analysis of lead with extremely low concentration (for example, several hundreds of ppt level or more).

加えてまた、請求項8記載の発明によれば、微量分析の再現性がさらに良好になる。   In addition, according to the invention described in claim 8, the reproducibility of the microanalysis is further improved.

以下、本実施の形態における溶液分析装置および溶液分析方法を図面等に基づいて説明する。   Hereinafter, the solution analyzer and the solution analysis method in the present embodiment will be described with reference to the drawings.

本実施の形態は、作用電極,対電極,参照電極を用い、水道水,環境水(例えば、海水,河川,湖沼,地下水)等の溶液や、土壌,食品,廃棄物等から溶出する溶液等の被分析対象(例えば、鉛,亜鉛,カドミウム等の測定対象を含んだ溶液)を分析するボルタンメトリー法による分析装置および分析方法であって、前記の作用電極として銅電極を用い、電位掃引工程で微分パルスモードを適用したものである。本実施の形態のように銅電極を用い電位掃引工程で微分パルスモードを適用することにより、100pptレベル以上の分析が可能となる。   This embodiment uses a working electrode, a counter electrode, and a reference electrode, a solution such as tap water and environmental water (for example, seawater, rivers, lakes, and groundwater), a solution that elutes from soil, food, waste, etc. Analysis apparatus and analysis method by a voltammetric method for analyzing a target analyte (for example, a solution containing a measurement target such as lead, zinc, cadmium, etc.), wherein a copper electrode is used as the working electrode, and a potential sweep step The differential pulse mode is applied. By using the copper electrode and applying the differential pulse mode in the potential sweep process as in the present embodiment, analysis at a level of 100 ppt or more becomes possible.

銅電極を用いた分析においては、特許文献1等の従来法により100nMレベルの鉛を測定できることが知られていたが、本実施形態のように100pptレベル以上の分析に適用する試みが全くなかった。すなわち、従来法により100pptレベル以上の分析を行う場合には、銅電極以外の電極、例えば水銀電極等が適用されることになる。   In the analysis using a copper electrode, it was known that 100 nM level of lead can be measured by a conventional method such as Patent Document 1, but there was no attempt to apply it to an analysis of 100 ppt level or more as in this embodiment. . That is, when an analysis at a level of 100 ppt or more is performed by a conventional method, an electrode other than a copper electrode, such as a mercury electrode, is applied.

本実施形態において、特に鉛を測定対象とする場合には、微分パルス条件を調整することが好ましい。すなわち、前述の非特許文献2等の従来法とは異なり、充電電流の減衰が十分ではない減衰十分位置以外(すなわち、減衰不十分位置)のサンプリング位置(例えば、23ms以内)、すなわち従来法では全く想定されなかったサンプリング位置にて電解電流をそれぞれサンプリングし、If(ファラデー電流)とIB(バックグランド電流)の電流差(各パルス期間にてサンプリングした電解電流の差)ΔIに基づいたポーラログラム(電位変化に対する電流変化特性)を得る。 In the present embodiment, it is preferable to adjust the differential pulse condition particularly when lead is a measurement target. That is, unlike the above-described conventional method such as Non-Patent Document 2, the sampling position (for example, within 23 ms) other than the sufficient attenuation position where charging current is not sufficiently attenuated (that is, within the insufficient attenuation position), that is, in the conventional method, Electrolytic currents were sampled at sampling positions that were not assumed at all, and based on the current difference between I f (Faraday current) and I B (background current) (difference in electrolytic current sampled during each pulse period) ΔI A polarogram (current change characteristic with respect to potential change) is obtained.

前記のように各パルス期間のうち減衰不十分位置のサンプリング位置で電解電流をサンプリングする微分パルスモードは、該サンプリング時の充電電流の減衰が不十分であり、従来法の観点(特に微量分析の観点)では全く想定されなかったものであるが、本実施の形態のように作用電極として銅電極を用い電位掃引工程で微分パルスモードを適用した場合には、たとえ被分析対象中の測定対象が極めて微量(例えば、数100pptレベル以上)であっても、高精度および高感度の微量分析が可能となる。また、減衰不十分位置のサンプリング位置であるため、例えば従来法のようにパルス幅を50ms以上に設定する必要は無い(すなわち、パルス幅が制限されることは無い)。   As described above, the differential pulse mode in which the electrolytic current is sampled at the sampling position where the attenuation is insufficient in each pulse period is insufficient in the attenuation of the charging current at the time of sampling. However, when the differential pulse mode is applied in the potential sweep process using a copper electrode as the working electrode as in the present embodiment, the measurement target in the analysis target is not considered. Even with a very small amount (for example, several hundreds of ppt level or more), a highly accurate and highly sensitive minute amount analysis can be performed. Further, since the sampling position is an insufficiently attenuated position, it is not necessary to set the pulse width to 50 ms or more as in the conventional method (that is, the pulse width is not limited).

[分析方法に適用される装置例]
図1は、本実施の形態における分析方法に適用される装置の一例を示す概略図である。図1において、符号1は測定容器(セル)を示すものであり、その測定容器1内には被分析対象(例えば、水道水,環境水等の溶液や、土壌,食品,廃棄物等から溶出する溶液等)1aが入っており、封止部材1bにより封止される。符号2は銅電極から成る作用電極(例えば、略円柱状,略平板状の電極)、符号3は対電極(例えば、白金やカーボンから成るコイル状の電極)、符号4は参照電極(基準電極;例えば、Ag/AgCl電極(飽和塩化カリウム)や飽和カロメル電極(Saturated Calomel Electrode)等)を示すものであり、それら作用電極2,対電極3,参照電極4はそれぞれ一定の距離を隔てて、前記測定容器1内の被分析対象1a中に浸漬されるように配置される。
[Example of equipment applied to analysis method]
FIG. 1 is a schematic diagram showing an example of an apparatus applied to the analysis method in the present embodiment. In FIG. 1, reference numeral 1 indicates a measurement container (cell), and the measurement container 1 is eluted from an object to be analyzed (for example, a solution such as tap water or environmental water, soil, food, waste, etc.). Solution 1a) is contained and is sealed by the sealing member 1b. Reference numeral 2 is a working electrode made of a copper electrode (for example, a substantially cylindrical or substantially flat electrode), reference numeral 3 is a counter electrode (for example, a coiled electrode made of platinum or carbon), and reference numeral 4 is a reference electrode (a reference electrode). For example, an Ag / AgCl electrode (saturated potassium chloride) or a saturated calomel electrode), and the working electrode 2, the counter electrode 3, and the reference electrode 4 are separated from each other by a certain distance, It arrange | positions so that it may be immersed in the to-be-analyzed object 1a in the said measurement container 1. FIG.

符号5はポテンシオスタットを示すものであり、そのポテンシオスタット5には前記作用電極2,対電極3,参照電極4が例えば配線2a,3a,4a等を介して接続される。また、前記ポテンシオスタット5には、該ポテンシオスタット5等を介して得た測定データに係る演算等が可能なコンピュータ(例えば、パーソナルコンピュータ)6の他に、必要に応じてレコーダ,ポテンシャルスイーパ等が接続される。符号7はスターラーを示すものであり、そのスターラー7によって前記測定容器1内の底部に位置する撹拌子7aを動作させて、前記測定容器1内の被分析対象1aを撹拌するものである。   Reference numeral 5 denotes a potentiostat, and the working electrode 2, the counter electrode 3, and the reference electrode 4 are connected to the potentiostat 5 through, for example, wirings 2a, 3a, 4a and the like. Further, the potentiostat 5 includes a computer (for example, a personal computer) 6 capable of performing calculations related to measurement data obtained through the potentiostat 5 and the like, and a recorder, a potential sweeper as necessary. Etc. are connected. Reference numeral 7 denotes a stirrer, and the stirrer 7 a located at the bottom of the measurement container 1 is operated by the stirrer 7 to stir the object 1 a to be analyzed in the measurement container 1.

次に、図1に示した装置による分析方法の概略を説明する。まず、作用電極2表面への測定対象の移動を促進するために、スターラー7,撹拌子7aを介して被分析対象1aを撹拌(乱流)することにより、該被分析対象1a中の物質移動(電気化学的活性物質の物質移動、すなわち後述の析出物質の析出効率(濃縮効率))を促進させながら、ポテンシオスタット5により作用電極2の電位(参照電極4によって規制された電位)を所望の電位(少なくとも測定対象が析出し得る電位)に設定して所定時間保持し、被分析対象1a中の測定対象を前記作用電極2表面に析出(単体濃縮物質を形成、または銅電極との合金濃縮物質を形成)させる。その後、前記ポテンシオスタット5により、前記作用電極2の保持されていた電位を、析出物質(単体濃縮物質または合金濃縮物質)が溶出し得る方向(正方向または負方向)に所定の微分パルス条件で掃引して、前記の析出物質を被分析対象1a中に溶出(ストリッピング)する。   Next, an outline of an analysis method using the apparatus shown in FIG. 1 will be described. First, in order to promote the movement of the measurement object to the surface of the working electrode 2, the substance movement in the analysis object 1a is performed by stirring (turbulent flow) the analysis object 1a via the stirrer 7 and the stirring bar 7a. Desiring the potential of the working electrode 2 (potential regulated by the reference electrode 4) by the potentiostat 5 while promoting the mass transfer of the electrochemically active substance, that is, the deposition efficiency (concentration efficiency) of the deposited substance described later) (At least the potential at which the measurement target can precipitate) and hold for a predetermined time, and the measurement target in the analyte 1a is deposited on the surface of the working electrode 2 (forming a simple substance or forming an alloy with the copper electrode) A concentrated material is formed). Thereafter, the potential held by the working electrode 2 by the potentiostat 5 is set to a predetermined differential pulse condition in a direction (positive direction or negative direction) in which the deposited substance (single concentrated substance or alloy concentrated substance) can be eluted. And the precipitated substance is eluted (stripped) into the analyte 1a.

前記の析出物質は、所定の電位でそれぞれ溶出することから、前記作用電極2の電位を掃引(該析出物質を被分析対象1a中に溶出)する際に、該作用電極2の電位変化に対する電流変化を検出(作用電極2と対電極3との間を流れる電解電流をサンプリング)する。そして、その電流変化を積分計算して得られる電気量(クーロン量)もしくはピーク電流値を検量線と比較することにより、測定対象を測定(定量,定性)し前記被分析対象1aの分析(測定対象濃度等の測定による分析)を行うことができる。   Since each of the deposited substances is eluted at a predetermined potential, when the potential of the working electrode 2 is swept (the deposited substance is eluted into the analyte 1a), the current with respect to the potential change of the working electrode 2 The change is detected (the electrolytic current flowing between the working electrode 2 and the counter electrode 3 is sampled). Then, by comparing the electric quantity (coulomb quantity) or peak current value obtained by integrating the change in current with a calibration curve, the measurement object is measured (quantitative, qualitative), and the analysis of the object 1a to be analyzed (measurement) Analysis by measurement of the target concentration and the like.

次に、図1の概略説明図(図1と同様のものには同一符号等を用いて詳細な説明を省略)に示すような分析において、クロノアンペロメトリー法により充電電流の減衰挙動を検証してから、実施例1〜7により種々の試料S1〜S7(被分析対象1aに相当)の分析を行った。   Next, in the analysis as shown in the schematic explanatory diagram of FIG. 1 (the same reference numerals are used for the same components as in FIG. 1 and detailed description is omitted), the decay behavior of the charging current is verified by the chronoamperometry method. Then, according to Examples 1 to 7, various samples S1 to S7 (corresponding to the analysis target 1a) were analyzed.

なお、図1に示す分析装置において、作用電極2,対電極3,参照電極4には、それぞれ収縮テフロン(登録商標)チューブ内に銅電極を埋設させて形成した北斗電工社製の電極(被分析対象に接触する面積が0.07cm2),Φ0.5mmのコイル状白金線,飽和塩化カリウムのAg/AgCl電極(北斗電工社製のHX−R6)を用いた。また、測定容器1には50mLガラスビーカー、ポテンシオスタット5には北斗電工社製のHOEシリーズを用いた。また、作用電極2は、表面をサンドペーパ(♯1200)で研磨してから用いた。 In the analyzer shown in FIG. 1, the working electrode 2, the counter electrode 3 and the reference electrode 4 are each made of an electrode (covered electrode) manufactured by Hokuto Denko Co., Ltd. formed by embedding a copper electrode in a contracted Teflon (registered trademark) tube. An area in contact with the analysis target was 0.07 cm 2 ), a Φ0.5 mm coiled platinum wire, and a saturated potassium chloride Ag / AgCl electrode (HX-R6 manufactured by Hokuto Denko) was used. The measuring vessel 1 was a 50 mL glass beaker, and the potentiostat 5 was a HOE series manufactured by Hokuto Denko. The working electrode 2 was used after the surface was polished with sandpaper (# 1200).

(検証例)
本検証例では、まず、塩化カリウム(KCl)の溶液(0.2M溶液)に10mM(緩衝作用を奏するのに必要な程度の濃度)の酢酸緩衝溶液(pH4.5)を配合し得た配合液を用い、その配合液中に作用電極2,対電極3,参照電極4が浸漬されるように、測定容器1を封止部材1bで封止した。
(Verification example)
In this verification example, first, a formulation in which a 10 mM acetate buffer solution (pH 4.5) at a concentration of 10 mM (concentration necessary for exhibiting a buffering effect) was added to a solution of potassium chloride (KCl) (0.2 M solution). The measurement container 1 was sealed with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 4 were immersed in the liquid mixture.

その後、クロノアンペロメトリー法により、前記参照電極4に対する作用電極2の電位を−200mVから−150mVに電位ステップさせ、その電位ステップ直後の作用電極2に通電された充電電流変化を所定時間検出して、図1に示すような時間変化に対する充電電流変化特性図を得た。   Thereafter, the potential of the working electrode 2 with respect to the reference electrode 4 is stepped from −200 mV to −150 mV by chronoamperometry, and a change in the charging current applied to the working electrode 2 immediately after the potential step is detected for a predetermined time. Thus, a charge current change characteristic diagram with respect to time change as shown in FIG. 1 was obtained.

図2に示すように、電位ステップ直後に約150μAの充電電流が通電され、時間経過と共に減衰していることが読み取れる。例えば、約40ms〜50ms以降では充電電流が十分減衰し、電位ステップ直後の約1/75以下に収束していること(充電電流値が略フラットになること)が読み取れる。   As shown in FIG. 2, it can be seen that a charging current of about 150 μA is applied immediately after the potential step and decays with time. For example, it can be seen that the charging current is sufficiently attenuated after about 40 ms to 50 ms and converges to about 1/75 or less immediately after the potential step (the charging current value becomes substantially flat).

したがって、従来法の観点であれば、図1に示すような分析装置を用いて微分パルスモードにより分析を行う場合、例えばパルス幅を約50ms以上とし、各パルス期間の減衰十分位置である約40ms〜50ms以降のサンプリング位置で電解電流をサンプリングすることになる。   Therefore, from the viewpoint of the conventional method, when the analysis is performed in the differential pulse mode using the analyzer as shown in FIG. 1, for example, the pulse width is set to about 50 ms or more, and about 40 ms which is a sufficient attenuation position in each pulse period. The electrolytic current is sampled at a sampling position after ˜50 ms.

(実施例1)
本実施例1では、種々の濃度の鉛イオンを含む被分析対象を用い、電位掃引工程の微分パルス条件を種々設定して、それぞれの分析を実施した。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH4.5),0〜0.060mg/l(0,0.006,0.012,0.018,0.024,0.030,0.036,0.042,0.048,0.054,0.060mg/l(数ppbレベルの濃度))の鉛イオンを配合して試料S1を得た。次に、測定容器1内の試料S1中に作用電極2,対電極3,参照電極4が浸漬されるように封止部材1bで封止した。
Example 1
In Example 1, each target was analyzed using various analytes containing various concentrations of lead ions, and differential pulse conditions for the potential sweep process were set in various ways. First, 10 mM acetate buffer solution (pH 4.5), 0 to 0.060 mg / l (0, 0.006, 0.012, 0.018, 0.024, 0) with respect to 0.2 M potassium chloride solution. Sample S1 was obtained by blending 0.030, 0.036, 0.042, 0.048, 0.054, 0.060 mg / l (concentration of several ppb level)) lead ions. Next, it sealed with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 4 might be immersed in sample S1 in the measurement container 1. FIG.

その後、スターラー7,撹拌子7aを介して物質移動促進雰囲気下を保ちながら、前記参照電極4に対する作用電極2の電位を−500mVで180秒間保持することにより、試料S1中の鉛イオンを作用電極2表面に析出(還元濃縮)させた(電位保持工程)。   Thereafter, the potential of the working electrode 2 with respect to the reference electrode 4 is maintained at −500 mV for 180 seconds while maintaining a mass transfer promoting atmosphere via the stirrer 7 and the stirrer 7a. Precipitation (reduction concentration) was performed on the surface of 2 (potential holding step).

そして、前記スターラー7,撹拌子7aを停止してから、前記参照電極4に対する作用電極2の電位を、微分パルスモード(微分パルス条件…パルス周期100ms,パルス間隔50ms,パルス高さ50mV,サンプリング位置8ms〜35ms)にて、−500mVから正方向に掃引(析出物質を酸化溶出)することにより、その作用電極2の電位変化に対する電流変化を検出し、その検出結果を各サンプリング位置毎に図3A〜図4Dのピーク電流特性線図に示した。   Then, after the stirrer 7 and the stirring bar 7a are stopped, the potential of the working electrode 2 with respect to the reference electrode 4 is changed to a differential pulse mode (differential pulse condition: pulse period 100 ms, pulse interval 50 ms, pulse height 50 mV, sampling position. 8 ms to 35 ms), by sweeping in the positive direction from −500 mV (oxidizing and eluting the deposited substance), the current change with respect to the potential change of the working electrode 2 is detected, and the detection result is shown in FIG. 3A for each sampling position. It was shown in the peak current characteristic diagram of FIG.

図3A〜図4Dに示す結果から、サンプリング位置が26ms以上のピーク電流特性線の場合には直線性が低く、鉛イオン濃度0.02ppm以上でのピーク電流値が検量線の直線上から外れてしまうことが読み取れる。一方、サンプリング位置が23ms以内のピーク電流特性線の場合には直線性が良好であり、鉛イオン濃度0.02ppm以上のピーク電流値でも検量線の直線上に位置することが読み取れる。   From the results shown in FIGS. 3A to 4D, the linearity is low in the case of a peak current characteristic line with a sampling position of 26 ms or more, and the peak current value at a lead ion concentration of 0.02 ppm or more deviates from the line of the calibration curve. Can be read. On the other hand, when the sampling position is a peak current characteristic line within 23 ms, the linearity is good, and it can be read that the peak current value with a lead ion concentration of 0.02 ppm or more is located on the calibration curve line.

したがって、図1に示したような分析においては、電位掃引工程のサンプリング位置が各パルス期間のうち減衰不十分位置(例えば、本実施例1のように23ms以内)の場合、被分析対象1a中の極めて低濃度(例えば、本実施例1のように数ppbレベル)の鉛イオンを十分測定でき、その鉛イオン濃度に対するピーク電流特性線は高濃度にわたって良好な直線性を有し、信頼性の高い検量線として適用できることから、たとえ測定対象が極めて低濃度であっても広い濃度範囲で高感度および高精度な微量分析が可能であることを判明した。   Therefore, in the analysis as shown in FIG. 1, when the sampling position of the potential sweep process is a position where attenuation is insufficient in each pulse period (for example, within 23 ms as in the first embodiment), Of lead ions at a very low concentration (for example, several ppb levels as in Example 1), and the peak current characteristic line with respect to the lead ion concentration has good linearity over a high concentration, and is reliable. Since it can be applied as a high calibration curve, it has been found that even if the measurement target is an extremely low concentration, a high-sensitivity and high-accuracy trace analysis is possible in a wide concentration range.

(実施例2)
本実施例2では、種々の濃度の鉛イオンを含む被分析対象を用い、電位掃引工程の微分パルス条件のうちサンプリング位置を、各パルス期間のうち減衰十分位置(従来法の範囲内)と減衰不十分位置(本実施の形態の範囲内)とに設定して、それぞれの分析を実施した。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH4.5),0〜0.01mg/l(0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10mg/l(数10ppbレベルの濃度))の鉛イオンを配合して試料S2を得た。
(Example 2)
In the second embodiment, an object to be analyzed containing lead ions of various concentrations is used, and the sampling position in the differential pulse condition of the potential sweep process is set as the attenuation sufficient position (within the range of the conventional method) in each pulse period. Each analysis was carried out by setting it to an insufficient position (within the range of the present embodiment). First, 10 mM acetate buffer solution (pH 4.5), 0 to 0.01 mg / l (0, 0.01, 0.02, 0.03, 0.04, 0) with respect to 0.2 M potassium chloride solution. Sample S2 was obtained by blending 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 mg / l (concentration of several 10 ppb level)) lead ions.

そして、試料S2について、実施例1と同様の電位保持工程,電位掃引工程であって、該電位掃引工程の微分パルス条件のうちサンプリング位置を10〜15ms(10,11,12,13,14,15msの積算)に設定した分析操作を行い、電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果を図5Aのピーク電流特性線図に示した。また、試料S2について、前記電位掃引工程のサンプリング位置を45〜50ms(45,46,47,48,49,50msの積算)に設定した場合においても同様に電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果を図5Bのピーク電流特性線図に示した。   And about the sample S2, it is the same electric potential holding | maintenance process and electric potential sweep process as Example 1, Comprising: Sampling position is set to 10-15 ms (10, 11, 12, 13, 14, etc.) among the differential pulse conditions of this electric potential sweep process. An analysis operation set to 15 ms) was performed to detect current change characteristics with respect to potential changes, and the detection results obtained for each sampling position are shown in the peak current characteristic diagram of FIG. 5A. Similarly, when the sampling position of the potential sweep step is set to 45 to 50 ms (integration of 45, 46, 47, 48, 49, and 50 ms), the current change characteristic with respect to the potential change is similarly detected for the sample S2. The detection results obtained for each sampling position are shown in the peak current characteristic diagram of FIG. 5B.

図5Bに示すように、サンプリング位置が45〜50msのピーク電流特性線の場合には直線性が低く、鉛イオン濃度0.03mg/l以上でのピーク電流値が検量線の直線上から外れてしまうことが読み取れる。一方、図5Aに示すように、サンプリング位置が10〜15msのピーク電流特性線の場合には直線性が良好であり、鉛イオン濃度0.03mg/l以上のピーク電流値でも検量線の直線上に位置することが読み取れる。   As shown in FIG. 5B, in the case of a peak current characteristic line with a sampling position of 45 to 50 ms, the linearity is low, and the peak current value at a lead ion concentration of 0.03 mg / l or more deviates from the line of the calibration curve. Can be read. On the other hand, as shown in FIG. 5A, the linearity is good when the sampling position is a peak current characteristic line of 10 to 15 ms, and even if the peak current value of the lead ion concentration is 0.03 mg / l or more, Can be read.

したがって、図1に示したような分析においては、電位掃引工程のサンプリング位置が各パルス期間のうち減衰不十分位置(例えば、本実施例2のように10〜15ms)であるにもかかわらず、被分析対象1a中の極めて低濃度(本実施例では数10ppbレベル)の鉛イオンを十分測定でき、その鉛イオン濃度に対するピーク電流特性線は高濃度にわたって良好な直線性を有し、信頼性の高い検量線として適用できることから、たとえ測定対象が極めて低濃度であっても広い濃度範囲で高感度および高精度な微量分析が可能であることを判明した。   Therefore, in the analysis as shown in FIG. 1, the sampling position of the potential sweep process is a position where attenuation is insufficient in each pulse period (for example, 10 to 15 ms as in the second embodiment). Lead ions at an extremely low concentration (several tens of ppb level in this embodiment) in the analyte 1a can be sufficiently measured, and the peak current characteristic line with respect to the lead ion concentration has good linearity over a high concentration, and is reliable. Since it can be applied as a high calibration curve, it has been found that even if the measurement target is an extremely low concentration, a high-sensitivity and high-accuracy trace analysis is possible in a wide concentration range.

(実施例3)
本実施例3では、前記実施例2の試料S2(鉛イオン濃度0〜0.01mg/l(数10ppbレベルの濃度))を用い、電位掃引工程の微分パルス条件を種々設定して、それぞれの分析を実施した。
(Example 3)
In Example 3, the sample S2 of Example 2 (lead ion concentration of 0 to 0.01 mg / l (concentration of several tens of ppb level)) was used, and various differential pulse conditions for the potential sweep process were set. Analysis was performed.

まず、試料S2について、実施例2と同様の電位保持工程,電位掃引工程(サンプリング位置10,11,12,13,14,15msの積算)であって、該電位掃引工程の微分パルス条件のうちパルス幅を25,50,100ms(パルス周期がそれぞれ50,100,200ms)に設定した分析操作を行い、電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果をそれぞれ図6のピーク電流特性線6A(パルス幅25msの場合),6B(パルス幅50msの場合),6C(パルス幅100msの場合)に示した。   First, for the sample S2, the same potential holding step and potential sweeping step as in Example 2 (accumulation of sampling positions 10, 11, 12, 13, 14, and 15 ms), and among the differential pulse conditions of the potential sweeping step, An analysis operation is performed with the pulse width set to 25, 50, and 100 ms (pulse period is 50, 100, and 200 ms, respectively), current change characteristics with respect to potential changes are detected, and the detection results obtained for each sampling position are respectively shown. 6A and 6B (when the pulse width is 25 ms), 6B (when the pulse width is 50 ms), and 6C (when the pulse width is 100 ms).

図6の各ピーク電流特性線6A〜6Cに示すように、測定対象である鉛イオン濃度の増加に伴って各ピーク電流が同様に大きくなり(各ピーク電流特性線の傾きが略同一)、ピーク電流特性線の直線性も良好であることが読み取れる。   As shown in each of the peak current characteristic lines 6A to 6C in FIG. 6, each peak current similarly increases as the lead ion concentration to be measured increases (the slope of each peak current characteristic line is substantially the same), and the peak It can be seen that the linearity of the current characteristic line is also good.

したがって、図1に示したような分析においては、電位掃引工程のサンプリング位置を各パルス期間のうち減衰不十分位置(例えば、本実施例3のように10〜15ms)に設定した場合、たとえ異なるパルス幅であったり50ms以下であっても(本実施例3ではパルス幅25〜100ms)、被分析対象1a中の極めて低濃度(例えば、本実施例3のように数10ppbレベル)の鉛イオンを十分測定でき、その鉛イオン濃度に対するピーク電流特性線は高濃度にわたって良好な直線性を有し、信頼性の高い検量線として適用できることから、たとえ測定対象が極めて低濃度であっても広い濃度範囲で高感度および高精度な微量分析が可能であることを判明した。   Therefore, the analysis as shown in FIG. 1 is different even when the sampling position of the potential sweep process is set to a position where attenuation is insufficient in each pulse period (for example, 10 to 15 ms as in the third embodiment). Even if the pulse width is 50 ms or less (in the third embodiment, the pulse width is 25 to 100 ms), lead ions having an extremely low concentration (for example, several tens of ppb level as in the third embodiment) in the analysis target 1a The peak current characteristic line for the lead ion concentration has good linearity over a high concentration and can be applied as a highly reliable calibration curve. It was found that high-sensitivity and high-accuracy microanalysis was possible in the range.

(実施例4)
被分析対象中に鉛イオンとその他の重金属イオンとが含まれている場合、該鉛イオンと重金属イオンとの相互作用は回避することが好ましいと考えられる。例えば、従来法において水銀電極を用いた場合、電位保持工程の際に電極である水銀と測定対象のアマルガムを形成するため、被分析対象中に夾雑物が含まれていても、該夾雑物による影響を受けることなく該相互作用を回避して、所望の分析を行うことができる。
Example 4
When lead ions and other heavy metal ions are contained in the analysis target, it is considered preferable to avoid the interaction between the lead ions and heavy metal ions. For example, in the case where a mercury electrode is used in the conventional method, in order to form mercury as an electrode and an amalgam to be measured in the potential holding step, even if the object to be analyzed contains contaminants, The interaction can be avoided without being affected and the desired analysis can be performed.

グラッシーカーボン電極等を用いた場合、該鉛イオンを十分測定することはできるものの、電位保持工程の際に測定対象が単体で析出されるため、特に被分析対象中に多くの夾雑物が含まれていると、該夾雑物による影響で該相互作用が起こり得る。このため、必要に応じて被分析対象を前処理(夾雑物の除去等)する場合がある。   When a glassy carbon electrode or the like is used, the lead ion can be measured sufficiently, but since the measurement object is deposited as a single substance during the potential holding process, a large amount of contaminants are contained in the analysis target. The interaction may occur due to the influence of the contaminants. For this reason, the analysis target may be pre-processed (removal of impurities, etc.) as necessary.

一方、作用電極として銅電極を用いた場合、電位保持工程の際に鉛イオンと銅電極との合金反応により、該合金のみにおいて電位変化に対する電流変化特性を検出できる可能性があり、たとえ被分析対象中に夾雑物が含まれていても、水銀電極を用いた場合と同様に、該夾雑物による影響を受けることなく該相互作用を回避して、所望の分析を行うことができる(前記の前処理等を行うことなく直接分析できる)。   On the other hand, when a copper electrode is used as the working electrode, there is a possibility that the current change characteristic with respect to the potential change can be detected only in the alloy by the alloy reaction between the lead ion and the copper electrode in the potential holding step, Even if impurities are included in the target, the interaction can be avoided and the desired analysis can be performed without being affected by the impurities as in the case of using the mercury electrode (described above). It can be analyzed directly without pre-processing).

そこで、本実施例4では、種々の濃度の鉛イオン,種々のアニオン種による支持電解質を含む被分析対象を用いて、それぞれの分析を実施した。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH4.5),0〜5μMの鉛イオンを配合して試料S3を得た。また、試料S3と同様の配合であって、塩化カリウム溶液の替わりに硝酸カリウム溶液を配合して試料S4を得た。   Therefore, in this Example 4, each analysis was performed using the analytes including the supporting electrolytes with various concentrations of lead ions and various anionic species. First, a sample S3 was obtained by blending a 0.2 M potassium chloride solution with a 10 mM acetate buffer solution (pH 4.5) and 0 to 5 μM lead ions. Moreover, it was the same mixing | blending as sample S3, Comprising: The potassium nitrate solution was mix | blended instead of the potassium chloride solution, and sample S4 was obtained.

そして、試料S3,S4について、実施例2と同様の電位保持工程,電位掃引工程(サンプリング位置10,11,12,13,14,15msの積算)による分析操作を行って電位変化に対する電流変化特性をそれぞれ検出した。その結果、図7A(試料S3の場合),B(試料S4の場合)に示すように、各試料S3,S4において、鉛イオンの単体の析出によるピーク電流特性線と、該鉛イオンおよび銅電極の合金によるピーク電流特性線が得られた。   Samples S3 and S4 are subjected to an analysis operation in the same potential holding step and potential sweeping step (accumulation of sampling positions 10, 11, 12, 13, 14, and 15 ms) as in Example 2 to perform current change characteristics with respect to potential changes. Was detected respectively. As a result, as shown in FIGS. 7A (in the case of sample S3) and B (in the case of sample S4), in each sample S3 and S4, the peak current characteristic line due to the precipitation of a single lead ion, the lead ion and the copper electrode The peak current characteristic line was obtained for the alloy of

この図7Bに示す結果から、被分析対象中にアニオン種として硝酸イオンが含まれる場合には、鉛イオン濃度が約2.5μMより上昇するに連れて、ピーク電流(鉛イオンの単体の析出に付随するピーク電流)が大きくなるものの、合金によるピーク電流は殆ど検出されないことが読み取れる。   From the results shown in FIG. 7B, when nitrate ions are included as the anion species in the analyte, the peak current (in the precipitation of simple lead ions) increases as the lead ion concentration rises from about 2.5 μM. It can be read that the peak current due to the alloy is hardly detected although the accompanying peak current is increased.

一方、図7Aに示す結果から、被分析対象中にアニオン種として塩化物イオン(クロライド)が含まれる場合には、鉛イオン濃度が上昇(特に、約2μM以下の範囲での上昇)するに連れて合金によるピーク電流が大きくなり、そのピーク電流特性線も良好な直線性を有するものの、ピーク電流(鉛イオンの単体の析出に付随するピーク電流)は鉛イオン濃度が約1.5μM超でなければ殆ど検出されないことが読み取れる。   On the other hand, from the results shown in FIG. 7A, when chloride ions (chlorides) are contained as the anion species in the analyte, the lead ion concentration increases (especially in the range of about 2 μM or less). Although the peak current due to the alloy increases and the peak current characteristic line also has good linearity, the peak current (peak current associated with the precipitation of lead ions alone) must have a lead ion concentration of more than about 1.5 μM. It can be read that almost no detection occurs.

試料S3のように塩化物イオンが含まれる場合、電位保持工程の際に該塩化物イオンが銅電極表面に特異吸着、すなわち1価の塩化銅が形成されるため、鉛イオンおよび銅電極の合金が形成され易くなるものと思われる。また、前記の塩化物イオンの特異吸着により、被分析対象中における溶存酸素の還元反応を抑制、および水素発生を抑制することが可能となり、電位窓が広くなるものと思われる。   When chloride ions are contained as in the sample S3, the chloride ions are specifically adsorbed on the surface of the copper electrode during the potential holding step, that is, monovalent copper chloride is formed. It seems that is likely to be formed. Moreover, the specific adsorption of chloride ions described above makes it possible to suppress the reduction reaction of dissolved oxygen in the analyte and to suppress the generation of hydrogen, and the potential window seems to be widened.

したがって、図1に示したような分析においては、被分析対象中にアニオン種として塩化物イオンが共存すれば、例えば測定対象として鉛イオン(例えば、本実施例4のように約1.5μM以下の鉛イオン)とその他の重金属イオンが含まれる場合であっても、その他の重金属との相互作用を受けずに、鉛イオンおよび銅電極の合金のみにおいて電位変化に対する電流変化特性を検出できる。すなわち、被分析対象中に複数の測定対象(例えば、後述の実施例のように鉛イオン,カドミウムイオン,亜鉛イオン)が含まれる場合であっても、それら測定対象同士の相互作用を回避しながら選択的に測定でき、より高感度および高精度な微量分析が可能で、良好な再現性を有することを判明した。また、電位窓が広くなることにより、微量分析できる範囲が広くなることを判明した。   Therefore, in the analysis as shown in FIG. 1, if chloride ions coexist as anion species in the analyte, for example, lead ions (for example, about 1.5 μM or less as in the present Example 4) Even when lead ions) and other heavy metal ions are included, the current change characteristics with respect to potential changes can be detected only with the lead ions and the alloy of the copper electrodes without receiving any interaction with other heavy metals. That is, even when a plurality of measurement objects (for example, lead ions, cadmium ions, and zinc ions) are included in the analysis target, the interaction between these measurement objects is avoided. It was found that it can be selectively measured, enables high sensitivity and high accuracy microanalysis, and has good reproducibility. Further, it has been found that the range in which trace analysis can be performed becomes wider as the potential window becomes wider.

(実施例5)
前記の実施例4のように、電位保持工程の際に鉛イオンと銅電極との合金反応(鉛イオン濃度に応じた合金反応)を利用することにより、被分析対象中の複数の測定対象を十分選択的に測定できるが、該合金反応のみが起こる鉛イオン濃度の範囲(測定対象の単体の析出によるピーク電流が検出されない範囲)は、より広いことが好ましいと考えられる。この銅電極においては、単に銅電極表面の汚れ等を清浄(作用電極表面を分子レベルで酸化溶出し再生処理)する目的の手法ではあるが、各分析毎(例えば、繰り返し分析を行う毎)に±0V付近(vs.Ag/AgCl)を僅かに超える程度の正電位(すなわち、測定対象が析出し得る電位よりも正方向の電位)を銅電極に所定時間印加することが知られている。
(Example 5)
As in Example 4 described above, by utilizing the alloy reaction between lead ions and copper electrodes (alloy reaction according to the lead ion concentration) during the potential holding step, a plurality of measurement objects in the analysis target are obtained. Although it can be measured sufficiently selectively, it is considered that it is preferable that the range of the lead ion concentration in which only the alloy reaction occurs (the range in which the peak current due to precipitation of the single substance to be measured is not detected) is wider. In this copper electrode, it is a method for the purpose of simply cleaning dirt on the surface of the copper electrode (oxidizing and eluting the working electrode surface at the molecular level and regenerating), but for each analysis (for example, every time repeated analysis is performed) It is known that a positive potential (that is, a potential in a positive direction with respect to a potential at which a measurement target can be deposited) slightly exceeding about ± 0 V (vs. Ag / AgCl) is applied to a copper electrode for a predetermined time.

そこで、本実施例5では、前記実施例4の試料S3(鉛イオン濃度0〜5μM)を用い、電位保持工程での測定対象の析出を行う前に、該測定対象が析出し得る電位よりも正方向の電位を作用電極に印加し、それぞれの分析を実施した。   Therefore, in Example 5, before using the sample S3 of Example 4 (lead ion concentration of 0 to 5 μM) to deposit the measurement object in the potential holding step, the potential of the measurement object can be precipitated. A positive potential was applied to the working electrode and each analysis was performed.

まず、試料S3について、実施例4と同様の電位保持工程,電位掃引工程(サンプリング位置10,11,12,13,14,15ms積算)による分析操作を行って電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果をそれぞれ図8のピーク電流特性線図に示した。なお、本実施例5の各電位保持工程では、測定対象の析出を行う前に、被分析対象中に浸漬された作用電極に+300mVの電位を10秒間印加(以下、析出前電位印加と称する)した。   First, the sample S3 is subjected to an analysis operation by the same potential holding step and potential sweeping step (sampling positions 10, 11, 12, 13, 14, 15 ms integration) as in Example 4 to detect current change characteristics with respect to potential changes. The detection results obtained for each sampling position are shown in the peak current characteristic diagram of FIG. In each potential holding step of Example 5, a potential of +300 mV was applied to the working electrode immersed in the subject to be analyzed for 10 seconds (hereinafter referred to as pre-deposition potential application) before performing the deposition of the measurement target. did.

図8に示すように、鉛イオンの単体の析出によるピーク電流特性線と、該鉛イオンおよび銅電極の合金によるピーク電流特性線が得られ、鉛イオンの単体の析出によるピーク電流は鉛イオン濃度が約2.5μM超でなければ殆ど検出されていないことから、図7Aの結果(すなわち、析出前正電位印加を行わない場合の結果)と比較すると、合金反応のみが起こる鉛イオン濃度の範囲が、より広くなっていることが読み取れる。   As shown in FIG. 8, a peak current characteristic line due to the precipitation of lead ions and a peak current characteristic line due to the alloy of the lead ions and the copper electrode are obtained. Since it is almost not detected unless the value is more than about 2.5 μM, the lead ion concentration range in which only the alloy reaction occurs is compared with the result of FIG. 7A (that is, the result when the positive potential is not applied before precipitation). However, it can be seen that it is wider.

この理由としては、前記の析出前電位印加によって、電位保持工程の際に塩化物イオン(被分析対象中の塩化物イオン)が銅電極表面に対して特異吸着し易くなり(すなわち1価の塩化銅が形成され易くなり)、鉛イオンおよび銅電極の合金が形成され易くなったものと思われる。また、被分析対象中における溶存酸素の還元反応、および水素発生がより抑制され、電位窓がより広くなるものと思われる。   This is because the pre-deposition potential application facilitates specific adsorption of chloride ions (chloride ions in the analyte) to the copper electrode surface during the potential holding step (that is, monovalent chloride). It seems that copper is easily formed) and lead ions and copper electrode alloys are easily formed. In addition, it is considered that the reduction reaction of dissolved oxygen and hydrogen generation in the analysis target are further suppressed, and the potential window becomes wider.

なお、図8に示す分析では、析出前電位印加において電位+300mV,印加時間10秒に設定したが、前記のように塩化物イオンの特異吸着が起こる範囲であれば、適宜変更しても良いものと考えられる。例えば、析出前電位印加において電位−100mVより正方向,3秒以上に設定し、図8と同様の分析を行ったところ、少なくとも図7Aの結果よりは、合金反応のみが起こる鉛イオン濃度の範囲が、より広くなることを確認できた。また、析出前電位印加において、電位±0Vより正方向であれば作用電極表面自体が分子レベルで酸化溶出し、該表面が清浄(再生)されることが読み取れる。さらに、電位+300mV超に設定したり印加時間を長く(例えば、10秒超)に設定した場合においても、塩化物イオンの特異吸着が起こる可能性はあるが、例えば銅電極表面が大きく酸化溶出して該表面積等が大きく変化する可能性もある。   In the analysis shown in FIG. 8, the potential is set to +300 mV and the application time is 10 seconds in the potential application before deposition. However, as long as the specific adsorption of chloride ions occurs as described above, the potential may be changed as appropriate. it is conceivable that. For example, in the potential application before deposition, the potential is set to a positive direction from −100 mV for 3 seconds or more, and the same analysis as in FIG. 8 is performed. At least the result of FIG. However, it was confirmed that it became wider. In addition, it can be seen that when the potential before deposition is applied in the positive direction from the potential ± 0 V, the working electrode surface itself is oxidized and eluted at the molecular level and the surface is cleaned (regenerated). Furthermore, even when the potential is set to more than +300 mV or the application time is set to be long (for example, more than 10 seconds), specific adsorption of chloride ions may occur, but for example, the copper electrode surface is largely oxidized and eluted. The surface area and the like may change greatly.

したがって、図1に示したような分析においては、各電位保持工程での測定対象の析出を行う前に、作用電極に析出前電位印加(例えば、本実施例5のように電位−100mV〜+300mV,印加時間3〜10秒の検出前電位印加)を行うことにより、実施例4での試料3の分析と比較して、被分析対象中の複数の測定対象(例えば、本実施例5のように約2.5μM以下の鉛イオンを含む場合)をより選択的に測定し易くなり、より高感度および高精度な微量分析が可能で、より良好な再現性を有することを判明した。また、電位窓もより広くなることから、微量分析できる範囲がより広くなることを判明した。   Therefore, in the analysis as shown in FIG. 1, before performing the deposition of the measurement object in each potential holding step, the potential before deposition is applied to the working electrode (for example, the potential −100 mV to +300 mV as in Example 5). , By applying a pre-detection potential application time of 3 to 10 seconds), compared to the analysis of the sample 3 in Example 4, a plurality of measurement objects (for example, as in Example 5) It has been found that it is easier to selectively measure (when about 2.5 μM or less of lead ions are contained in the sample), more sensitive and highly accurate microanalysis is possible, and better reproducibility is achieved. In addition, since the potential window becomes wider, it was found that the range in which trace analysis can be performed becomes wider.

(実施例6)
本実施例6では、カドミウムイオンを含む被分析対象、および鉛イオン,カドミウムイオンを含む被分析対象を用い、それぞれの分析を実施した。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH4.5),0.04ppm(数10ppbレベルの濃度)のカドミウムイオンを配合して試料S5を得た。また、前記試料S5と同様の配合に対し、さらに0.05ppm(数10ppbレベルの濃度)の鉛イオンを配合して試料S6を得た。
(Example 6)
In the present Example 6, each analysis was implemented using the to-be-analyzed object containing cadmium ion and the to-be-analyzed object containing lead ion and cadmium ion. First, a sample S5 was obtained by blending 0.2 M potassium chloride solution with 10 mM acetate buffer solution (pH 4.5) and 0.04 ppm (concentration of several tens of ppb level) cadmium ions. Further, a sample S6 was obtained by further blending 0.05 ppm (concentration of several tens of ppb level) of lead ions to the same composition as the sample S5.

そして、試料S5,S6について、実施例5と同様の電位保持工程(電位+300mV,印加時間10秒の析出前電位印加の後、−650mVで180秒間保持),電位掃引工程(サンプリング位置10,11,12,13,14,15ms積算)による分析操作を行って電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果を図9A,Bの電位変化に対する電流変化特性線9A1(試料S5の場合),9B1(試料S6の場合)に示した。また、前記の各試料S5,S6について、それぞれカドミウムイオンを含まない場合における電位変化に対する電流変化特性、すなわちバックグラウンド電流特性も同様にそれぞれ検出し、図9A,Bのバックグランド電流特性線9A2(試料S5の場合),9B2(試料S6の場合)に示した。 For samples S5 and S6, the same potential holding step as in Example 5 (potential +300 mV, after applying a potential before deposition of 10 seconds for application time, and then holding at -650 mV for 180 seconds), potential sweep step (sampling positions 10, 11) , 12, 13, 14, and 15 ms integration) to detect current change characteristics with respect to potential changes, and the detection results obtained for each sampling position are shown as current change characteristic lines with respect to potential changes in FIGS. 9A and 9B. 9A 1 (in the case of sample S5), 9B 1 (in the case of sample S6). Further, for each of the samples S5 and S6, the current change characteristic with respect to the potential change in the case of not containing cadmium ions, that is, the background current characteristic is similarly detected, and the background current characteristic line 9A 2 in FIGS. 9A and 9B is detected. (In the case of sample S5) and 9B 2 (in the case of sample S6).

図9Aに示す結果においては、バックグランド電流が不安定であり、正確にカドミウムイオン濃度に応じたピーク電流値の算出が困難であることが読み取れる。一方、図9Bに示す結果においては、バックグランド電流が減少し安定しているため、カドミウムイオン濃度に応じたピーク電流値の算出が可能であることを読み取れる。   In the result shown in FIG. 9A, it can be seen that the background current is unstable and it is difficult to accurately calculate the peak current value according to the cadmium ion concentration. On the other hand, in the result shown in FIG. 9B, it can be read that the peak current value can be calculated according to the cadmium ion concentration because the background current decreases and is stable.

したがって、図1に示したような分析においては、測定対象がカドミウムイオンであっても、前記の実施例1〜5と同様の測定による微量分析が可能であることを判明した。また、例えば鉛イオンを含まない被分析対象中のカドミウムイオンを測定する際において、該被分析対象に鉛イオン(例えば、本実施例6のように数10ppbレベルの鉛イオン)を添加(添加剤として使用)すれば、バックグランド電流を減衰して安定させることができ、微量分析の再現性がより良好になることを判明した。   Therefore, in the analysis as shown in FIG. 1, it was found that even if the measurement object is cadmium ion, a trace analysis by the same measurement as in Examples 1 to 5 can be performed. Further, for example, when measuring cadmium ions in an analysis target that does not contain lead ions, lead ions (for example, lead ions of several tens of ppb level as in Example 6) are added to the analysis target (additive) As a result, it was found that the background current can be attenuated and stabilized, and the reproducibility of trace analysis becomes better.

(実施例7)
本実施例7では、バックグランド溶液に対し種々の濃度の鉛イオン,カドミウムイオンを加えて得た試料を用い、その試料について繰り返し分析(N=10)を実施し、分析可能レベルの確認を行った。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH4.5)を配合してバックグランド溶液を得た。このバックグランド溶液に0,0.01,0.02,0.03,0.04,0.05ppmの鉛イオンを配合してそれぞれ試料S7a,S7b,S7c,S7d,S7e,S7fを得た。また、試料S7a〜S7fと同様の配合であって、鉛イオンの替わりに、0,0.01.0.02,0.03,0.04,0.05ppmのカドミウムイオンを配合して試料S8a,S8b,S8c,S8d,S8e,S8fを得た。
(Example 7)
In this Example 7, samples obtained by adding various concentrations of lead ions and cadmium ions to the background solution were repeatedly analyzed (N = 10) for the samples to confirm the level of analysis possible. It was. First, a 10 mM acetate buffer solution (pH 4.5) was blended with a 0.2 M potassium chloride solution to obtain a background solution. Samples S7a, S7b, S7c, S7d, S7e, and S7f were obtained by adding 0, 0.01, 0.02, 0.03, 0.04, and 0.05 ppm lead ions to the background solution. Moreover, it is the same mixing | blending as sample S7a-S7f, Comprising: Instead of lead ion, 0.00.01.0.02, 0.03,0.04, 0.05 ppm cadmium ion is mix | blended, and sample S8a , S8b, S8c, S8d, S8e, S8f were obtained.

その後、前記の試料S7a〜S7f,S8a〜S8fについて、実施例5,6と同様の電位保持工程(析出前電位印加後の析出時に保持される電位は、試料S7a〜S7f場合は−500mV,試料S8a〜S8fの場合は−650mV),電位掃引工程(試料S7a〜S7f場合はサンプリング位置10,11,12,13,14,15ms積算、試料S8a〜S8fの場合はサンプリング位置35,36,37,38,39,40,41,42,43,44,45,46,47,48,49ms積算)による分析操作を行って電位変化に対する電流変化特性をそれぞれ検出し、それら検出結果から各々の濃度(鉛イオンまたはカドミウムイオンの濃度)に対するピーク電流値特性を検量線(以下、それぞれを鉛検量線,カドミウム検量線と称する)として求めた。   Thereafter, with respect to the samples S7a to S7f and S8a to S8f, the same potential holding step as in Examples 5 and 6 (the potential held at the time of deposition after applying the potential before deposition is −500 mV in the case of samples S7a to S7f, the sample For S8a to S8f, -650 mV), potential sweep process (for samples S7a to S7f, sampling positions 10, 11, 12, 13, 14, 15 ms integration, for samples S8a to S8f, sampling positions 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, and 49 ms integration) to detect current change characteristics with respect to potential changes, respectively. The peak current value characteristics with respect to the lead ion or cadmium ion concentration) calibration curve (hereinafter referred to as the lead calibration curve and cadmium calibration curve, respectively) It was determined as referred to).

次に、前記のバックグランド溶液について、それぞれ前記の鉛検量線,カドミウム検量線の場合と同様の電位保持工程,電位掃引工程による分析操作を、それぞれ合計10回繰り返して電位変化に対する電流変化特性を求めた。そして、各10回におけるピーク電流値を該鉛検量線,カドミウム検量線と照合させることにより濃度換算を行い、標準偏差(σ)を算出すると共に、検出下限値(3σ),定量下限値(10σ)を算出して、その結果を下記表1に示した。   Next, with respect to the background solution, the analysis operation by the potential holding process and the potential sweep process similar to the case of the lead calibration curve and the cadmium calibration curve, respectively, is repeated a total of 10 times to obtain the current change characteristics with respect to the potential change. Asked. Then, the peak current value at each 10 times is collated with the lead calibration curve and cadmium calibration curve to perform concentration conversion, calculate the standard deviation (σ), and detect the lower limit of detection (3σ), the lower limit of quantification (10σ ) And the results are shown in Table 1 below.

Figure 2007309802
Figure 2007309802

前記の表1に示す結果から、各S7a〜S7f,S8a〜S8fについて、数100pptレベルで測定できたことが読み取れる。したがって、図1に示したような分析においては、被分析対象中に含まれる数100pptレベルの測定対象(本実施例7のように鉛イオン,カドミウムイオン等)を測定し分析できることを確認できた。   From the results shown in Table 1, it can be read that each S7a to S7f and S8a to S8f can be measured at a level of several hundreds of ppt. Therefore, in the analysis as shown in FIG. 1, it was confirmed that the measurement object (lead ion, cadmium ion, etc. as in Example 7) included in the analysis object can be measured and analyzed. .

(実施例8)
本実施例8では、種々の濃度の鉛イオン,カドミウムイオン,亜鉛イオンを含む被分析対象を用い、それぞれの分析を実施した。まず、0.2Mの塩化カリウム溶液に対し、10mMの酢酸緩衝溶液(pH5.0),0〜0.24ppm(数10ppbレベルの濃度)の鉛イオン,0〜0.12ppm(数10ppbレベルの濃度)のカドミウムイオン,0〜0.084ppm(数ppbレベルの濃度)の亜鉛イオンを配合して、試料S9を得た。
(Example 8)
In the present Example 8, each analysis was carried out using analytes containing various concentrations of lead ions, cadmium ions, and zinc ions. First, 0.2 mM potassium chloride solution, 10 mM acetate buffer solution (pH 5.0), 0 to 0.24 ppm (concentration of several tens of ppb level) lead ion, 0 to 0.12 ppm (concentration of several tens of ppb level) ) And cadmium ions of 0 to 0.084 ppm (concentration of several ppb level) were blended to obtain a sample S9.

そして、試料S9について、実施例6と同様の電位保持工程(析出前電位印加の後、−950mVで180秒間保持),電位掃引工程(サンプリング位置5〜19ms)による分析操作を行って電位変化に対する電流変化特性をそれぞれ検出し、各サンプリング位置毎に得られた検出結果を図10の電位変化に対する電流変化特性線10A〜10Lに示した。また、前記の試料S9における鉛イオン,カドミウムイオン,亜鉛イオンを含まない場合の電位変化に対する電流変化特性、すなわちバックグラウンド電流特性も同様に検出し、図10のバックグランド電流特性線10Mに示した。なお、下記表1は、試料S7において各特性線10A〜10Mに対応する鉛イオン,カドミウムイオン,亜鉛イオンの各濃度を示すものである。   The sample S9 was subjected to the same potential holding step as that of Example 6 (after pre-deposition potential application, held at -950 mV for 180 seconds), and the potential sweep step (sampling position 5 to 19 ms) to perform an analysis operation to cope with the potential change. The current change characteristics were detected, and the detection results obtained for each sampling position are shown in current change characteristic lines 10A to 10L with respect to the potential change in FIG. Further, the current change characteristic with respect to the potential change in the case of not containing lead ion, cadmium ion and zinc ion in the sample S9, that is, the background current characteristic was also detected in the same manner, and is shown by the background current characteristic line 10M in FIG. . Table 1 below shows the concentrations of lead ions, cadmium ions, and zinc ions corresponding to the characteristic lines 10A to 10M in the sample S7.

Figure 2007309802
Figure 2007309802

図10に示すように、バックグランド電流は比較的低く安定し、前記の実施例1〜5の鉛イオン測定の場合と同様に、鉛イオン,カドミウムイオン,亜鉛イオンの各濃度に応じたピーク電流が十分検出されていることを読み取れる。   As shown in FIG. 10, the background current is relatively low and stable, and the peak currents corresponding to the concentrations of lead ions, cadmium ions, and zinc ions are the same as in the case of the lead ion measurement in Examples 1 to 5 described above. It can be read that is sufficiently detected.

したがって、図1に示したような分析においては、測定対象が鉛イオンやカドミウムイオン以外(例えば、亜鉛イオン)であっても、前記の実施例1〜5と同様の測定による微量分析が可能であることを判明した。また、被分析対象中に複数の測定対象(例えば、本実施例8のように数ppb〜数10ppbレベルの鉛イオン,カドミウムイオン,亜鉛イオン)が含まれていても、前記の実施例1〜5と同様の測定による微量分析が可能であることを判明した。   Therefore, in the analysis as shown in FIG. 1, even if the object to be measured is other than lead ion or cadmium ion (for example, zinc ion), trace analysis by the same measurement as in Examples 1 to 5 is possible. Turned out to be. In addition, even if a plurality of measurement objects (for example, lead ions, cadmium ions, and zinc ions at a level of several ppb to several tens of ppb as in the eighth embodiment) are contained in the analysis target, It was proved that a microanalysis by the same measurement as that of No. 5 was possible.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、少なくとも作用電極(金電極から成る作用電極),対電極,参照電極から構成され、被分析対象中に前記の各電極を配置し、電位保持工程によって前記作用電極の電位を所定電位に保持し、電位掃引工程にて前記の作用電極の電位を掃引しながら該作用電極における電位変化に対する電流変化を検出することが可能なものであれば、たとえ技術常識の範囲内で適宜設計変更(例えば、各電極の形態の変更)等を行ったとしても、本実施例等と同様の作用効果が得られることは明らかである。   For example, it is composed of at least a working electrode (working electrode made of a gold electrode), a counter electrode, and a reference electrode, and each of the electrodes is arranged in an analysis target, and the potential of the working electrode is held at a predetermined potential by a potential holding step. If the current change with respect to the potential change in the working electrode can be detected while sweeping the potential of the working electrode in the potential sweep step, the design can be changed as appropriate within the scope of common technical knowledge (for example, It is clear that the same effects as in the present embodiment can be obtained even if the configuration of each electrode is changed).

本実施の形態における溶液分析方法に適用可能な装置の概略説明図。Schematic explanatory drawing of the apparatus applicable to the solution analysis method in this Embodiment. 検証例のクロノアンペロメトリー法による時間変化に対する充電電流変化特性図。The charging current change characteristic view with respect to the time change by the chronoamperometry method of the verification example. 実施例1のピーク電流特性線図(サンプリング位置8〜23ms)。The peak current characteristic diagram of Example 1 (sampling position 8-23 ms). 実施例1のピーク電流特性線図(サンプリング位置26〜35ms)。The peak current characteristic diagram of Example 1 (sampling position 26-35 ms). 実施例2のピーク電流特性線図(図5Aはサンプリング位置10〜15ms、図5Bはサンプリング位置45〜50ms)。The peak current characteristic diagram of Example 2 (FIG. 5A is sampling position 10-15 ms, FIG. 5B is sampling position 45-50 ms). 実施例3のピーク電流特性線図。The peak current characteristic diagram of Example 3. FIG. 実施例4のピーク電流特性線図(図7Aは試料S3、図7Bは試料S4)。The peak current characteristic diagram of Example 4 (FIG. 7A is sample S3, FIG. 7B is sample S4). 実施例5のピーク電流特性線図。The peak current characteristic diagram of Example 5. 実施例6の電位変化に対する電流変化特性図(図9Aは試料S5、図9Bは試料S6)。FIG. 9A is a current change characteristic diagram with respect to a potential change in Example 6 (FIG. 9A is a sample S5, and FIG. 9B is a sample S6). 実施例8の電位変化に対する電流変化特性図。FIG. 10 is a current change characteristic diagram with respect to potential change in Example 8.

符号の説明Explanation of symbols

1…容器
1a…被分析対象
2…作用電極
3…対電極
4…参照電極
5…ポテンシオスタット
6…コンピュータ
7…スターラー
DESCRIPTION OF SYMBOLS 1 ... Container 1a ... Analyte 2 ... Working electrode 3 ... Counter electrode 4 ... Reference electrode 5 ... Potentiostat 6 ... Computer 7 ... Stirrer

Claims (8)

少なくとも作用電極,対電極,参照電極から構成され、
測定対象を含んだ被分析対象中に前記の各電極を配置し、該作用電極の電位を被分析対象中の測定対象が析出し得る電位に保持でき、その保持された電位によって析出された測定対象が溶出し得る方向に微分パルスモードにより掃引でき、該作用電極における電位変化に対する電流変化を検出でき、100ppt以上レベルの被分析対象を分析することが可能な溶液分析装置において、
前記作用電極は銅電極であることを特徴とする溶液分析装置。
It consists of at least a working electrode, a counter electrode, and a reference electrode,
Each electrode described above is placed in an analysis target including the measurement target, and the potential of the working electrode can be held at a potential at which the measurement target in the analysis target can be deposited, and the measurement deposited by the held potential In a solution analyzer that can sweep in a differential pulse mode in a direction in which an object can be eluted, can detect a current change with respect to a potential change in the working electrode, and can analyze an analyte to be analyzed at a level of 100 ppt or more.
The solution analyzer according to claim 1, wherein the working electrode is a copper electrode.
作用電極,対電極,参照電極を被分析対象中に配置してから、
前記作用電極の電位を、被分析対象中の測定対象が析出し得る電位に保持する電位保持工程と、
前記の保持された作用電極の電位を、前記の電位保持工程で析出した測定対象が溶出し得る方向に微分パルスモードにより掃引しながら、該作用電極における電位変化に対する電流変化を検出する電位掃引工程と、による分析操作を行い数100ppt以上レベルの被分析対象を分析することが可能な方法であって、
前記の作用電極には銅電極を用いたことを特徴とする溶液分析方法。
After placing the working electrode, counter electrode, and reference electrode in the analyte,
A potential holding step of holding the potential of the working electrode at a potential at which a measurement target in the analysis target can be deposited;
A potential sweep step for detecting a current change with respect to a potential change in the working electrode while sweeping the held potential of the working electrode in a differential pulse mode in a direction in which the measurement object deposited in the potential holding step can be eluted. And a method capable of analyzing an object to be analyzed at a level of several hundreds of ppt or more by performing an analysis operation according to
A solution analysis method, wherein a copper electrode is used as the working electrode.
前記の被分析対象中に塩化物イオンが含まれていることを特徴とする請求項2に記載の溶液分析方法。   The solution analysis method according to claim 2, wherein chloride ions are contained in the analysis target. 前記の電位保持工程で測定対象が析出し得る電位に保持する前に、−100mVより正方向の電位で前記作用電極に析出前電位印加を行うことを特徴とする請求項3記載の溶液分析方法。   4. The solution analysis method according to claim 3, wherein the pre-deposition potential is applied to the working electrode at a potential in the positive direction from −100 mV before the potential to be deposited is maintained at the potential at which the measurement object can be deposited in the potential holding step. . 前記の析出前電位印加の電位は±0Vより正方向であることを特徴とする請求項4記載の溶液分析方法。   5. The solution analysis method according to claim 4, wherein the potential of the pre-deposition potential application is more positive than ± 0V. 前記の被分析対象は鉛,カドミウム,亜鉛のうち少なくとも何れか一つ以上が含まれていることを特徴とする請求項2〜5のうち何れか1項に記載の溶液分析方法。   The solution analysis method according to any one of claims 2 to 5, wherein the object to be analyzed contains at least one of lead, cadmium, and zinc. 前記の被分析対象中に少なくとも鉛が測定対象として含まれ、前記の電位保持工程において微分パルスモードによりパルス印加後23ms以内で電解電流をサンプリングすることを特徴とする請求項6記載の溶液分析方法。   7. The solution analysis method according to claim 6, wherein at least lead is contained in the analyte as an object to be measured, and the electrolytic current is sampled within 23 ms after pulse application in the differential pulse mode in the potential holding step. . 前記の被分析対象が鉛を含まないものであって、測定対象がカドミウムの場合には、該被分析対象に対し鉛を添加することを特徴とする請求項7に記載の溶液分析方法。   The solution analysis method according to claim 7, wherein when the object to be analyzed does not contain lead and the object to be measured is cadmium, lead is added to the object to be analyzed.
JP2006139604A 2006-05-18 2006-05-18 Solution analyzer and analysis method Ceased JP2007309802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139604A JP2007309802A (en) 2006-05-18 2006-05-18 Solution analyzer and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139604A JP2007309802A (en) 2006-05-18 2006-05-18 Solution analyzer and analysis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012099616A Division JP5276737B2 (en) 2012-04-25 2012-04-25 Solution analysis method

Publications (1)

Publication Number Publication Date
JP2007309802A true JP2007309802A (en) 2007-11-29

Family

ID=38842784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139604A Ceased JP2007309802A (en) 2006-05-18 2006-05-18 Solution analyzer and analysis method

Country Status (1)

Country Link
JP (1) JP2007309802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085531A (en) * 2009-10-16 2011-04-28 Hokuto Denko Kk Method and device for measuring cadmium in food
JP2012002771A (en) * 2010-06-21 2012-01-05 Hitachi Chem Co Ltd Method of concentrating ion substance of liquid extract provided for simple microanalysis in environmental field and liquid extract concentration kit therefor
JP2013024776A (en) * 2011-07-22 2013-02-04 Keio Gijuku Electrochemical analysis method and device for cadmium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126894A (en) * 1975-04-28 1976-11-05 Mitsubishi Chem Ind Ltd Voltammetry apparatus
JP2001091499A (en) * 1999-07-19 2001-04-06 Akira Fujishima Solution analysis method
JP2004294422A (en) * 2003-02-06 2004-10-21 Hokuto Denko Kk Solution analysis apparatus and method for reproducing the same, solution analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126894A (en) * 1975-04-28 1976-11-05 Mitsubishi Chem Ind Ltd Voltammetry apparatus
JP2001091499A (en) * 1999-07-19 2001-04-06 Akira Fujishima Solution analysis method
JP2004294422A (en) * 2003-02-06 2004-10-21 Hokuto Denko Kk Solution analysis apparatus and method for reproducing the same, solution analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085531A (en) * 2009-10-16 2011-04-28 Hokuto Denko Kk Method and device for measuring cadmium in food
JP2012002771A (en) * 2010-06-21 2012-01-05 Hitachi Chem Co Ltd Method of concentrating ion substance of liquid extract provided for simple microanalysis in environmental field and liquid extract concentration kit therefor
JP2013024776A (en) * 2011-07-22 2013-02-04 Keio Gijuku Electrochemical analysis method and device for cadmium

Similar Documents

Publication Publication Date Title
Ndlovu et al. Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode
Guzsvány et al. Antimony-film electrode for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry
Farghaly et al. Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter
JP4215132B2 (en) Electrochemical analysis method using boron-doped conductive diamond electrode
Luong et al. Analytical tools for monitoring arsenic in the environment
Rico et al. A novel cell design for the improved stripping voltammetric detection of Zn (II), Cd (II), and Pb (II) on commercial screen-printed strips by bismuth codeposition in stirred solutions
JP2008216061A5 (en)
Piech et al. The cyclic renewable mercury film silver based electrode for determination of uranium (VI) traces using adsorptive stripping voltammetry
US8702957B2 (en) Electrochemical detection of silica species
Fang et al. Submonolayer deposition on glassy carbon electrode for anodic stripping voltammetry: An ultra sensitive method for antimony in tap water
Innuphat et al. Determination of trace levels of Cd (II) in tap water samples by anodic stripping voltammetry with an electrografted boron-doped diamond electrode
Jedryczko et al. Inorganic arsenic speciation in natural mineral drinking waters by flow-through anodic stripping chronopotentiometry
Protti Introduction to modern voltammetric and polarographic analisys techniques
JP2007309802A (en) Solution analyzer and analysis method
Gęca et al. Application of a solid lead microelectrode as a new voltammetric sensor for adsorptive stripping voltammetry of U (VI)
Stankovic et al. Determination of Pb and Cd in water by potentiometric stripping analysis (PSA)
JP4869849B2 (en) Solution analysis method
Jagner et al. Coulometric stripping potentiometry
JP5276737B2 (en) Solution analysis method
JP5814025B2 (en) Method and apparatus for electrochemical analysis of cadmium
Bond et al. Field-based identification of minerals using a battery-operated electrochemical measuring system with mechanical transfer of the solid to a graphite electrode
JP3810760B2 (en) SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD
Van der Horst et al. Voltammetric analysis of platinum group metals using a bismuth-silver bimetallic nanoparticles sensor
Shams et al. Determination of trace amounts of thallium by adsorptive cathodic stripping voltammetry with xylenol orange
Sharma et al. Voltammetry: An Electrochemical Analytical Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120925