JP3810760B2 - SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD - Google Patents

SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD Download PDF

Info

Publication number
JP3810760B2
JP3810760B2 JP2003184451A JP2003184451A JP3810760B2 JP 3810760 B2 JP3810760 B2 JP 3810760B2 JP 2003184451 A JP2003184451 A JP 2003184451A JP 2003184451 A JP2003184451 A JP 2003184451A JP 3810760 B2 JP3810760 B2 JP 3810760B2
Authority
JP
Japan
Prior art keywords
solution
working electrode
potential
electrode
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003184451A
Other languages
Japanese (ja)
Other versions
JP2004294422A (en
Inventor
昌司 藤田
邦彦 横井
公二 久保埜
昭 藤嶋
方紀 羽場
敦尚 福泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003184451A priority Critical patent/JP3810760B2/en
Publication of JP2004294422A publication Critical patent/JP2004294422A/en
Application granted granted Critical
Publication of JP3810760B2 publication Critical patent/JP3810760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、作用電極,対電極,参照電極を構成したボルタンメトリーにより定量分析することが可能な溶液分析装置およびその再生方法,溶液分析方法であって、例えば上水中に含まれる極めて低濃度の被分析対象を分析することが可能な装置および方法に関するものである。
【0002】
【従来の技術】
現在、給水人口5万人以上の水道事業体において、その約77%にあたる事業体(約3580万戸)で鉛管が使用されているとの調査結果が公表されている。
【0003】
鉛は、例えば人体の健康に対する影響が大きいと指摘され、その水質基準は平成15年には現行の0.05mg/lから0.01mg/lに強化されることになっている。なお、鉛管の使用タイプとしては、公道の配水管分岐点から家庭などの水道水の消費者側(以下、単に宅地と称する)の蛇口までを使用しているもの、または公道の配水管分岐点から宅地内メータ周りまで使用のもの、あるいはメータ周りにのみ使用のものと種々の使用タイプが存在している。
【0004】
そこで、水道局では、水資源の有効活用の一環として漏水防止対策を最重点施策の一つとして積極的に取り組んでいるが、漏水の95%以上は、お客さまの所有物である宅地内の給水管で発生しており、そのほとんどが鉛管からの漏水となっている。このため、鉛給水管からの鉛の溶出対策、漏水防止対策として、宅地内の水道メータまでの鉛給水管を、ステンレス管や塩化ビニール管に取り替える材質改善工事を実施し、漏水の未然防止や健康維持に努めている。
【0005】
一方、前記の水質基準の強化に伴って、上水中に存在する低濃度の鉛(例えば、止水中の鉛管内面から溶出した鉛)を測定できる方法の研究開発が行われている。上水中の低濃度の鉛を測定する場合、一般的にフレーム原子吸光法,フレームレス原子吸光法,ICP発光分光分析法(例えば、超音波ネブライザー)等が適用されている。しかし、前記の各方法は使用する装置が大型および高価であり、その装置の操作において技術的な熟練度を必要とするため一般的に扱えるものではない。
【0006】
また、溶液中の金属(電気化学的活性物質)を電気化学的に分析する方法として、ボルタンメトリーにより定量分析する方法が一般的に適用され、その分析装置の作用電極として例えば白金電極,金電極,炭素電極,銀等の不活性な金属から成る固体電極や、水銀滴を用いる電極(以下、水銀電極と称する)が用いられている。
【0007】
図24は、一般的に知られている固体電極を用いたボルタンメトリーによる溶液分析装置の一例を示す概略説明図である。図24において、符号1は測定容器を示すものであり、その測定容器1内には被分析対象となる金属イオンを含んだ試料液1aが入っており、封止部材1bにより封止される。符号2は作用電極(例えば、白金電極,金電極,炭素電極,銀等の薄膜が被覆された電極等の固体電極)、符号3は対電極(例えば、白金やカーボンから成る電極)を示すものであり、それら作用電極2と対電極3とが一定の距離を隔てて、前記測定容器1内の試料液1a中に浸されるように設けられる。
【0008】
符号4はポテンシオスタットを示すものであり、そのポテンシオスタット4には前記作用電極2,対電極3がそれぞれの配線2a,3aを介して接続される。また、前記ポテンシオスタット4には、必要に応じてポテンシャルスイーパ4a,レコーダ4b等が接続される。符号5は参照電極(基準電極;例えば、飽和カロメル電極(Saturated Calomel Electrode)やAg/AgCl電極等)を示すものであり、キャピラリー5aを介して前記作用電極2に電気的接続されると共に、配線5bを介して前記ポテンシオスタット4に接続される。
【0009】
符号6は、窒素ガス(N2)を前記対電極3付近に供給し試料液1a中の溶存酸素を除去するための供給管を示すものである。符号7はスターラーを示すものであり、そのスターラー7によって前記測定容器1内の底部に位置する撹拌子7aを動作させて、前記測定容器1内の試料液1aを撹拌する。電気化学的分析方法において、極めて低濃度の物質を分析する場合には、一般的にアノード(またはカソード)ストリッピングボルタンメトリー法が適用される。
【0010】
次に、図24に示した分析装置による金属分析方法を説明する。まず、あらかじめ試料液1aについて、その試料液1a中の各金属イオンが互いに干渉して分析に影響を及ぼさないようにするマスキング(所望のマスクキング剤の添加)、緩衝液の添加によるpH調整、溶存酸素の除去を行う(脱気工程)。
【0011】
その後、作用電極2表面への分析対象物質の移動を促進するために、スターラー7,撹拌子7aを介して試料液1aを撹拌(乱流)することにより試料液1a中の物質移動(電気化学的活性物質の物質移動)を促進させながら、ポテンシオスタット4により作用電極2の電位を所望の負電位(自然電極電位よりも低い電位)に設定して、試料液1a中の各金属イオンを前記作用電極2表面に対し電着させて電着物質を形成する(還元濃縮)。その後、前記ポテンシオスタット4により、前記作用電極2の電位を正電位方向にスイープして、前記電着物質を試料液1a中に酸化溶出(アノードストリッピング)する。
【0012】
前記電着物質中の各金属は、所定の酸化電位でそれぞれ溶出することから、前記の各金属を試料液1a中に溶出する際に、前記作用電極2の電位変化に対する電流変化(電位に対するピーク電流)を所望の走査速度で検出する。そして、その電流変化を積分計算することにより得られる電気量(クーロン量)を検量線と比較して、前記試料液1aの分析(各金属イオン濃度の分析)を行うことができる。
【0013】
図25は、一般的に知られている水銀電極を用いたボルタンメトリーによる溶液分析装置の一例を示す概略説明図である。なお、図24に示すものと同様なものには同一符号等を付して、その詳細な説明を省略する。図25において、符号8は水銀滴を用いる作用電極(水銀電極)を示すものであり、符号9は水銀プールを示すものである。
【0014】
この図25に示した装置においては、マスキングや物質移動の促進を行うことなく作用電極8を所望の負電位に設定し、試料液1a中の金属イオンを作用電極8表面にて還元して、前記作用電極8をアマルガム化する。その後、そのアマルガム化された作用電極8の電位を正電位方向に掃引して酸化溶出すると共に、電位変化に対する電流を測定することにより定量分析を行う。ただし、還元電位が接近している場合、例えばCdとIn,CdまたはPbとTlが互いに干渉することがある。前者は水銀薄膜電極を用いると改善されるが、後者はEDTA等のマスキング剤を加える必要がある。
【0015】
図25のような水銀電極を用いた分析装置によれば、マスキングを行う必要が無く広い電位窓を有するため、被分析対象を含んだ溶液をスターラー等の物質移動を促進させる手段(以下、物質移動促進手段と称する)を使用することなく静止状態で分析することができ、被分析対象の濃度(例えば、上水中の鉛の濃度)が炭素電極等の固体電極を用いた分析装置では分析できないレベルであっても、その被分析対象を高感度および高精度で容易に測定することができる。また、固体電極を用いた場合は、分析毎に作用電極表面が損傷等により粗くなったり付着物が残存するため、分析毎に作用電極表面について研削,研磨,洗浄等の作業(以下、再生と称する)を行うが、水銀電極を用いた場合には前記のような作業は必要としない。
【0016】
このようなことから、被分析対象の濃度が極めて低い溶液(例えば、低濃度(100nM以下レベル)の鉛を含んだ上水)を分析する場合には、水銀電極を構成した分析装置が用いられていた。
【0017】
なお、被分析対象の濃度が900nM〜3000nM程度の溶液を分析する方法として、図24に示したような分析装置において試料液にNa2SO4,HClを添加し、作用電極に銅から成る電極を用いた方法が報告されている(例えば、非特許文献1参照)。
【0018】
【非特許文献1】
ダニエル・エフ.・ティベッツ(Daniel F. Tibbetts),ジェイムズ・デイビス(James Davis),リチャード・ジー.・コンプトン(Richard G. Compton),「ソノエレクトロアナリティカル・ディテクション・オブ・レッド・アット・ア・ベアー・コッパー・エレクトロード(Sonoelectroanalytical detection of lead at a bare copper electrode)」,(独国),フレシニアス・ジャーナル・アナリティカル・ケミストリー(Fresenius’ Journal Analytical Chemistry),スプリンガー・ベールラグ(Springer−Verlag),2000,368,p.412−414。
【0019】
【発明が解決しようとする課題】
前記のように作用電極として水銀電極を用いた場合、アマルガム化により水銀薄膜中に金属が不純物として残留し、分析後の水銀電極の信頼性は低下してしまう問題があった。そのため、前記水銀電極を繰り返し使用して分析する場合には、その水銀電極中に残留する不純物を分析毎に処理する手間が掛かってしまい、分析毎に新しい水銀電極を用いた場合には、その分析に要する費用が増加してしまう。
【0020】
また、水銀は極めて高い有毒性を有し環境汚染を引き起こすため、使用できなくなった水銀電極の処理において問題が生じている。
【0021】
本発明は、前記課題に基づいて成されたものであり、環境汚染等の問題を起こすことなく、極めて低濃度(例えば、1nM〜100nM程度の濃度)の被分析対象を高感度および高精度で容易に分析することが可能で、その分析後の装置の再生(作用電極の再生)が容易にできる溶液分析装置およびその再生方法,溶液分析方法を提供することにある。
【0022】
【課題を解決するための手段】
本発明は、前記課題の解決を図るために、請求項1記載の発明は、少なくとも作用電極,対電極,参照電極(例えば、Ag/AgCl参照電極),物質移動促進手段から構成され、被分析対象(例えば、鉛イオン等の電気化学的活性物質)を含んだ溶液中に前記の各電極を配置し、前記作用電極によって電着された被分析対象を前記溶液中に溶出しながら電位変化に対する電流変化を検出して、100nM以下レベルの被分析対象を分析することが可能な溶液分析装置において、前記作用電極は銅から成ることを特徴とする。
【0023】
請求項2記載の発明は、前記請求項1記載の発明において、作用電極の電位を電位ステップ(例えば、パルス波高が0mVよりも大きく50mV以下、パルス幅が0msよりも大きく15ms以下、パルス周期が0msよりも大きく100ms以下で電位ステップ)させながら正電位方向に掃引して、前記作用電極に電着された被分析対象を溶出することを特徴とする。
【0024】
請求項3記載の発明は、前記請求項1または2記載の発明において、作用電極の面積は、0.02cm2以上であることを特徴とする。
【0025】
請求項4記載の発明は、被分析対象(例えば、鉛イオン等の電気化学的活性物質)を含んだ溶液中に作用電極,対電極,参照電極を配置する工程と、物質移動促進雰囲気下を保ちながら前記作用電極の電位を負電位に設定することにより該作用電極表面に被分析対象を電着させる工程と、前記の作用電極の電位を正電位方向に掃引し、前記の電着した被分析対象を溶液中に溶出しながら、前記作用電極における電位変化に対する電流変化を検出する工程と、を有する溶液分析方法であって、前記作用電極には銅から成る電極を用いたことを特徴とする。
【0026】
請求項5記載の発明は、前記請求項4記載の発明において、電着させる工程の作用電極の電位は、溶液に含まれる被分析対象に応じて規定することを特徴とする。
【0027】
請求項6記載の発明は、前記請求項4または5記載の発明において、電流変化を検出する工程は、作用電極の電位を正電位まで掃引することを特徴とする。
【0028】
請求項7記載の発明は、前記請求項4乃至6記載の発明において、電着させる工程の前に、前記溶液の脱気を行う工程を有することを特徴とする。
【0029】
請求項8記載の発明は、前記請求項4乃至6記載の発明において、電流変化を検出する工程は、作用電極の電位は電位ステップ(パルス波高が0mVよりも大きく50mV以下、パルス幅が0msよりも大きく15ms以下、パルス周期が0msよりも大きく100ms以下で電位ステップ)させながら正電位方向に掃引することを特徴とする。
【0030】
請求項9記載の発明は、前記請求項4乃至8記載の発明において、被分析対象を含んだ溶液には、酢酸緩衝溶液を10mM以上添加することを特徴とする。
【0031】
請求項10記載の発明は、前記請求項4乃至9記載の発明において、被分析対象を含んだ溶液のpHは4.75以下であることを特徴とする。
【0032】
請求項11記載の発明は、前記請求項4乃至10記載の発明において、被分析対象を含んだ溶液には、前記の電流変化を検出する工程における作用電極の電気量が50×10-9C以上となるように、KCl溶液を添加することを特徴とする。
【0033】
請求項12記載の発明は、前記請求項4乃至11記載の発明において、被分析対象を含んだ溶液には、アスコルビン酸を添加(例えば、200μM添加)することを特徴とする。
【0034】
請求項13記載の発明は、少なくとも作用電極,対電極,参照電極,物質移動促進手段から構成され、被分析対象(例えば、鉛イオン等の電気化学的活性物質)を含んだ溶液中に前記の各電極を配置し、前記作用電極によって電着された被分析対象を前記溶液中に溶出(例えば、作用電極の電位を電位ステップさせながら正電位方向に掃引して溶出)しながら電位変化に対する電流変化を検出することが可能な溶液分析装置の再生方法において、前記の電着された被分析対象を溶液中に溶出する際の作用電極の電位を正電位まで掃引することにより、前記作用電極の再生を行うことを特徴とする。
【0035】
請求項14記載の発明は、前記請求項13記載の発明において、作用電極の再生は、前記溶液分析装置により分析を行う前に、作用電極に対して正電位を定電位印加し所定の時間保持することにより行うことを特徴とする。
【0036】
請求項15記載の発明は、前記請求項13または14記載の発明において、作用電極の再生は、作用電極に対して400mV未満(例えば、Ag/AgCl参照電極に対して400mV未満)の正電位を印加して行うことを特徴とする。
【0037】
【発明の実施の形態】
以下、本発明の実施の形態における溶液分析装置およびその再生方法,溶液分析方法を図面に基づいて説明する。
【0038】
本実施の形態では、作用電極,対電極,参照電極を構成し、極めて低濃度(例えば1nM〜100nMレベルの濃度)の被分析対象(鉛等の金属イオン)を含んだ溶液(例えば、上水)を分析するボルタンメトリーによる分析装置において、従来では適用する試みが殆どなされなかった電極、すなわち銅から成る電極(以下、銅電極と称する)を前記作用電極として適用する。この銅電極に対する被分析対象の電着は、必要に応じて溶液の脱気工程を行い、物質移動促進手段により前記溶液中の物質移動を促進させた状態(以下、物質移動促進雰囲気下と称する)を保ちながら銅電極の電位を所望の負電位(例えば、Ag/AgCl参照電極に対して−1.2〜−0.5V程度)に設定して行う。
【0039】
その後、前記銅電極の電位を所望のスイープ速度(例えば、Ag/AgCl参照電極に対して1mV/s〜100mV/s程度)で前記の負電位から正電位方向に掃引(例えば、銅電極が正電位になるまで掃引)して電着物質を溶出すると共に、前記銅電極の電位変化に対する電流変化を検出し、その電流変化を積分計算することにより得られる電気量を検量線と比較して(または、後述の第15実施例等のように被分析対象によるピーク値を読み取り)、前記被分析対象の分析を行う。
【0040】
前記銅電極の電位の掃引は正電位(例えば、Ag/AgCl参照電極に対して0〜150mV程度)に達するまで行い、その電位で所定の時間(例えば、Ag/AgCl参照電極に対して0〜30秒)保持し、銅電極表面が分子レベルで溶出し再生(研削,研磨,洗浄等が必要の無い再生)工程が行われる。
【0041】
なお、前記のように溶液分析装置により分析を行う前(例えば、所定期間使用されなかった分析装置により分析を行う前)に、銅電極に対して所定の大きさの正電位(例えば、Ag/AgCl参照電極に対して100〜200mV程度)を印加し所定の時間(例えば、5〜30秒)保持することにより、前記の再生工程を行っても良い。さらに、前記の銅電極における正電位方向に対する掃引を0Vまで行って分析を終了した後、その銅電極に対して所定の大きさの正電位(例えば、Ag/AgCl参照電極に対して100〜500mV程度)を印加し所定時間(例えば、5〜30秒)保持することにより、前記の再生工程を行っても良い。
【0042】
[実施例]
次に、銅電極を作用電極として用い図1の概略説明図(図24,図25と同様のものには同一符号等を用いて詳細な説明を省略)に示すような分析装置(北斗電工製のポテンシオスタット(電気化学測定システム−HZ3000)等を用いた分析装置)を構成して、以下に示す第1〜第18実施例により種々の金属イオンを含んだ溶液(上水を想定した溶液および実際の水道水)の分析を行った。
【0043】
なお、図1に示す分析装置において、作用電極2には直径1.6mmの銅電極、対電極3には螺旋状の白金電極、参照電極5にはAg/AgCl電極を用いた。また、HNO3でpH3に調整された0〜200nM鉛イオン含有の0.2MKCl溶液をN2ガスで15分間脱気処理して試料液1aを得、この試料液1aについて後述する第1実施例と同様の分析作業(電着は参照電極5に対する作用電極2の電位を−550mVに設定して10分間)を行って検量線(鉛イオン濃度に対する電気量特性)を求めたところ、その検量線は図2に示すように良好な直線性が得られ、極めて低濃度の被分析対象を高精度および高感度で分析できることを確認した。
【0044】
(第1実施例)
まず、HNO3でpH3に調整された50nM鉛イオン含有の0.2MKCl溶液を得た。そして、分析を行う直前に、前記の0.2MKCl溶液にNa2SO3(本実施例では、1lの0.2MKCl溶液に対して10mlの割合でNa2SO3)を加えることにより脱気処理して得た試料液(本実施例では、20mlの試料液)1aを図1の容器1(本実施例では30mlの容器)に入れ、その試料液1a中に作用電極2,対電極3,参照電極5が浸されるように封止部材1bで封止した。その後、スターラー7,撹拌子7aを介して物質移動促進雰囲気下を保ちながら、前記参照電極5に対する作用電極2の電位を−700mVに設定することにより、試料液1a中の鉛イオンの作用電極2表面に対する電着を1〜15分行った。
【0045】
そして、前記スターラー7,撹拌子7aを停止し、スイープ速度25mV/sで前記参照電極5に対する作用電極2の電位を−700mVから正電位方向にスイープすることにより、前記作用電極2表面の電着物質を試料液1a中に酸化溶出(アノードストリッピング)すると共に、その作用電極2の電位変化に対する電流変化を検出し、その検出結果を図3の電位変化に対する電流変化特性図に示した。
【0046】
図3に示す特性曲線から、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、前記試料液1a中に50nMの鉛イオンが含まれていたことを確認できた。
【0047】
また、作用電極2の正電位方向に対する掃引を150mVまで行った後、その作用電極2表面の状態を観察したところ、付着物等の残存が無く鏡面状態であったことを確認した。この理由として、前記のように作用電極2の電位を正電位まで掃引したことにより、その作用電極2の表面が分子レベルで溶出して再生(すなわち、作用電極2表面の平滑化,付着物等の除去)されたことが考えられる。
【0048】
さらに、試料液1a中の鉛イオンを電着させる際の作用電極2の電位を−500mVまたは−1.2Vに設定し、図3と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様に分析できると共に、その作用電極2が再生されることを確認できた。
【0049】
(第2実施例)
前記第1実施例の試料液に対し10μMの銅イオン(Cu2+)を加えて新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図4の電位変化に対する電流変化特性図に示した。
【0050】
図4に示す特性曲線から、鉛イオン,銅イオンの各ピーク電流(銅イオンによるピーク電流は図示省略)はそれぞれ異なる電位にて検出され、各金属イオンが互いに干渉(例えば、合金の形成)することなく分析できることを確認した。
【0051】
また、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、第1実施例と同様に試料液1a中に50nMの鉛イオンが含まれると共に、作用電極2表面が再生されたことを確認した。
【0052】
さらに、試料液1a中の各金属イオンを電着させる際の作用電極2の電位を−500mVまたは−1.2Vに設定し、図4と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様に分析できると共に、その作用電極2が再生されることを確認した。
【0053】
(第3実施例)
前記第2実施例の試料液に100nMのカドミウムイオン(Cd2+),5μMの鉄イオン(Fe2+)を加えて新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図5の電位変化に対する電流変化特性図に示した。
【0054】
図5に示す特性曲線から、鉛イオン,銅イオン,カドミウムイオン,鉄イオンの各ピーク電流(銅イオン,鉄イオンによるピーク電流は図示省略)はそれぞれ異なる電位にて検出され、各金属イオンが互いに干渉することなく分析できることを確認した。
【0055】
また、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、第1実施例と同様に試料液1a中に50nMの鉛イオンが含まれると共に、作用電極2表面が再生されたことを確認できた。
【0056】
さらに、試料液1a中の各金属イオンを電着させる際の作用電極2の電位を−1.2Vに設定し、図5と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様に分析できると共に、その作用電極2が再生されることを確認できた。さらにまた、前記の電着させる際の作用電極2の電位を−500mVに設定した場合においても、作用電極2の電位を−700mVに設定した場合と同様の結果が得られたが、その作用電極2の電位がカドミウムの電着電位よりも貴電位のため、カドミウムに関する検出はされなかった。
【0057】
(第4実施例)
前記第3実施例の試料液に10μMの亜鉛イオン(Zn2+)を加えて新たな試料液1aを得、その試料液1a中の各金属イオンを電着させる際の作用電極2の電位を−1.2Vに設定し、前記試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図6の電位変化に対する電流変化特性図に示した。
【0058】
図6に示す特性曲線から、鉛イオン,カドミウムイオン,亜鉛イオンの各ピーク電流(銅イオン,鉄イオンによるピーク電流は図示省略)がそれぞれ略同一の電位にて検出されたことを読み取れる。この理由として、作用電極2の電着物質を溶出させた際に、各金属イオンが互いに干渉したためと考えられる。ただし、前記の亜鉛イオン濃度が1μM以下であれば、分離検出できることを確認できた。
【0059】
そこで、試料液1a中の各金属イオンを電着させる際の作用電極2の電位を−700mVに設定し、前記試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図7の電位変化に対する電流変化特性図に示した。
【0060】
図7に示す特性曲線から、鉛イオン,銅イオン,カドミウムイオン,鉄イオン,亜鉛イオンの各ピーク電流(銅イオン,鉄イオン,亜鉛イオンによるピーク電流は図示省略)はそれぞれ異なる電位にて検出されたことを読み取れる。すなわち、被分析対象を作用電極に電着させる際の電位を、その被分析対象に応じて種々設定することにより、各金属イオンが互いに干渉することなく分析できることを確認した。
【0061】
また、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、第1実施例と同様に試料液1a中に50nMの鉛イオンが含まれると共に、作用電極2表面が再生されたことを確認できた。さらに、試料液1a中の各金属イオンを電着させる際の作用電極2の電位を−500mVに設定し、図5と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様の結果が得られることを確認した。
【0062】
(第5実施例)
一般的な水道水中には、その水道水の殺菌等の目的で塩素(例えば、1ppm程度の塩素)が混入されている。そこで本第5実施例では、溶液中の残留塩素の有無による溶液分析の影響を調べた。
【0063】
まず、HNO3でpH3に調整された50nM鉛イオン含有の0.1MKCl溶液を得、N2ガスで15分間の脱気処理を行って新たな試料液1aを得た。そして、前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図8の電位変化に対する電流変化特性図に示した。この図8に示す特性曲線から、鉛イオンによってピーク電流が生じた領域の電気量を算出したところ、108μCであった。
【0064】
次に、図8の分析で用いた試料液に対し、その試料液中の濃度が1ppmとなるように次亜塩素酸ナトリウムを加えて新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図9の電位変化に対する電流変化特性図に示した。この図9に示す特性曲線から、鉛イオンによってピーク電流が生じた領域の電気量を算出したところ、48μCであった。このことから、図1に示したような分析装置において、試料液中に残留塩素が混入されている場合、酸化溶出の際の電位変化に対する電流変化は残留塩素の影響を受けることを確認できた。
【0065】
ここで、図9の分析で用いた試料液に対し、その試料液中の濃度が200μMとなるようにアスコルビン酸を加えて新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出して、その検出結果を図10の電位変化に対する電流変化特性図に示した。この図10に示す特性曲線から、鉛イオンによってピーク電流が生じた領域の電気量を算出したところ、105μC(すなわち、図8の結果と同様)であった。
【0066】
従って、図1に示したように構成された分析装置において、被分析対象を含んだ溶液に対してアスコルビン酸を加えることにより、たとえ溶液中に残留塩素が混入されていても、その残留塩素の影響を受けることなく被分析対象の分析が可能であることを確認できた。
【0067】
なお、前記のようにアスコルビン酸を用いて溶液中の残留塩素による溶液分析の影響を回避する方法の他に、例えば残留塩素を有する溶液を大気中に所定時間放置し、その溶液中の塩素を大気中に放散させる方法があることを確認した(例えば、第6,第7実施例で用いた試料液1aは、大気中に所定時間放置して塩素を除去したもの)。
【0068】
(第6実施例)
3時間止水された鉛管中の水道水(鉛管から溶出された鉛イオンを含んだ水道水)を用い、その水道水に0.2MKCl溶液を加えて更にpH3に調整することにより新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出した。
【0069】
この検出結果の電位変化に対する電流変化特性(図示省略)から、試料1a中に含まれる各金属イオンがそれぞれ異なる電位にて検出された。また、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、前記試料液1a中に48nMの鉛イオンが含まれていたことを判明した。従って、被分析対象が水道水であっても、その水道水中の各金属イオンが互いに干渉することなく分析できることを確認した。
【0070】
また、作用電極2の正電位方向に対する掃引を150mVまで行った後、その作用電極2表面の状態を観察したところ、付着物等の残存が無く鏡面状態であったことを確認した。
【0071】
さらに、試料液1a中の鉛イオンを電着させる際の作用電極2の電位を−500mVまたは−1.2Vに設定し、図5と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様に分析できると共に、その作用電極2が再生できることを確認した。
【0072】
(第7実施例)
前記第6実施例の試料液に100nMの鉛イオンを含んだ鉛溶液を加えて新たな試料液1aを得、その試料液1aについて前記の第1実施例と同様の分析作業を行うことにより、作用電極2の電位変化に対する電流変化を検出した。
【0073】
この検出結果の電位変化に対する電流変化特性(図示省略)から、試料1a中に含まれる各金属イオンがそれぞれ異なる電位にて検出された。また、鉛イオンによってピーク電流が生じた領域の電気量を算出し図2の検量線と比較したところ、前記試料液1a中に148nMの鉛イオンが含まれていたことを判明した。すなわち、第6実施例で用いた水道水中には48nMの鉛イオンが含まれていたことを判明した。従って、被分析対象が種々の混合溶液(例えば、水道水と鉛溶液との混合溶液)であっても、その混合溶液中の各金属イオンが互いに干渉することなく分析できることを確認した。
【0074】
また、作用電極2の正電位方向に対する掃引を150mVまで行った後、その作用電極2表面の状態を観察したところ、付着物等の残存が無く鏡面状態であったことを確認した。
【0075】
さらに、試料液1a中の鉛イオンを電着させる際の作用電極2の電位を−500mVまたは−1.2Vに設定し、図5と同様の電位変化に対する電流変化特性を調べたところ、作用電極2の電位を−700mVに設定した場合と同様に分析できると共に、その作用電極2が再生されることを確認した。
【0076】
(第8実施例)
一般的なボルタンメトリーにおいては、試料液のpHを調整(酸性条件で一定に保つための調整)するための溶液(以下、pH調整液と称する)として、HNO3やHCl等が用いられている。しかし、HNO3やHCl等の溶液は物性的に危険性を有するため安全性を考慮して取り扱う必要があり、例えば図1に示したように構成された分析装置を被分析地域に搬送し、その現場にて水道水中の金属イオンを分析する場合には、作業性の低下により試料液のpH値を常に一定にすることが困難となり、分析精度の低下を招いてしてしまう。
【0077】
そこで、本第8実施例では、pH調整液として安全で取り扱いが容易な酢酸緩衝溶液を用いることを試みた。まず、pH4.5に調整された0.1Mの酢酸緩衝溶液を、神奈川県の厚木市内で採取した水道水に対して0〜50mMとなるように添加し、その水道水中の酢酸緩衝溶液の濃度に対するpH変化を調べた。その結果、図11の特性図に示すように、約10mM以上となるように酢酸緩衝溶液が添加された水道水のpHは一定(pH4.5)になることを読み取れる。
【0078】
すなわち、pH調整液として約10mM以上の酢酸緩衝液を用いることにより、図1に示したような分析装置において良好(HNO3やHCl等を用いた場合と比較して良好)な作業性および分析精度が維持されることを確認できた。
【0079】
(第9実施例)
10mM酢酸緩衝溶液でpH4.5に調整された50nM鉛イオン含有の水溶液に対し、支持電解質として0〜200mMのKCl溶液を加え、N2ガスで15分間の脱気処理を行って新たな種々の試料液1aを得た。そして、第1実施例と同様に前記の各試料液1aをそれぞれ容器1に入れ、試料液1a中に作用電極(直径1.6mm(電極面積0.02cm2))2,対電極3,参照電極5を浸して封止し、スターラー7,撹拌子7aにより物質移動促進雰囲気下を保ちながら前記参照電極5に対する作用電極2の電位を−550mVに設定し、各試料液1a中の鉛イオンの作用電極2表面に対する電着をそれぞれ3分間行った。
【0080】
その後(スターラー7,撹拌子7aを停止した後)、スイープ速度25mV/sで前記参照電極5に対する作用電極2の電位を−550mVから0Vにスイープすることにより、前記作用電極2表面の電着物質を各試料液1a中に酸化溶出すると共に、その作用電極2の電位変化に対する電流変化をそれぞれ検出した。この各電流変化において、鉛イオンによってピーク電流が生じた領域の電気量をそれぞれ算出し、その計算結果を図12のKCl溶液の濃度に対する電気量特性図に示した。なお、本第9実施例では、電気量の目標値を50×10-9C以上に設定した。
【0081】
図12に示す特性曲線から、KCl溶液の濃度が約3〜100mMの範囲内において十分な電気量(50×10-9C以上)が得られ、特にKCl溶液の濃度が約10〜50mMの範囲内において良好な電気量が得られたことを読み取れる。
【0082】
すなわち、酢酸緩衝溶液によりpH調整された試料液に対し支持電解質としてKClを所定量(例えば、約10〜50mM)添加することにより、図1に示したように構成された分析装置において十分な電気量が得られ、たとえ被分析対象が低濃度であっても高い感度で分析できることを確認できた。
【0083】
(第10実施例)
前記第9実施例で40mMのKCl溶液が加えられた試料液1aを用いた場合において、参照電極5に対する作用電極2の電位を0〜450mVの範囲で10秒間保持して該作用電極2表面を再生すると共に、その各電位(以下、再生電位と称する)で再生を行う毎にそれぞれ試料液1aについて第9実施例と同様の分析作業を行い、作用電極2の電位変化に対する電流変化を検出し電気量をそれぞれ算出した。その算出結果を図13の再生電位に対する電気量特性図に示したところ、再生電位の上昇に連れて電気量が増加することを確認できた。
【0084】
そこで、10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液に対し、鉛イオン濃度が100nMとなるように鉛溶液を加え脱気処理(第9実施例と同様に脱気処理)して新たな試料液1aを得、その試料液1aについて第9実施例と同様の分析作業を繰り返し行い、それぞれ作用電極2の電位変化に対する電流変化を検出して各電気量を算出すると共に、その各分析作業毎に参照電極5に対する作用電極2の電位を400mVまたは300mVで10秒間保持して該作用電極2表面を再生した。その各結果をそれぞれ図14,図15の分析作業回数(すなわち、再生回数)に対する電気量特性図に示した。
【0085】
図14の特性曲線に示すように、400mVの再生電位で再生した場合には、分析作業を行う毎に電気量が順次増加し、分析の再現性が低いことを読み取れる。この理由として、前記の再生毎に作用電極2表面が活性化されると共に表面の租度が増大(電極面積が増大)することが考えられる。
【0086】
一方、図15の特性曲線に示すように、300mVの再生電位で再生した場合には、たとえ分析作業を繰り返し行っても電気量は増加せず、分析の再現性が維持されることを読み取れる。
【0087】
すなわち、前記再生電位を調整(例えば、約0〜300mVの範囲内で調整)することにより、分析作業や再生工程を繰り返し行っても前記のような作用電極2表面の活性化や表面粗度の増大を防止でき、十分良好な電気量が得られると共に分析の再現性を維持できることが確認できた。
【0088】
(第11実施例)
40mMのKCl溶液に対し鉛イオン濃度が50nMとなるように鉛溶液を加え、さらにpH3.75〜5.0となるように10mMの酢酸緩衝溶液を加え脱気処理(第9実施例と同様に脱気処理)して新たに種々の試料液1aを得た。これら各試料液1aについて、第9実施例と同様の分析作業を行い作用電極2の電位変化に対する電流変化をそれぞれ検出して各電気量を算出し、その結果を図16の試料液のpHに対する電気量特性図(鉛イオン濃度50nMの場合の図)に示した。なお、作用電極2の再生は、再生電位を300mVに設定して行った。
【0089】
図16に示す特性曲線から、試料液1aのpHが約4.75を超えるように酢酸緩衝溶液を用いると、電気量が減少してしまうことを読み取れる。一方、pHが約4.75以下となるように酢酸緩衝溶液を用いた場合には、電気量を一定にできることが読み取れる。
【0090】
すなわち、試料液のpHが約4.75以下となるように酢酸緩衝溶液を用いる(例えば、pH4.75以下の酢酸緩衝溶液を10mM以上用いる)ことにより、十分良好な電気量が得られることを確認できた。
【0091】
(第12実施例)
10mMの酢酸緩衝溶液によりpH4.5に調整された40mMのKCl溶液に対し、鉛イオン濃度が0〜200nMとなるように鉛溶液を加え脱気処理(第9実施例と同様に脱気処理)して新たに種々の試料液1aを得た。そして、前記の各試料液1aについて、第9実施例と同様の分析作業を行って作用電極2の電位変化に対する電流変化をそれぞれ検出し、それら各検出結果から電気量を算出することにより検量線(鉛イオン濃度に対する電気量特性)を求めた。なお、作用電極2の再生は、再生電位を300mVに設定して行った。
【0092】
図17に示すように、前記の検量線は良好な直線性を有することを読み取れ、たとえ被分析対象が低濃度であっても高精度および高感度で分析できることを確認できた。
【0093】
(第13実施例)
神奈川県の厚木市内で採取した水道水(鉄管内の水道水)に対し10mM酢酸緩衝溶液,40mMKCl溶液を加えると共に第5実施例と同様にアスコルビン酸を加え、脱気処理(第9実施例と同様に脱気処理)して新たな試料液1aを得、この試料液1aについて第9実施例と同様の分析作業を行い作用電極2の電位変化に対する電流変化を検出したところ、前記の試料液1a中には鉛イオンが含まれていなかったことを確認できた。
【0094】
そこで、前記の試料液1aに対して、鉛イオン濃度が0〜200nMとなるように鉛溶液を加え、第12実施例と同様の分析作業を行って作用電極2の電位変化に対する電流変化を検出および各電気量を算出することにより、検量線(鉛イオン濃度に対する電気量特性)を求め図18に示した。
【0095】
図18に示すように、良好な直線性を有する検量線が得られたことを読み取れ、たとえ水道水中の被分析対象が低濃度であっても高精度および高感度で分析できることを確認できた。
【0096】
また、神奈川県の座間市内,東京都の日野市内で採取した水道水(鉄管内の水道水)について、前記厚木市内の水道水を用いた場合と同様の分析を行ったところ、各水道水中には鉛イオンが含まれておらず、図18に示すように良好な直線性を有する検量線が得られたことを確認した。
【0097】
(第14実施例)
種々の時間で止水された鉛管(新品の鉛管)中の水道水(鉛管から溶出された鉛イオンを含んだ水道水)を採取し、それら各水道水に対し10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液を加えると共に第5実施例と同様にアスコルビン酸を加え、脱気処理(第9実施例と同様に脱気処理)して新たに種々の試料液1aを得た。そして、前記の各試料液1aについて、第9実施例と同様の分析作業およびICP発光分光分析法により鉛イオン濃度をそれぞれ分析し、それら各分析結果を図19の相関特性図に示した。
【0098】
図19に示す結果から、第9実施例と同様のボルタンメトリーによる分析方法によれば、たとえ水道水等の溶液中の被分析対象が低濃度であっても、ICP発光分光分析法と同等(相関係数R2=0.983)の感度および精度で容易に分析することが可能であることを確認できた。また、第9実施例以外の本発明においても、同様の結果が得られることを確認した。
【0099】
(第15実施例)
例えば図1に示したように構成された分析装置を被分析地域に搬送し、その現場にて水道水中の金属イオンを分析する場合には、作業工程の簡略化や分析装置を小型化することが好ましい。そこで、本第15実施例では、脱気処理を省略した分析方法の検討を行った。
【0100】
まず、10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液に対し、鉛イオン濃度が50nMとなるように鉛溶液を加えて新たな試料液1aを得た。そして、第1実施例と同様に前記の試料液1aを容器1に入れ、試料液1a中に作用電極2,対電極3,参照電極5を浸して封止し、スターラー7,撹拌子7aにより物質移動促進雰囲気下を保ちながら前記参照電極5に対する作用電極2の電位を−550mVに設定し、各試料液1a中の鉛イオンの作用電極2表面に対する電着をそれぞれ3分間行った。
【0101】
その後(スターラー7,撹拌子7aを停止した後)、ディファレンシャルパルス・アノードストリッピング・ボルタンメトリー分析方法(以下、DPASVと称する)により、スイープ速度20mV/s,パルス波高(パルス振幅)50mV,パルス幅15ms,パルス周期100msで前記参照電極5に対する作用電極2の電位を電位ステップさせながら−550mVから0Vにスイープすることにより、前記作用電極2表面の電着物質を試料液1a中に酸化溶出すると共に、その作用電極2の電位変化に対する電流変化を検出し、その検出結果を図20の電位変化に対する電流変化特性図に示した。
【0102】
図20に示す特性曲線の鉛イオンに相当するピーク値(ピーク高さ)から、前記試料液中に50nMの鉛イオンが含まれていることを読み取れる。DPASVを適用した分析で溶存酸素が影響しない理由は、電着物質を酸化溶出する際に作用電極の電位が電位ステップ(パルス状)してスイープされることから、各電位ステップにおいて試料液中の溶存酸素が反応開始する前に酸化溶出による電流値を検出できるためと考えられる。
【0103】
なお、本第15実施例では、前記DPASVの条件において、パルス波高が0mVよりも大きく50mV以下、パルス幅が0msよりも大きく15ms以下、パルス周期が0msよりも大きく100ms以下であれば、脱気処理を行うことなく溶液中の被分析対象の分析が可能であることを確認した。
【0104】
従って、図1に示したように構成された分析装置においてDPASV(溶存酸素の反応による影響を受けないようにパルス条件を設定したDPASV)を適用することにより、脱気処理を行うことなく、溶液中の被分析対象の分析が可能であることを確認できた。
【0105】
(第16実施例)
10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液に対し、鉛イオン濃度が0〜100nMとなるように鉛溶液を加えて新たな試料液1aを得、その試料液1aについて第15実施例と同様の分析作業を行って作用電極2の電位変化に対する電流変化をそれぞれ検出し、それら各電流変化の鉛イオンによるピーク値から検量線(鉛イオン濃度に対するピーク値特性)を求め図21に示した。なお、作用電極2の再生は、再生電位を300mVに設定して行った。
【0106】
図21に示すように、良好な直線性を有する検量線が得られたことを読み取れ、たとえ脱気処理を行わなくとも溶液中の低濃度の被分析対象を高精度および高感度で分析できることを確認できた。
【0107】
また、神奈川県の厚木市内,座間市内,東京都の日野市内で採取した水道水(鉄管内の水道水)について、第15実施例と同様の分析を行ったところ、各水道水中には鉛イオンが含まれていないことをまず確認した。そこで、これらの水道水に対し10nM〜100nMの鉛を標準添加(および、第5実施例と同様にアスコルビン酸を加え)、第15実施例と同様の分析を行ったところ、図21と同様に良好な直線性を有する検量線が得られたことを確認した。
【0108】
(第17実施例)
一般的なリニアスイープボルタンメトリーにおいて作用電極の電極面積を大きくした場合、大きくなるに連れて残余電流が生じるため、分析精度は必ずしも向上しない。そこで、本第17実施例では、まず、10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液に対し、鉛イオン濃度が100nMとなるように鉛溶液を加えて新たな試料液1aを得た。そして、前記の試料液1aについて、前記の第15実施例と同様の分析作業で作用電極2の電極面積を0.02〜0.2cm2の範囲内で変化させながら、その各作用電極2の電位変化に対する電流変化をそれぞれ検出して、それら各電流変化の鉛イオンによるピーク値を算出し、その算出結果を図22の電極面積に対するピーク値特性図に示した。
【0109】
図22に示すように、作用電極2の電極面積とピーク値とは比例関係を有することが読み取れる。従って、図1に示したように構成された分析装置においてDPASVを適用することにより、作用電極の残余電流による影響を受けることなく、電極面積を大きくして分析感度を向上(すなわち、低濃度の被分析対象を分析)できることを確認した。
【0110】
(第18実施例)
10mMの酢酸緩衝溶液(pH4.5)と40mMのKCl溶液との混合液に対し、鉛イオン濃度が5nMとなるように鉛溶液を加えて新たな試料液(20mlの試料液)1aを得、その試料液1aについて第17実施例と同様の分析作業を行って作用電極2の電位変化に対する電流変化をそれぞれ検出し、それら各電流変化の鉛イオンによるピーク値を算出して、その算出結果を図23の電極面積に対するピーク値特性図に示した。
【0111】
図23に示す結果から、たとえ溶液中の被分析対象が極めて低濃度であっても、作用電極2の電極面積とピーク値とは比例関係を有し、電極面積の増加と共に分析感度が上昇することを読み取れる。なお、前記の電極面積が0.02cm2よりも小さい場合には、該作用電極2表面において気泡等の付着物が観察され、分析の再現性に影響を及ぼす傾向があることを確認した。
【0112】
従って、被分析対象の濃度に応じて電極面積を調整(例えば、5nMの鉛イオンを分析する場合には0.02cm2以上に調整)することにより、分析の再現性を維持できると共に、たとえ脱気処理を行わなくとも溶液中の低濃度の被分析対象を高精度および高感度で分析できることを確認できた。
【0113】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
【0114】
例えば、本実施の形態では被分析対象を含んだ試料液を所定の容器に入れ、スターラー等により物質移動促進雰囲気下を保ちながら分析を行ったが、例えばフローインジェクション分析装置における検出器の作用電極として銅電極を適用した場合には、検出器内に一定流量の試料液を供給するという物質移動促進手段(例えば、ポンプ等)を有するため、前記のスターラー等を用いなくとも物質移動促進雰囲気下を保つことができる。
【0115】
また、各実施例では銅を用いて円柱状の作用電極を構成したが、銅を用いて構成された回転電極を適用した場合には、その回転電極の回転により銅電極表面に層流が形成されるため(すなわち、回転電極自体が物質移動促進手段の機能を有するため)、前記のスターラー等を用いなくとも物質移動促進雰囲気下を保つことができる。
【0116】
さらに、少なくとも作用電極,対電極,参照電極,物質移動促進手段から構成され、被分析対象を含んだ溶液中に前記の各電極を配置し、前記作用電極によって電着された被分析対象を前記溶液中に溶出しながら電位変化に対する電流変化を検出することが可能な溶液分析装置であれば、本実施の形態のように電着された被分析対象を溶液中に溶出する際の作用電極の電位を正電位まで掃引したり、分析を行う前に作用電極に対して正電位を印加することにより、前記の作用電極の再生を行うことが可能である。
【0117】
さらにまた、予め銅電極表面を凹凸状にしたり粒子状にしたり等の活性表面化するすることによっても、さらに十分な測定が可能となる。
【0118】
加えて、各実施例では図1に示したような構成の分析装置の参照電極としてAg/AgCl電極を用いたが、そのAg/AgCl電極の替わりに例えば飽和カロメル電極を用い、分析条件(例えば、スイープする際の参照電極に対する作用電極の電位)を適宜設定した場合においても、各実施例と同様の作用効果が得られる。
【0119】
【発明の効果】
以上示したように本発明によれば、溶液中の被分析対象の濃度が極めて低い場合(例えば、上水中に含まれた50nM以下の鉛イオン)についても、マスキングを行うことなく例えば水銀電極を用いた場合と同様に高精度および高感度で容易に分析することが可能であると共に、水銀電極を用いた場合のように環境汚染を引き起こすことが無い。また、作用電極の電位調整により、その作用電極の表面が分子レベルで溶出するため、容易に(研削,研磨,洗浄等を行うことなく)作用電極の再生が可能となり、分析の再現性を維持できる。
【0120】
さらに、作用電極の電位を正電位方向へ掃引する際に該電位を電位ステップさせた場合には、脱気処理を行う必要がないため、作業工程の簡略化や分析装置を小型化することが可能となる。さらにまた、残余電流による影響の防止および分析の再現性の維持を図ることが可能となる。
【図面の簡単な説明】
【図1】本実施例における溶液分析装置の概略説明図。
【図2】本実施例における溶液分析装置による鉛イオンの検量線。
【図3】第1実施例における電位変化に対する電流変化特性図。
【図4】第2実施例における電位変化に対する電流変化特性図。
【図5】第3実施例における電位変化に対する電流変化特性図。
【図6】第4実施例における電位変化に対する電流変化特性図(電着電位−1.2V)。
【図7】第4実施例における電位変化に対する電流変化特性図(電着電位−700mV)。
【図8】第5実施例における電位変化に対する電流変化特性図(次亜塩素酸ナトリウムを加える前)。
【図9】第5実施例における電位変化に対する電流変化特性図(次亜塩素酸ナトリウムを加えた後)。
【図10】第5実施例における電位変化に対する電流変化特性図(アスコルビン酸を加えた後)。
【図11】第8実施例における酢酸緩衝溶液濃度に対する水道水のpH特性図。
【図12】第9実施例におけるKCl溶液濃度に対する電気量特性図。
【図13】第10実施例における再生電位に対する電気量特性図(再生電位0〜450mV)。
【図14】第10実施例における分析作業回数に対する電気量特性図(再生電位400mV)。
【図15】第10実施例における分析作業回数に対する電気量特性図(再生電位300mV)。
【図16】第11実施例における試料液1aのpHに対する電気量特性図。
【図17】第12実施例における鉛イオン濃度に対する電気量特性図。
【図18】第13実施例における鉛イオン濃度に対する電気量特性図。
【図19】第14実施例におけるボルタンメトリーによる分析方法(本発明)とICP発光分光分析法との相関特性図。
【図20】第15実施例における電位変化に対する電流変化特性図(DPASV)。
【図21】第16実施例における鉛イオン濃度に対するピーク値特性図。
【図22】第17実施例における電極面積に対するピーク値特性図。
【図23】第18実施例における電極面積に対するピーク値特性図。
【図24】一般的に知られている固体電極を用いたボルタンメトリーによる溶液分析装置の一例を示す概略説明図。
【図25】一般的に知られている水銀電極を用いたボルタンメトリーによる溶液分析装置の一例を示す概略説明図。
【符号の説明】
1…容器
2…作用電極
3…対電極
4…ポテンシオスタット
5…参照電極
6…供給管
7…スターラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solution analyzer that can be quantitatively analyzed by voltammetry comprising a working electrode, a counter electrode, and a reference electrode, a regeneration method thereof, and a solution analysis method. The present invention relates to an apparatus and a method capable of analyzing an analysis object.
[0002]
[Prior art]
At present, survey results have been announced that lead pipes are used in approximately 77% of the water supply companies with a water supply population of 50,000 or more (approximately 35.8 million units).
[0003]
Lead is pointed out to have a great influence on human health, for example, and its water quality standard is to be strengthened from the current 0.05 mg / l to 0.01 mg / l in 2003. In addition, as a use type of the lead pipe, the one using the tap from the distribution pipe branch point on the public road to the tap side of the tap water consumer side (hereinafter simply referred to as residential land), or the distribution pipe branch point on the public road There are various types of use, such as those used from around the meter in the residential area, or those used only around the meter.
[0004]
Therefore, the Waterworks Bureau is actively working on water leakage prevention measures as one of the most important measures as part of the effective use of water resources, but more than 95% of water leakage is in the residential land that is the property of customers. Most of the water is leaked from the lead pipe. For this reason, as countermeasures against lead elution from lead water pipes and water leakage prevention, material improvement work has been implemented to replace the lead water pipes up to the water meter in the residential area with stainless steel pipes or vinyl chloride pipes, preventing the occurrence of water leakage. Strive to maintain health.
[0005]
On the other hand, with the strengthening of the water quality standard, research and development of a method capable of measuring low-concentration lead (for example, lead eluted from the inner surface of a lead pipe in still water) has been performed. Generally, flame atomic absorption method, flameless atomic absorption method, ICP emission spectroscopic analysis method (for example, ultrasonic nebulizer) and the like are applied to measure low concentration lead in drinking water. However, each of the above methods is not generally handled because the apparatus used is large and expensive, and requires technical skill in the operation of the apparatus.
[0006]
In addition, as a method of electrochemically analyzing a metal (electrochemically active substance) in a solution, a method of quantitative analysis by voltammetry is generally applied, and for example, a platinum electrode, a gold electrode, A carbon electrode, a solid electrode made of an inert metal such as silver, or an electrode using a mercury drop (hereinafter referred to as a mercury electrode) is used.
[0007]
FIG. 24 is a schematic explanatory view showing an example of a solution analyzer by voltammetry using a generally known solid electrode. In FIG. 24, reference numeral 1 denotes a measurement container. The measurement container 1 contains a sample solution 1a containing metal ions to be analyzed and is sealed by a sealing member 1b. Reference numeral 2 indicates a working electrode (for example, a solid electrode such as a platinum electrode, a gold electrode, a carbon electrode, or an electrode coated with a thin film such as silver), and reference numeral 3 indicates a counter electrode (for example, an electrode made of platinum or carbon). The working electrode 2 and the counter electrode 3 are provided so as to be immersed in the sample liquid 1a in the measurement container 1 with a certain distance therebetween.
[0008]
Reference numeral 4 denotes a potentiostat, and the working electrode 2 and the counter electrode 3 are connected to the potentiostat 4 via respective wirings 2a and 3a. The potentiostat 4 is connected to a potential sweeper 4a, a recorder 4b, etc. as necessary. Reference numeral 5 denotes a reference electrode (a reference electrode; for example, a saturated calomel electrode or an Ag / AgCl electrode), which is electrically connected to the working electrode 2 via a capillary 5a and is wired. It is connected to the potentiostat 4 through 5b.
[0009]
Reference numeral 6 denotes nitrogen gas (N 2 ) In the vicinity of the counter electrode 3 and a supply pipe for removing dissolved oxygen in the sample liquid 1a. Reference numeral 7 denotes a stirrer, and the stirrer 7 a located at the bottom of the measurement container 1 is operated by the stirrer 7 to stir the sample liquid 1 a in the measurement container 1. In the electrochemical analysis method, when a very low concentration substance is analyzed, an anode (or cathode) stripping voltammetry method is generally applied.
[0010]
Next, a metal analysis method using the analyzer shown in FIG. 24 will be described. First, with respect to the sample solution 1a in advance, masking (addition of a desired masking agent) to prevent each metal ion in the sample solution 1a from interfering with each other and affecting the analysis, pH adjustment by adding a buffer solution, The dissolved oxygen is removed (deaeration process).
[0011]
Thereafter, in order to promote the movement of the substance to be analyzed to the surface of the working electrode 2, the sample liquid 1a is stirred (turbulent) through the stirrer 7 and the stirrer 7a to move the substance in the sample liquid 1a (electrochemistry). The potential of the working electrode 2 is set to a desired negative potential (potential lower than the natural electrode potential) by the potentiostat 4 while promoting the mass transfer of the active substance, and each metal ion in the sample solution 1a is Electrodeposition is performed on the surface of the working electrode 2 to form an electrodeposited substance (reduction concentration). Thereafter, the potentiostat 4 sweeps the potential of the working electrode 2 in the positive potential direction to oxidize and elute the electrodeposition substance into the sample solution 1a (anode stripping).
[0012]
Since each metal in the electrodeposition material is eluted at a predetermined oxidation potential, when each metal is eluted in the sample solution 1a, a current change (peak to potential) with respect to a potential change of the working electrode 2 occurs. Current) at a desired scanning speed. Then, the amount of electricity (coulomb amount) obtained by integral calculation of the current change is compared with a calibration curve, and the sample solution 1a can be analyzed (analysis of each metal ion concentration).
[0013]
FIG. 25 is a schematic explanatory view showing an example of a solution analyzer by voltammetry using a generally known mercury electrode. Components similar to those shown in FIG. 24 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 25, reference numeral 8 indicates a working electrode (mercury electrode) using a mercury drop, and reference numeral 9 indicates a mercury pool.
[0014]
In the apparatus shown in FIG. 25, the working electrode 8 is set to a desired negative potential without masking or promoting mass transfer, and metal ions in the sample liquid 1a are reduced on the surface of the working electrode 8, The working electrode 8 is amalgamated. Thereafter, the potential of the amalgamated working electrode 8 is swept in the positive potential direction to oxidize and elute, and a quantitative analysis is performed by measuring the current with respect to the potential change. However, when the reduction potential is close, for example, Cd and In, Cd or Pb and Tl may interfere with each other. The former can be improved by using a mercury thin film electrode, while the latter requires the addition of a masking agent such as EDTA.
[0015]
According to the analyzer using the mercury electrode as shown in FIG. 25, since there is no need to perform masking and a wide potential window is provided, means for accelerating mass transfer such as a stirrer for the solution containing the analyte (hereinafter referred to as substance) The analysis can be performed in a stationary state without using a movement promoting means, and the concentration of the analyte (for example, the concentration of lead in tap water) cannot be analyzed by an analyzer using a solid electrode such as a carbon electrode. Even at the level, the object to be analyzed can be easily measured with high sensitivity and high accuracy. In addition, when a solid electrode is used, the working electrode surface becomes rough due to damage, etc. or deposits remain after each analysis, so that the working electrode surface is ground, polished, washed, etc. for each analysis (hereinafter referred to as “regeneration”). However, when a mercury electrode is used, the above operation is not necessary.
[0016]
For this reason, when analyzing a solution with a very low concentration of the analyte (for example, clean water containing lead with a low concentration (less than 100 nM)), an analyzer configured with a mercury electrode is used. It was.
[0017]
As a method for analyzing a solution having an analyte concentration of about 900 nM to 3000 nM, NaN was added to the sample solution in an analyzer as shown in FIG. 2 SO Four , HCl is added, and a method using an electrode made of copper as a working electrode has been reported (for example, see Non-Patent Document 1).
[0018]
[Non-Patent Document 1]
Daniel F. -Tibbets (Daniel F. Tibbetts), James Davis, Richard G.・ Compton (Richard G. Compton), “Sonoelectroanalytical Detection of Red at a Bear Copper Electrode”, (Germany) Fresenius' Journal Analytical Chemistry, Springer-Verlag, 2000, 368, p. 412-414.
[0019]
[Problems to be solved by the invention]
As described above, when a mercury electrode is used as the working electrode, there is a problem that the metal remains as an impurity in the mercury thin film due to amalgamation, and the reliability of the mercury electrode after analysis is lowered. Therefore, when analyzing using the mercury electrode repeatedly, it takes time to process impurities remaining in the mercury electrode for each analysis, and when using a new mercury electrode for each analysis, The cost required for analysis increases.
[0020]
Further, since mercury is extremely toxic and causes environmental pollution, problems have arisen in the treatment of mercury electrodes that can no longer be used.
[0021]
The present invention has been made on the basis of the above-mentioned problems, and can analyze an analyte to be analyzed at a very low concentration (for example, a concentration of about 1 nM to 100 nM) with high sensitivity and high accuracy without causing problems such as environmental pollution. An object of the present invention is to provide a solution analysis apparatus that can be easily analyzed and that can easily regenerate the apparatus after the analysis (regeneration of the working electrode), a regeneration method thereof, and a solution analysis method.
[0022]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention comprises at least a working electrode, a counter electrode, a reference electrode (for example, an Ag / AgCl reference electrode), and a mass transfer promoting means. Each of the electrodes is placed in a solution containing a target (for example, an electrochemically active substance such as lead ion), and an analyte to be analyzed electrodeposited by the working electrode is eluted in the solution to respond to potential changes. In the solution analyzer capable of detecting a change in current and analyzing an object to be analyzed of a level of 100 nM or less, the working electrode is made of copper.
[0023]
According to a second aspect of the present invention, in the first aspect of the present invention, the potential of the working electrode is set to a potential step (for example, the pulse height is greater than 0 mV and less than 50 mV, the pulse width is greater than 0 ms and less than 15 ms, and the pulse period is Sweeping in the positive potential direction while making the potential step greater than 0 ms and 100 ms or less) elutes the analyte electrodeposited on the working electrode.
[0024]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the area of the working electrode is 0.02 cm. 2 It is the above.
[0025]
The invention according to claim 4 includes a step of disposing a working electrode, a counter electrode, and a reference electrode in a solution containing an object to be analyzed (for example, an electrochemically active substance such as lead ion), and a mass transfer promoting atmosphere. Maintaining the potential of the working electrode to a negative potential while maintaining the electrode to be analyzed on the surface of the working electrode, and sweeping the potential of the working electrode in the positive potential direction, And a step of detecting a current change with respect to a potential change at the working electrode while eluting the analysis object in the solution, wherein the working electrode is an electrode made of copper. To do.
[0026]
A fifth aspect of the invention is characterized in that, in the fourth aspect of the invention, the potential of the working electrode in the step of electrodeposition is defined according to the analyte to be analyzed contained in the solution.
[0027]
According to a sixth aspect of the invention, in the invention of the fourth or fifth aspect, the step of detecting a change in current sweeps the potential of the working electrode to a positive potential.
[0028]
The invention described in claim 7 is characterized in that, in the invention described in any one of claims 4 to 6, a step of degassing the solution is provided before the step of electrodeposition.
[0029]
The invention according to claim 8 is the invention according to any one of claims 4 to 6, wherein the step of detecting a change in current is performed by measuring the potential of the working electrode by a potential step (pulse height is greater than 0 mV but less than 50 mV, and pulse width is less than 0 ms. The voltage is swept in the positive potential direction while being stepped at a potential of 15 ms or less and a pulse period of greater than 0 ms and 100 ms or less.
[0030]
The invention according to claim 9 is the invention according to any one of claims 4 to 8, characterized in that 10 mM or more of an acetate buffer solution is added to the solution containing the analyte.
[0031]
A tenth aspect of the present invention is characterized in that, in the fourth to ninth aspects of the present invention, the pH of the solution containing the analyte is 4.75 or less.
[0032]
The invention according to claim 11 is the invention according to any one of claims 4 to 10, wherein the solution containing the analyte has an electric quantity of the working electrode in the step of detecting the current change of 50 × 10 5. -9 A KCl solution is added so as to be C or more.
[0033]
A twelfth aspect of the invention is characterized in that in the inventions of the fourth to eleventh aspects, ascorbic acid is added (for example, 200 μM added) to the solution containing the analyte.
[0034]
The invention according to claim 13 is composed of at least a working electrode, a counter electrode, a reference electrode, and a mass transfer promoting means, and the above-described solution is contained in a solution containing an analyte (for example, an electrochemically active substance such as lead ion). A current corresponding to a potential change while arranging each electrode and eluting the analyte electrodeposited by the working electrode into the solution (for example, elution by sweeping the potential of the working electrode in the positive potential direction while stepping the potential) In the method for regenerating a solution analyzer capable of detecting a change, the potential of the working electrode when the electrodeposited analyte is eluted into the solution is swept up to a positive potential. It is characterized by performing reproduction.
[0035]
According to a fourteenth aspect of the present invention, in the invention of the thirteenth aspect, the working electrode is regenerated by applying a positive potential to the working electrode at a constant potential and carrying out a predetermined time before performing the analysis by the solution analyzer. It is characterized by performing by doing.
[0036]
According to a fifteenth aspect of the invention, in the invention of the thirteenth or fourteenth aspect, the regeneration of the working electrode has a positive potential of less than 400 mV with respect to the working electrode (for example, less than 400 mV with respect to the Ag / AgCl reference electrode). It is characterized by being applied.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a solution analyzer, a regeneration method thereof, and a solution analysis method according to embodiments of the present invention will be described with reference to the drawings.
[0038]
In the present embodiment, a working electrode, a counter electrode, and a reference electrode are configured, and a solution (for example, tap water) containing an analysis target (metal ion such as lead) having an extremely low concentration (for example, a concentration of 1 nM to 100 nM level). In the voltammetric analyzer for analyzing the above), an electrode that has hardly been tried before, that is, an electrode made of copper (hereinafter referred to as a copper electrode) is applied as the working electrode. The electrodeposition of the object to be analyzed on the copper electrode is a state in which a solution degassing step is performed as necessary, and mass transfer in the solution is promoted by mass transfer promoting means (hereinafter referred to as a mass transfer promoting atmosphere). ) And the potential of the copper electrode is set to a desired negative potential (for example, about −1.2 to −0.5 V with respect to the Ag / AgCl reference electrode).
[0039]
Thereafter, the potential of the copper electrode is swept in the positive potential direction from the negative potential at a desired sweep rate (for example, about 1 mV / s to 100 mV / s with respect to the Ag / AgCl reference electrode). The electrodeposition substance is eluted by sweeping to a potential), and a current change with respect to the potential change of the copper electrode is detected, and an electric quantity obtained by integrating the current change is compared with a calibration curve ( Alternatively, the peak value of the object to be analyzed is read as in the fifteenth example described later), and the object to be analyzed is analyzed.
[0040]
The potential of the copper electrode is swept until it reaches a positive potential (for example, about 0 to 150 mV with respect to the Ag / AgCl reference electrode), and at that potential for a predetermined time (for example, 0 to 0 with respect to the Ag / AgCl reference electrode). 30 seconds), the copper electrode surface is eluted at the molecular level and a regeneration (regeneration that does not require grinding, polishing, cleaning, etc.) is performed.
[0041]
In addition, before performing analysis with a solution analyzer as described above (for example, before performing analysis with an analyzer that has not been used for a predetermined period of time), a positive potential (for example, Ag / The regeneration step may be performed by applying a voltage of about 100 to 200 mV to the AgCl reference electrode and holding it for a predetermined time (for example, 5 to 30 seconds). Furthermore, after sweeping the copper electrode in the positive potential direction to 0 V to complete the analysis, a positive potential of a predetermined magnitude with respect to the copper electrode (for example, 100 to 500 mV with respect to the Ag / AgCl reference electrode). The above regeneration step may be performed by applying a predetermined time (for example, 5 to 30 seconds).
[0042]
[Example]
Next, an analysis apparatus (manufactured by Hokuto Denko) as shown in a schematic explanatory diagram of FIG. 1 using a copper electrode as a working electrode (the same reference numerals are used for the same components as those in FIGS. 24 and 25 and the detailed description is omitted). And a solution containing various metal ions according to first to eighteenth embodiments shown below (solution assuming clean water), and a potentiostat (electrochemical measurement system-HZ3000) or the like. And actual tap water).
[0043]
In the analyzer shown in FIG. 1, a 1.6 mm diameter copper electrode was used for the working electrode 2, a spiral platinum electrode was used for the counter electrode 3, and an Ag / AgCl electrode was used for the reference electrode 5. HNO Three A 0.2 M KCl solution containing 0 to 200 nM lead ions and adjusted to pH 3 with N 2 A sample solution 1a is obtained by degassing with gas for 15 minutes, and this sample solution 1a is analyzed in the same manner as in the first embodiment to be described later (electrodeposition sets the potential of the working electrode 2 to the reference electrode 5 to -550 mV). 10 minutes) to obtain a calibration curve (electrical quantity characteristics with respect to the lead ion concentration). As shown in FIG. 2, the calibration curve has good linearity, and the analyte to be analyzed is very low in concentration. It was confirmed that analysis was possible with high accuracy and high sensitivity.
[0044]
(First embodiment)
First, HNO Three A 0.2 M KCl solution containing 50 nM lead ions adjusted to pH 3 was obtained. Immediately before the analysis, the 0.2 M KCl solution is added with Na. 2 SO Three (In this example, Na was added at a rate of 10 ml per 1 l of 0.2M KCl solution. 2 SO Three ) Is added to the sample liquid 1 (20 ml sample liquid in this embodiment) 1a in the container 1 of FIG. 1 (30 ml container in this embodiment), and the sample liquid 1a It sealed with the sealing member 1b so that the working electrode 2, the counter electrode 3, and the reference electrode 5 might be immersed. Thereafter, the working electrode 2 of the lead ions in the sample solution 1a is set by setting the potential of the working electrode 2 with respect to the reference electrode 5 to -700 mV while maintaining a mass transfer promoting atmosphere through the stirrer 7 and the stirring bar 7a. Electrodeposition on the surface was performed for 1 to 15 minutes.
[0045]
Then, the stirrer 7 and the stirrer 7a are stopped, and the potential of the working electrode 2 with respect to the reference electrode 5 is swept from -700 mV to the positive potential direction at a sweep speed of 25 mV / s, whereby electrodeposition of the surface of the working electrode 2 is performed. The substance was oxidized and eluted (anode stripping) into the sample solution 1a, and the current change with respect to the potential change of the working electrode 2 was detected. The detection result is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0046]
From the characteristic curve shown in FIG. 3, the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve in FIG. 2. As a result, the sample solution 1a contained 50 nM lead ions. It could be confirmed.
[0047]
Further, after sweeping the working electrode 2 in the positive potential direction up to 150 mV, the state of the surface of the working electrode 2 was observed, and it was confirmed that there was no residue and the like was in a mirror state. This is because, as described above, the potential of the working electrode 2 is swept to a positive potential, so that the surface of the working electrode 2 is eluted and regenerated at the molecular level (that is, the surface of the working electrode 2 is smoothed, adhered matter, etc. It is conceivable that
[0048]
Further, the potential of the working electrode 2 when electrodepositing lead ions in the sample solution 1a was set to -500 mV or -1.2 V, and the current change characteristics with respect to the potential change similar to FIG. It was possible to analyze in the same manner as when the potential of 2 was set to -700 mV, and it was confirmed that the working electrode 2 was regenerated.
[0049]
(Second embodiment)
10 μM copper ions (Cu 2+ ) To obtain a new sample solution 1a, and the sample solution 1a is subjected to the same analysis work as in the first embodiment, thereby detecting a current change with respect to a potential change of the working electrode 2 and detecting the result. Is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0050]
From the characteristic curve shown in FIG. 4, each peak current of lead ions and copper ions (peak current due to copper ions is not shown) is detected at different potentials, and each metal ion interferes with each other (for example, formation of an alloy). It was confirmed that analysis was possible without any problems.
[0051]
In addition, when the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve of FIG. 2, the sample solution 1a contained 50 nM lead ions as well as the first example, and the working electrode 2 It was confirmed that the surface was regenerated.
[0052]
Furthermore, when the potential of the working electrode 2 when electrodepositing each metal ion in the sample solution 1a was set to -500 mV or -1.2 V, the current change characteristics with respect to the potential change similar to FIG. Analysis was possible in the same manner as when the potential of the electrode 2 was set to -700 mV, and it was confirmed that the working electrode 2 was regenerated.
[0053]
(Third embodiment)
In the sample solution of the second embodiment, 100 nM cadmium ions (Cd 2+ ), 5 μM iron ion (Fe 2+ ) To obtain a new sample solution 1a, and the sample solution 1a is subjected to the same analysis work as in the first embodiment, thereby detecting a current change with respect to a potential change of the working electrode 2 and detecting the result. Is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0054]
From the characteristic curves shown in FIG. 5, the peak currents of lead ions, copper ions, cadmium ions, and iron ions (peak currents due to copper ions and iron ions are not shown) are detected at different potentials. It was confirmed that analysis was possible without interference.
[0055]
In addition, when the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve of FIG. 2, the sample solution 1a contained 50 nM lead ions as well as the first example, and the working electrode 2 It was confirmed that the surface was regenerated.
[0056]
Furthermore, the potential of the working electrode 2 when electrodepositing each metal ion in the sample solution 1a was set to −1.2 V, and the current change characteristics with respect to the potential change similar to FIG. Analysis was possible in the same manner as when the potential was set to -700 mV, and it was confirmed that the working electrode 2 was regenerated. Furthermore, when the potential of the working electrode 2 at the time of electrodeposition was set to -500 mV, the same result as that obtained when the potential of the working electrode 2 was set to -700 mV was obtained. Since the potential of 2 was nobler than the electrodeposition potential of cadmium, no detection of cadmium was made.
[0057]
(Fourth embodiment)
In the sample solution of the third embodiment, 10 μM zinc ions (Zn 2+ ) To obtain a new sample solution 1a, the potential of the working electrode 2 when electrodepositing each metal ion in the sample solution 1a is set to -1.2 V, and the first solution for the sample solution 1a By performing the same analysis work as in the example, the current change with respect to the potential change of the working electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0058]
It can be read from the characteristic curves shown in FIG. 6 that the peak currents of lead ions, cadmium ions, and zinc ions (peak currents due to copper ions and iron ions are not shown) are detected at substantially the same potential. This is probably because the metal ions interfered with each other when the electrodeposition material of the working electrode 2 was eluted. However, it was confirmed that separation and detection were possible when the zinc ion concentration was 1 μM or less.
[0059]
Therefore, the potential of the working electrode 2 when electrodepositing each metal ion in the sample solution 1a is set to −700 mV, and the sample solution 1a is subjected to the same analysis work as in the first embodiment, thereby The current change with respect to the potential change of the electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0060]
From the characteristic curves shown in FIG. 7, the peak currents of lead ions, copper ions, cadmium ions, iron ions, and zinc ions (peak currents due to copper ions, iron ions, and zinc ions are not shown) are detected at different potentials. I can read that. That is, it was confirmed that the metal ions can be analyzed without interfering with each other by variously setting the potential at the time of electrodepositing the analyte to the working electrode according to the analyte.
[0061]
In addition, when the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve of FIG. 2, the sample solution 1a contained 50 nM lead ions as well as the first example, and the working electrode 2 It was confirmed that the surface was regenerated. Further, the potential of the working electrode 2 when electrodepositing each metal ion in the sample solution 1a was set to −500 mV, and the current change characteristics with respect to the potential change similar to FIG. It was confirmed that the same result as that obtained when the voltage was set to −700 mV was obtained.
[0062]
(5th Example)
In general tap water, chlorine (for example, about 1 ppm of chlorine) is mixed for the purpose of sterilization of the tap water. Therefore, in the fifth embodiment, the influence of solution analysis due to the presence or absence of residual chlorine in the solution was examined.
[0063]
First, HNO Three A 0.1 M KCl solution containing 50 nM lead ions adjusted to pH 3 with N 2 A new sample solution 1a was obtained by degassing with gas for 15 minutes. Then, by performing the same analysis work as in the first embodiment, the current change with respect to the potential change of the working electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG. From the characteristic curve shown in FIG. 8, the amount of electricity in the region where the peak current was generated by the lead ions was calculated to be 108 μC.
[0064]
Next, sodium hypochlorite is added to the sample solution used in the analysis of FIG. 8 so that the concentration in the sample solution becomes 1 ppm, and a new sample solution 1a is obtained. By performing the same analysis work as in the first embodiment, the current change with respect to the potential change of the working electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG. From the characteristic curve shown in FIG. 9, the amount of electricity in the region where the peak current was generated by lead ions was calculated to be 48 μC. From this, in the analyzer as shown in FIG. 1, when residual chlorine was mixed in the sample solution, it was confirmed that the current change with respect to the potential change at the time of oxidation elution is affected by the residual chlorine. .
[0065]
Here, ascorbic acid is added to the sample solution used in the analysis of FIG. 9 so that the concentration in the sample solution becomes 200 μM, and a new sample solution 1a is obtained. By performing the same analysis work as in the example, the current change with respect to the potential change of the working electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG. From the characteristic curve shown in FIG. 10, the amount of electricity in the region where the peak current was generated by the lead ions was calculated to be 105 μC (that is, the same as the result of FIG. 8).
[0066]
Therefore, in the analyzer configured as shown in FIG. 1, by adding ascorbic acid to the solution containing the analyte, even if residual chlorine is mixed in the solution, the residual chlorine It was confirmed that the analysis target could be analyzed without being affected.
[0067]
In addition to the method of using ascorbic acid to avoid the influence of solution analysis due to residual chlorine in the solution as described above, for example, a solution having residual chlorine is left in the atmosphere for a predetermined time, and the chlorine in the solution is removed. It was confirmed that there was a method of releasing into the atmosphere (for example, the sample liquid 1a used in the sixth and seventh examples was left in the atmosphere for a predetermined time to remove chlorine).
[0068]
(Sixth embodiment)
Using tap water in a lead pipe that was stopped for 3 hours (tap water containing lead ions eluted from the lead pipe), add 0.2 MKCl solution to the tap water, and adjust the pH to 3 to obtain a new sample solution. 1a was obtained, and the sample solution 1a was subjected to the same analysis work as in the first embodiment, whereby a change in current with respect to a change in potential of the working electrode 2 was detected.
[0069]
From the current change characteristic (not shown) with respect to the potential change of the detection result, each metal ion contained in the sample 1a was detected at a different potential. Further, when the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve of FIG. 2, it was found that the sample solution 1a contained 48 nM lead ions. Therefore, it was confirmed that even when the object to be analyzed is tap water, each metal ion in the tap water can be analyzed without interfering with each other.
[0070]
Further, after sweeping the working electrode 2 in the positive potential direction up to 150 mV, the state of the surface of the working electrode 2 was observed, and it was confirmed that there was no residue and the like was in a mirror state.
[0071]
Further, the potential of the working electrode 2 when electrodepositing lead ions in the sample solution 1a was set to -500 mV or -1.2 V, and the current change characteristics with respect to the potential change similar to FIG. It was confirmed that the working electrode 2 could be regenerated as well as being analyzed in the same manner as when the potential of 2 was set to -700 mV.
[0072]
(Seventh embodiment)
By adding a lead solution containing 100 nM lead ions to the sample solution of the sixth embodiment to obtain a new sample solution 1a, and performing the same analysis work as that of the first embodiment on the sample solution 1a, A change in current with respect to a change in potential of the working electrode 2 was detected.
[0073]
From the current change characteristic (not shown) with respect to the potential change of the detection result, each metal ion contained in the sample 1a was detected at a different potential. In addition, when the amount of electricity in the region where the peak current was generated by the lead ions was calculated and compared with the calibration curve of FIG. 2, it was found that the sample solution 1a contained 148 nM lead ions. That is, it was found that the tap water used in the sixth example contained 48 nM lead ions. Therefore, even if the object to be analyzed is various mixed solutions (for example, a mixed solution of tap water and lead solution), it was confirmed that each metal ion in the mixed solution can be analyzed without interfering with each other.
[0074]
Further, after sweeping the working electrode 2 in the positive potential direction up to 150 mV, the state of the surface of the working electrode 2 was observed, and it was confirmed that there was no residue and the like was in a mirror state.
[0075]
Further, the potential of the working electrode 2 when electrodepositing lead ions in the sample solution 1a was set to -500 mV or -1.2 V, and the current change characteristics with respect to the potential change similar to FIG. It was confirmed that the working electrode 2 could be regenerated as well as being analyzed in the same manner as when the potential of 2 was set to -700 mV.
[0076]
(Eighth embodiment)
In general voltammetry, HNO is used as a solution for adjusting the pH of a sample solution (adjustment for keeping it constant under acidic conditions) (hereinafter referred to as a pH adjusting solution). Three Or HCl is used. But HNO Three Since solutions such as HCl and HCl have physical properties, they must be handled in consideration of safety. For example, an analyzer configured as shown in FIG. When analyzing metal ions in tap water, it becomes difficult to always keep the pH value of the sample solution constant due to a decrease in workability, leading to a decrease in analysis accuracy.
[0077]
Therefore, in the eighth example, an attempt was made to use a safe and easy-to-handle acetate buffer solution as the pH adjusting solution. First, a 0.1 M acetate buffer solution adjusted to pH 4.5 is added to tap water collected in Atsugi City, Kanagawa Prefecture so as to be 0 to 50 mM, and the acetate buffer solution in the tap water is added. The change in pH with respect to the concentration was examined. As a result, as shown in the characteristic diagram of FIG. 11, it can be read that the pH of tap water to which the acetate buffer solution is added so as to be about 10 mM or more becomes constant (pH 4.5).
[0078]
That is, by using an acetic acid buffer solution of about 10 mM or more as a pH adjusting solution, the analyzer as shown in FIG. Three It was confirmed that good workability and analytical accuracy were maintained as compared with the case of using HCl or HCl.
[0079]
(Ninth embodiment)
To a 50 nM lead ion-containing aqueous solution adjusted to pH 4.5 with 10 mM acetate buffer solution, 0 to 200 mM KCl solution was added as a supporting electrolyte, and N 2 Degassing treatment was performed with gas for 15 minutes to obtain various new sample solutions 1a. In the same manner as in the first embodiment, each of the sample solutions 1a is placed in the container 1, and the working electrode (diameter 1.6 mm (electrode area 0.02 cm) is placed in the sample solution 1a. 2 )) 2, counter electrode 3 and reference electrode 5 are immersed and sealed, and the potential of working electrode 2 with respect to reference electrode 5 is set to −550 mV while maintaining a mass transfer promoting atmosphere by stirrer 7 and stirrer 7a. Electrodeposition of lead ions in each sample solution 1a on the surface of the working electrode 2 was performed for 3 minutes.
[0080]
Thereafter (after the stirrer 7 and the stirrer 7a are stopped), the potential of the working electrode 2 with respect to the reference electrode 5 is swept from -550 mV to 0 V at a sweep speed of 25 mV / s, whereby the electrodeposition material on the surface of the working electrode 2 Was oxidized and eluted in each sample solution 1a, and the current change with respect to the potential change of the working electrode 2 was detected. In each current change, the electric quantity in the region where the peak current was generated by the lead ions was calculated, and the calculation result is shown in the electric quantity characteristic diagram with respect to the concentration of the KCl solution in FIG. In the ninth embodiment, the target value of electricity is set to 50 × 10 -9 Set to C or higher.
[0081]
From the characteristic curve shown in FIG. 12, a sufficient amount of electricity (50 × 10 10) is obtained when the concentration of the KCl solution is in the range of about 3 to 100 mM. -9 C or more) is obtained, and it can be read that a good electric charge was obtained particularly when the concentration of the KCl solution was in the range of about 10 to 50 mM.
[0082]
That is, by adding a predetermined amount (for example, about 10 to 50 mM) of KCl as a supporting electrolyte to a sample solution whose pH is adjusted with an acetate buffer solution, a sufficient amount of electricity can be obtained in the analyzer configured as shown in FIG. The amount was obtained, and it was confirmed that the analysis could be performed with high sensitivity even if the analyte was at a low concentration.
[0083]
(Tenth embodiment)
In the case of using the sample solution 1a to which the 40 mM KCl solution is added in the ninth embodiment, the potential of the working electrode 2 with respect to the reference electrode 5 is held in the range of 0 to 450 mV for 10 seconds to thereby surface the working electrode 2. Each time regeneration is performed at each potential (hereinafter referred to as regeneration potential), the sample liquid 1a is analyzed in the same manner as in the ninth embodiment to detect a change in current with respect to a change in potential of the working electrode 2. The amount of electricity was calculated respectively. The calculation result is shown in the electric quantity characteristic diagram with respect to the reproduction potential in FIG. 13, and it was confirmed that the electric quantity increased as the reproduction potential increased.
[0084]
Therefore, the lead solution is added to the mixed solution of 10 mM acetate buffer solution (pH 4.5) and 40 mM KCl solution so that the lead ion concentration becomes 100 nM (degassing as in the ninth embodiment). Process) to obtain a new sample solution 1a, and the sample solution 1a is repeatedly subjected to the same analysis work as that of the ninth embodiment, and each electric quantity is calculated by detecting a current change with respect to a potential change of the working electrode 2 respectively. At the same time, the surface of the working electrode 2 was regenerated by holding the potential of the working electrode 2 with respect to the reference electrode 5 at 400 mV or 300 mV for 10 seconds for each analysis operation. The respective results are shown in the electric characteristic chart with respect to the number of analysis operations (that is, the number of regenerations) in FIGS.
[0085]
As shown in the characteristic curve of FIG. 14, when reproduction is performed at a reproduction potential of 400 mV, it can be read that the amount of electricity sequentially increases each time analysis is performed, and the reproducibility of analysis is low. The reason for this may be that the surface of the working electrode 2 is activated and the surface condition increases (the electrode area increases) for each regeneration.
[0086]
On the other hand, as shown in the characteristic curve of FIG. 15, it can be read that when reproduction is performed at a reproduction potential of 300 mV, the amount of electricity does not increase even if the analysis operation is repeated, and the reproducibility of the analysis is maintained.
[0087]
That is, by adjusting the regeneration potential (for example, within a range of about 0 to 300 mV), the surface of the working electrode 2 can be activated and the surface roughness can be increased even if the analysis operation and the regeneration process are repeated. It was confirmed that the increase could be prevented, a sufficiently good amount of electricity was obtained, and the reproducibility of the analysis could be maintained.
[0088]
(Eleventh embodiment)
A lead solution is added to a 40 mM KCl solution so that the lead ion concentration is 50 nM, and a 10 mM acetate buffer solution is further added so that the pH is 3.75 to 5.0 (as in the ninth embodiment). Various sample solutions 1a were newly obtained by degassing. For each of these sample solutions 1a, the same analysis work as in the ninth embodiment is performed to detect each current change with respect to the potential change of the working electrode 2 to calculate each electric quantity, and the result is calculated with respect to the pH of the sample solution in FIG. It is shown in an electric quantity characteristic diagram (a diagram in the case of a lead ion concentration of 50 nM). The working electrode 2 was regenerated by setting the regenerating potential to 300 mV.
[0089]
From the characteristic curve shown in FIG. 16, it can be read that the amount of electricity decreases when the acetate buffer solution is used so that the pH of the sample solution 1a exceeds about 4.75. On the other hand, it can be read that the amount of electricity can be made constant when the acetate buffer solution is used so that the pH is about 4.75 or less.
[0090]
That is, by using an acetate buffer solution so that the pH of the sample solution is about 4.75 or less (for example, using 10 mM or more of an acetate buffer solution having a pH of 4.75 or less), a sufficiently good amount of electricity can be obtained. It could be confirmed.
[0091]
(Twelfth embodiment)
A 40 mM KCl solution adjusted to a pH of 4.5 with a 10 mM acetate buffer solution is deaerated by adding a lead solution so that the lead ion concentration is 0 to 200 nM (as in the ninth example). Thus, various sample solutions 1a were newly obtained. Then, for each of the sample solutions 1a, the same analytical work as in the ninth embodiment is performed to detect a current change with respect to a potential change of the working electrode 2 and calculate an electric quantity from each of the detection results. (Electric quantity characteristics with respect to lead ion concentration) was determined. The working electrode 2 was regenerated by setting the regenerating potential to 300 mV.
[0092]
As shown in FIG. 17, it can be read that the calibration curve has good linearity, and it can be confirmed that analysis can be performed with high accuracy and high sensitivity even if the analyte is at a low concentration.
[0093]
(Thirteenth embodiment)
A 10 mM acetate buffer solution and 40 mM KCl solution are added to tap water collected in Atsugi City, Kanagawa Prefecture, and ascorbic acid is added in the same manner as in the fifth embodiment, followed by deaeration treatment (the ninth embodiment). A new sample solution 1a is obtained by degassing in the same manner as in Example 9. The sample solution 1a is analyzed in the same manner as in the ninth embodiment, and the current change with respect to the potential change of the working electrode 2 is detected. It was confirmed that the liquid 1a did not contain lead ions.
[0094]
Therefore, a lead solution is added to the sample solution 1a so that the lead ion concentration is 0 to 200 nM, and the analysis work similar to that of the twelfth embodiment is performed to detect the current change with respect to the potential change of the working electrode 2. Further, by calculating each electric quantity, a calibration curve (electric quantity characteristic with respect to lead ion concentration) was obtained and shown in FIG.
[0095]
As shown in FIG. 18, it was read that a calibration curve having good linearity was obtained, and it was confirmed that even if the analysis target in tap water had a low concentration, it could be analyzed with high accuracy and high sensitivity.
[0096]
In addition, for tap water collected in Zama City, Kanagawa Prefecture and Hino City, Tokyo (tap water in iron pipes), the same analysis as in the case of using tap water in Atsugi City was conducted. It was confirmed that lead water was not contained in the tap water and a calibration curve having good linearity was obtained as shown in FIG.
[0097]
(14th embodiment)
Tap water (tap water containing lead ions eluted from the lead pipe) in a lead pipe (new lead pipe) stopped at various times is collected, and 10 mM acetate buffer solution (pH 4. 5) and a 40 mM KCl solution are added and ascorbic acid is added in the same manner as in the fifth embodiment, followed by deaeration treatment (deaeration treatment in the same manner as in the ninth embodiment). Got. Then, each sample solution 1a was analyzed for lead ion concentration by the same analysis work and ICP emission spectroscopic analysis as in the ninth example, and the respective analysis results are shown in the correlation characteristic diagram of FIG.
[0098]
From the results shown in FIG. 19, according to the same voltammetric analysis method as in the ninth embodiment, even if the analyte in the solution such as tap water has a low concentration, it is equivalent to the ICP emission spectroscopic analysis method. Number of relations R 2 = 0.983) It was confirmed that it was possible to easily analyze with sensitivity and accuracy. Moreover, it was confirmed that the same results were obtained in the present invention other than the ninth embodiment.
[0099]
(15th embodiment)
For example, when the analyzer configured as shown in FIG. 1 is transported to the area to be analyzed and metal ions in tap water are analyzed at the site, the work process is simplified and the analyzer is downsized. Is preferred. Therefore, in the fifteenth embodiment, an analysis method in which the deaeration process is omitted was examined.
[0100]
First, a new sample solution 1a was obtained by adding a lead solution to a mixed solution of a 10 mM acetate buffer solution (pH 4.5) and a 40 mM KCl solution so that the lead ion concentration was 50 nM. Then, as in the first embodiment, the sample solution 1a is put in the container 1, and the working electrode 2, the counter electrode 3 and the reference electrode 5 are immersed in the sample solution 1a and sealed, and the stirrer 7 and the stirring bar 7a are used. The potential of the working electrode 2 with respect to the reference electrode 5 was set to −550 mV while maintaining a mass transfer promoting atmosphere, and electrodeposition of lead ions in each sample solution 1a onto the surface of the working electrode 2 was performed for 3 minutes.
[0101]
Thereafter (after the stirrer 7 and the stirrer 7a are stopped), a sweep speed of 20 mV / s, a pulse height (pulse amplitude) of 50 mV, and a pulse width of 15 ms are determined by a differential pulse, anode stripping and voltammetry analysis method (hereinafter referred to as DPASV). , By sweeping from -550 mV to 0 V while stepping the potential of the working electrode 2 with respect to the reference electrode 5 at a pulse period of 100 ms, the electrodeposition substance on the surface of the working electrode 2 is oxidized and eluted into the sample liquid 1a, The current change with respect to the potential change of the working electrode 2 was detected, and the detection result is shown in the current change characteristic diagram with respect to the potential change in FIG.
[0102]
From the peak value (peak height) corresponding to the lead ion in the characteristic curve shown in FIG. 20, it can be read that 50 nM lead ion is contained in the sample solution. The reason why dissolved oxygen does not affect the analysis using DPASV is that the potential of the working electrode is swept in a potential step (pulse form) when the electrodeposited material is oxidized and eluted. This is because the current value due to oxidation elution can be detected before the dissolved oxygen starts the reaction.
[0103]
In the fifteenth embodiment, if the pulse wave height is greater than 0 mV and not greater than 50 mV, the pulse width is greater than 0 ms and not greater than 15 ms, and the pulse period is greater than 0 ms and not greater than 100 ms under the DPASV conditions, It was confirmed that analysis of the analyte in the solution was possible without processing.
[0104]
Accordingly, in the analyzer configured as shown in FIG. 1, by applying DPASV (DPASV in which pulse conditions are set so as not to be affected by the reaction of dissolved oxygen), the solution can be obtained without performing degassing treatment. It was confirmed that it was possible to analyze the object to be analyzed.
[0105]
(Sixteenth embodiment)
A lead solution is added to a mixed solution of a 10 mM acetate buffer solution (pH 4.5) and a 40 mM KCl solution so that the lead ion concentration is 0 to 100 nM to obtain a new sample solution 1a. The sample solution 1a The same analysis work as in the fifteenth embodiment is performed to detect current changes with respect to the potential change of the working electrode 2, and a calibration curve (peak value characteristic with respect to lead ion concentration) is obtained from the peak value due to lead ions of each current change. This is shown in FIG. The working electrode 2 was regenerated by setting the regenerating potential to 300 mV.
[0106]
As shown in FIG. 21, it can be read that a calibration curve having good linearity is obtained, and it is possible to analyze a low-concentration analyte in a solution with high accuracy and high sensitivity without performing a deaeration process. It could be confirmed.
[0107]
The same analysis as in the fifteenth example was conducted on tap water collected in Atsugi City, Kanama City, and Hino City, Tokyo. First confirmed that it did not contain lead ions. Therefore, 10 nM to 100 nM of lead was standardly added to these tap waters (and ascorbic acid was added in the same manner as in the fifth example), and the same analysis as in the fifteenth example was performed. As in FIG. It was confirmed that a calibration curve having good linearity was obtained.
[0108]
(Seventeenth embodiment)
In the general linear sweep voltammetry, when the electrode area of the working electrode is increased, a residual current is generated as the working electrode is increased, so that the analysis accuracy is not necessarily improved. Therefore, in the seventeenth embodiment, a new sample is first added by adding a lead solution to a mixed solution of 10 mM acetate buffer (pH 4.5) and 40 mM KCl solution so that the lead ion concentration becomes 100 nM. Liquid 1a was obtained. And about the said sample liquid 1a, the electrode area of the working electrode 2 is 0.02-0.2 cm by the analysis work similar to the said 15th Example. 2 22, while detecting a change in current with respect to a change in potential of each working electrode 2 while calculating the peak value due to lead ions of each current change, and calculating the peak value with respect to the electrode area in FIG. 22. It is shown in the value characteristic diagram.
[0109]
As shown in FIG. 22, it can be read that the electrode area of the working electrode 2 and the peak value have a proportional relationship. Therefore, by applying DPASV in the analyzer configured as shown in FIG. 1, the electrode area is increased and analysis sensitivity is improved without being affected by the residual current of the working electrode (ie, low concentration It was confirmed that the analysis target could be analyzed).
[0110]
(Eighteenth embodiment)
To the mixed solution of 10 mM acetate buffer solution (pH 4.5) and 40 mM KCl solution, lead solution is added so that the lead ion concentration is 5 nM to obtain a new sample solution (20 ml sample solution) 1a. The sample solution 1a is analyzed in the same manner as in the seventeenth embodiment to detect current changes with respect to potential changes of the working electrode 2, calculate peak values of these current changes due to lead ions, and calculate the results. The peak value characteristic diagram with respect to the electrode area in FIG. 23 is shown.
[0111]
From the results shown in FIG. 23, even if the analyte in the solution has a very low concentration, the electrode area of the working electrode 2 and the peak value have a proportional relationship, and the analysis sensitivity increases as the electrode area increases. I can read that. The electrode area is 0.02 cm. 2 In the case where it is smaller than the above, deposits such as bubbles are observed on the surface of the working electrode 2 and it is confirmed that there is a tendency to influence the reproducibility of the analysis.
[0112]
Therefore, the electrode area is adjusted according to the concentration of the analyte (for example, 0.02 cm when analyzing 5 nM lead ions) 2 By adjusting as described above, it was confirmed that the reproducibility of the analysis could be maintained and that a low concentration analyte in the solution could be analyzed with high accuracy and high sensitivity without performing deaeration treatment.
[0113]
Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
[0114]
For example, in the present embodiment, a sample solution containing an object to be analyzed is placed in a predetermined container, and analysis is performed while maintaining a mass transfer promotion atmosphere by a stirrer or the like. For example, the working electrode of the detector in the flow injection analyzer When a copper electrode is applied, since there is a mass transfer facilitating means (for example, a pump) for supplying a constant flow rate of sample liquid into the detector, the mass transfer facilitating atmosphere is not required without using the stirrer or the like. Can keep.
[0115]
In each example, a cylindrical working electrode is configured using copper. However, when a rotating electrode configured using copper is applied, a laminar flow is formed on the surface of the copper electrode by the rotation of the rotating electrode. Therefore, since the rotating electrode itself has a function of mass transfer promoting means, it is possible to maintain the mass transfer promoting atmosphere without using the stirrer or the like.
[0116]
Further, the electrode is composed of at least a working electrode, a counter electrode, a reference electrode, and a mass transfer accelerating means, and each of the electrodes is disposed in a solution containing the object to be analyzed, and the object to be analyzed is electrodeposited by the working electrode. If the solution analyzer is capable of detecting a change in current with respect to a change in potential while eluting into a solution, the working electrode for eluting the electrodeposited analyte into the solution as in the present embodiment is used. The working electrode can be regenerated by sweeping the potential to a positive potential or applying a positive potential to the working electrode before analysis.
[0117]
Furthermore, it is possible to perform more sufficient measurement by making the surface of the copper electrode into an active surface such as an uneven surface or a particle shape in advance.
[0118]
In addition, in each example, an Ag / AgCl electrode was used as a reference electrode of the analyzer configured as shown in FIG. 1. However, for example, a saturated calomel electrode was used instead of the Ag / AgCl electrode, and analysis conditions (for example, Even when the potential of the working electrode with respect to the reference electrode at the time of sweeping is set as appropriate, the same effects as those of the embodiments can be obtained.
[0119]
【The invention's effect】
As described above, according to the present invention, even when the concentration of the analyte in the solution is extremely low (for example, lead ions of 50 nM or less contained in clean water), for example, a mercury electrode is used without masking. As with the case of using, it is possible to easily analyze with high accuracy and high sensitivity, and it does not cause environmental pollution unlike the case of using a mercury electrode. In addition, since the surface of the working electrode elutes at the molecular level by adjusting the potential of the working electrode, the working electrode can be easily regenerated (without grinding, polishing, cleaning, etc.), and the reproducibility of the analysis is maintained. it can.
[0120]
Further, when the potential of the working electrode is swept in the positive potential direction, if the potential is stepped, it is not necessary to perform a deaeration process. Therefore, the work process can be simplified and the analyzer can be downsized. It becomes possible. Furthermore, it is possible to prevent the influence of the residual current and maintain the reproducibility of the analysis.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a solution analyzer in the present embodiment.
FIG. 2 is a calibration curve for lead ions by the solution analyzer in the present example.
FIG. 3 is a current change characteristic diagram with respect to a potential change in the first embodiment.
FIG. 4 is a current change characteristic diagram with respect to a potential change in the second embodiment.
FIG. 5 is a current change characteristic diagram with respect to a potential change in the third embodiment.
FIG. 6 is a current change characteristic diagram with respect to potential change (electrodeposition potential of −1.2 V) in the fourth embodiment.
FIG. 7 is a current variation characteristic diagram with respect to potential variation in the fourth embodiment (electrodeposition potential −700 mV).
FIG. 8 is a current change characteristic diagram with respect to potential change in the fifth example (before adding sodium hypochlorite).
FIG. 9 is a current change characteristic diagram with respect to potential change in the fifth example (after adding sodium hypochlorite).
FIG. 10 is a characteristic diagram of current change with respect to potential change in Example 5 (after adding ascorbic acid).
FIG. 11 is a pH characteristic diagram of tap water with respect to the acetate buffer solution concentration in the eighth embodiment.
FIG. 12 is an electric quantity characteristic diagram with respect to the KCl solution concentration in the ninth embodiment.
FIG. 13 is an electric quantity characteristic diagram with respect to a reproduction potential in the tenth example (reproduction potential of 0 to 450 mV).
FIG. 14 is an electric quantity characteristic diagram (reproduction potential 400 mV) with respect to the number of analysis operations in the tenth embodiment.
FIG. 15 is an electric quantity characteristic diagram (reproduction potential: 300 mV) with respect to the number of analysis operations in the tenth embodiment.
FIG. 16 is an electric quantity characteristic diagram with respect to pH of the sample liquid 1a in the eleventh embodiment.
FIG. 17 is an electric quantity characteristic diagram with respect to lead ion concentration in the twelfth embodiment.
FIG. 18 is an electric quantity characteristic diagram with respect to lead ion concentration in the thirteenth embodiment.
FIG. 19 is a correlation characteristic diagram between a voltammetric analysis method (present invention) and an ICP emission spectroscopic analysis method in Example 14.
FIG. 20 is a current change characteristic diagram (DPASV) with respect to potential change in the fifteenth embodiment.
FIG. 21 is a peak value characteristic diagram with respect to the lead ion concentration in the sixteenth embodiment.
FIG. 22 is a peak value characteristic diagram with respect to the electrode area in the seventeenth embodiment.
FIG. 23 is a peak value characteristic diagram with respect to the electrode area in the eighteenth embodiment.
FIG. 24 is a schematic explanatory view showing an example of a voltammetric solution analyzer using a generally known solid electrode.
FIG. 25 is a schematic explanatory view showing an example of a solution analyzer by voltammetry using a generally known mercury electrode.
[Explanation of symbols]
1 ... Container
2 ... Working electrode
3 ... Counter electrode
4 ... Potentiostat
5. Reference electrode
6 ... Supply pipe
7 ... Stirrer

Claims (15)

少なくとも作用電極,対電極,参照電極,物質移動促進手段から構成され、
被分析対象を含んだ溶液中に前記の各電極を配置し、前記作用電極によって電着された被分析対象を前記溶液中に溶出しながら電位変化に対する電流変化を検出して、100nM以下レベルの被分析対象を分析することが可能な溶液分析装置において、
前記作用電極は銅から成ることを特徴とする溶液分析装置。
It consists of at least a working electrode, a counter electrode, a reference electrode, and a mass transfer promoting means,
Each electrode is placed in a solution containing the analyte, and the current change relative to the potential change is detected while eluting the analyte electrodeposited by the working electrode into the solution. In a solution analyzer capable of analyzing an object to be analyzed,
The solution analyzer according to claim 1, wherein the working electrode is made of copper.
前記作用電極の電位を電位ステップさせながら正電位方向に掃引して、前記作用電極に電着された被分析対象を溶出することを特徴とする請求項1記載の溶液分析装置。  2. The solution analyzer according to claim 1, wherein the analyte to be analyzed is eluted by sweeping the potential of the working electrode in a positive potential direction while stepping the potential. 前記作用電極の面積は、0.02cm2以上であることを特徴とする請求項1または2記載の溶液分析装置。3. The solution analyzer according to claim 1, wherein an area of the working electrode is 0.02 cm 2 or more. 被分析対象を含んだ溶液中に作用電極,対電極,参照電極を配置する工程と、
物質移動促進雰囲気下を保ちながら前記作用電極の電位を負電位に設定することにより該作用電極表面に被分析対象を電着させる工程と、
前記の作用電極の電位を正電位方向に掃引し、前記の電着した被分析対象を溶液中に溶出しながら、前記作用電極における電位変化に対する電流変化を検出する工程と、を有し、
前記作用電極には銅から成る電極を用い、100nM以下レベルの被分析対象を分析することが可能なことを特徴とする溶液分析方法。
Placing a working electrode, a counter electrode, and a reference electrode in a solution containing the analyte;
Electrodepositing the analyte on the working electrode surface by setting the potential of the working electrode to a negative potential while maintaining a mass transfer promoting atmosphere;
Sweeping the potential of the working electrode in the positive potential direction and detecting the current change with respect to the potential change at the working electrode while eluting the electrodeposited analyte in the solution, and
A solution analysis method characterized in that an electrode made of copper is used as the working electrode, and an analyte to be analyzed at a level of 100 nM or less can be analyzed.
前記電着させる工程の作用電極の電位は、溶液に含まれる被分析対象に応じて規定することを特徴とする請求項4記載の溶液分析方法。  5. The solution analysis method according to claim 4, wherein the potential of the working electrode in the electrodeposition step is defined according to an analysis target contained in the solution. 前記電流変化を検出する工程において、作用電極の電位を正電位まで掃引することを特徴とする請求項4または5記載の溶液分析方法。  6. The solution analysis method according to claim 4, wherein in the step of detecting the change in current, the potential of the working electrode is swept to a positive potential. 前記の電着させる工程の前に、前記溶液の脱気を行う工程を有することを特徴とする請求項4乃至6のいずれか1項に記載の溶液分析方法。The solution analysis method according to any one of claims 4 to 6, further comprising a step of degassing the solution before the electrodeposition step. 前記電流変化を検出する工程は、作用電極の電位は電位ステップさせながら正電位方向に掃引することを特徴とする請求項4乃至6のいずれか1項に記載の溶液分析方法。Step, the potential of the working electrode solution analysis method according to any one of claims 4 to 6, characterized in that sweeping at a positive potential direction while the potential detecting the current change. 前記の被分析対象を含んだ溶液には、酢酸緩衝溶液を10mM以上添加することを特徴とする請求項4乃至8のいずれか1項に記載の溶液分析方法。Wherein the solution containing the analyte and the solution analysis method according to any one of claims 4 to 8, characterized in that the addition of acetate buffer solution 10mM or more. 前記の被分析対象を含んだ溶液のpHは4.75以下であることを特徴とする請求項4乃至9のいずれか1項に記載の溶液分析方法。The solution analysis method according to any one of claims 4 to 9 , wherein the pH of the solution containing the analysis target is 4.75 or less. 前記の被分析対象を含んだ溶液には、前記の電流変化を検出する工程における作用電極の電気量が50×10-9C以上となるように、KCl溶液を添加することを特徴とする請求項4乃至10のいずれか1項に記載の溶液分析方法。The KCl solution is added to the solution containing the analysis target so that the amount of electricity of the working electrode in the step of detecting the current change is 50 × 10 −9 C or more. Item 11. The solution analysis method according to any one of Items 4 to 10. 前記の被分析対象を含んだ溶液には、アスコルビン酸を添加することを特徴とする請求項4乃至11のいずれか1項に記載の溶液分析方法。The solution analysis method according to any one of claims 4 to 11, wherein ascorbic acid is added to the solution containing the analyte. 少なくとも作用電極,対電極,参照電極,物質移動促進手段から構成され、前記の作用電極は銅から成る電極であって、
被分析対象を含んだ溶液中に前記の各電極を配置し、前記作用電極によって電着された被分析対象を前記溶液中に溶出しながら電位変化に対する電流変化を検出し、100nM以下レベルの被分析対象を分析することが可能な溶液分析装置の再生方法において、
前記の電着された被分析対象を溶液中に溶出する際の作用電極の電位を正電位まで掃引することにより、前記作用電極の再生を行うことを特徴とする溶液分析装置の再生方法。
It is composed of at least a working electrode, a counter electrode, a reference electrode, and a mass transfer promoting means, and the working electrode is an electrode made of copper,
Each electrode of the arranged inclusive solution to be analyzed, to be analyzed, which is electrodeposited by the working electrode to detect the current change with respect to the potential changes eluting the solution, the following levels the 100nM In a method for regenerating a solution analyzer capable of analyzing an analysis target ,
A method for regenerating a solution analyzer, wherein the working electrode is regenerated by sweeping the potential of the working electrode when eluting the electrodeposited analyte into the solution to a positive potential.
前記作用電極の再生は、前記溶液分析装置により分析を行う前に、作用電極に対して正電位を定電位印加し所定の時間保持することにより行うことを特徴とする請求項13記載の溶液分析装置の再生方法。  14. The solution analysis according to claim 13, wherein the working electrode is regenerated by applying a positive potential to the working electrode at a constant potential and holding it for a predetermined time before performing the analysis by the solution analyzer. Device regeneration method. 前記作用電極の再生は、作用電極に対して400mV未満の正電位を印加して行うことを特徴とする請求項13または14記載の溶液分析装置の再生方法。  The method for regenerating a solution analyzer according to claim 13 or 14, wherein the working electrode is regenerated by applying a positive potential of less than 400 mV to the working electrode.
JP2003184451A 2003-02-06 2003-06-27 SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD Expired - Lifetime JP3810760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184451A JP3810760B2 (en) 2003-02-06 2003-06-27 SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003029031 2003-02-06
JP2003184451A JP3810760B2 (en) 2003-02-06 2003-06-27 SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD

Publications (2)

Publication Number Publication Date
JP2004294422A JP2004294422A (en) 2004-10-21
JP3810760B2 true JP3810760B2 (en) 2006-08-16

Family

ID=33421312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184451A Expired - Lifetime JP3810760B2 (en) 2003-02-06 2003-06-27 SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD

Country Status (1)

Country Link
JP (1) JP3810760B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248158A (en) * 2006-03-14 2007-09-27 Hokuto Denko Kk Solution analysis method
JP4869849B2 (en) * 2006-04-10 2012-02-08 北斗電工株式会社 Solution analysis method
JP2007309802A (en) * 2006-05-18 2007-11-29 Hokuto Denko Kk Solution analyzer and analysis method
JP5276737B2 (en) * 2012-04-25 2013-08-28 北斗電工株式会社 Solution analysis method
US9207199B2 (en) * 2013-12-31 2015-12-08 Saudi Arabian Oil Company Analyzer for monitoring salt content in high resistivity fluids

Also Published As

Publication number Publication date
JP2004294422A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
Jagner Instrumental approach to potentiometric stripping analysis of some heavy metals
Dai et al. Detection of As (III) via oxidation to As (V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper
Saterlay et al. Sono‐Cathodic Stripping Voltammetry of Lead at a Polished Boron‐Doped Diamond Electrode: Application to the Determination of Lead in River Sediment
El Tall et al. Anodic stripping voltammetry of heavy metals at nanocrystalline boron‐doped diamond electrode
Ndlovu et al. Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode
Eskilsson et al. Determination of nickel and cobalt in natural waters and biological material by reductive chronopotentiometric stripping analysis in a flow system without sample deoxygenation
Simm et al. Sonoelectroanalytical detection of ultra‐trace arsenic
Idris et al. Electrochemical co-detection of arsenic and selenium on a glassy carbon electrode modified with gold nanoparticles
Toh et al. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept
Idris et al. Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode
Yosypchuk et al. Determination of iodates using silver solid amalgam electrodes
Bassie et al. Determination of heavy metal ions on glassy carbon electrode modified with antimony
Wang et al. Dual coulometric-voltammetric cells for on-line stripping analysis
Bobrowski et al. The silver amalgam film electrode in adsorptive stripping voltammetric determination of palladium (II) as its dimethyldioxime complex
Johnson et al. Stripping voltammetry with collection at a rotating ring—disk electrode
Billon et al. Gold and Silver Micro‐Wire Electrodes for Trace Analysis of Metals
Jedryczko et al. Inorganic arsenic speciation in natural mineral drinking waters by flow-through anodic stripping chronopotentiometry
JP3810760B2 (en) SOLUTION ANALYZER AND ITS REPRODUCTION METHOD, SOLUTION ANALYSIS METHOD
Ochab et al. Determination of trace Se (IV) by anodic stripping voltammetry following double deposition and stripping steps
Korolczuk et al. Determination of thallium in a flow system by anodic stripping voltammetry at a bismuth film electrode
Zirino et al. Stripping polarography and the reduction of copper (II) in sea water at the hanging mercury drop electrode
Korolczuk Voltammetric method for direct determination of nickel in natural waters in the presence of surfactants
De Marco et al. Calibration of the Hg chalcogenide glass membrane ion-selective electrode in seawater media
Faller et al. Modified solid electrodes for stripping voltammetric determination of tin
Grabarczyk et al. Adsorptive cathodic stripping voltammetric method for determination of gallium using an in situ plated lead film electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Ref document number: 3810760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term