JPH02296146A - Method for simultaneously measuring chlorine dioxide and chlorite ion - Google Patents

Method for simultaneously measuring chlorine dioxide and chlorite ion

Info

Publication number
JPH02296146A
JPH02296146A JP1116290A JP11629089A JPH02296146A JP H02296146 A JPH02296146 A JP H02296146A JP 1116290 A JP1116290 A JP 1116290A JP 11629089 A JP11629089 A JP 11629089A JP H02296146 A JPH02296146 A JP H02296146A
Authority
JP
Japan
Prior art keywords
electrodes
chlorine dioxide
current
chlorite
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1116290A
Other languages
Japanese (ja)
Other versions
JPH0731157B2 (en
Inventor
Etsuo Furuya
降矢 悦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP1116290A priority Critical patent/JPH0731157B2/en
Publication of JPH02296146A publication Critical patent/JPH02296146A/en
Publication of JPH0731157B2 publication Critical patent/JPH0731157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To make it possible to perform measurement for both chlorine dioxide and chlorite ion at the same time continuously when the chlorine dioxide and the chlorite ions are present together by using a sample liquid itself as a electrolyte, applying two different kinds of voltages, and measuring an electrolysis currents. CONSTITUTION:Two working electrodes 3 and one or two counter electrodes 4 or one or two additional reference electrodes 5 are immersed in a sample liquid 2. The electrodes 3 comprising noble metal or carbon are relatively moved with respect to the sample liquid 2. With the electrodes 5 as references, or with the counter electrodes 4 as references when the electrodes 5 are not pro vided, the different voltages are applied to the electrodes 3, respectively. The voltage which generates the reduction current of the chlorine dioxide is applied or not to one electrode, and the voltage which generates the oxidizing current for the chlorite ions is applied to the other electrode. Then, the generated currents are measured with ammeters 6 or potentiometer potentiostats 7, and the concentrations of the chlorine dioxide and the chlorite ions can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料液中に共存する二酸化塩素(ClO)と
亜塩素酸イオン(CtO−)を同時に測定する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for simultaneously measuring chlorine dioxide (ClO) and chlorite ion (CtO-) coexisting in a sample solution.

〔従来の技術〕[Conventional technology]

従来から上水やプールの殺菌に塩素が使用されているが
、塩素から発癌性のトリハロメタンが生成することが判
り問題となっている。
Chlorine has traditionally been used to disinfect tap water and swimming pools, but it has become a problem as it has been found that chlorine produces carcinogenic trihalomethanes.

そこで最近では、トリハロメタンを生成しない二酸化塩
素を用い、その酸化力による殺菌作用を利用して上水や
プールの殺菌が検討されている。
Therefore, recently, chlorine dioxide, which does not produce trihalomethane, is being used to sterilize tap water and swimming pools by utilizing its oxidizing power to sterilize water.

このように二酸化塩素を酸化剤として使用する場合、二
酸化塩素そのものは還元されて一部は亜塩素酸イオンに
なる。亜塩素酸イオンは光や紫外線により分解して二酸
化塩素となり、又酸性にすると二酸化塩素を生成する。
When chlorine dioxide is used as an oxidizing agent in this way, chlorine dioxide itself is reduced and a portion becomes chlorite ions. Chlorite ions decompose into chlorine dioxide when exposed to light or ultraviolet light, and when acidified, chlorine dioxide is produced.

繊維の漂白には亜塩素酸イオンが使用されるが、これは
亜塩素酸イオンを酸性にして生じる二酸化塩素の漂白作
用を利用したものである。
Chlorite ions are used to bleach fibers, and this utilizes the bleaching action of chlorine dioxide, which is produced by acidifying chlorite ions.

上記の如く、亜塩素酸イオンは二酸化塩素の酸化能を潜
在的に有するものであり、従って上記分野等においては
二酸化塩素の濃度管理だけでなく、亜塩素酸イオンの濃
度管理も同時に行なうことによって、試料のもつ酸化能
の必要且つ充分な管理を行なうことが出来る。
As mentioned above, chlorite ion has the potential to oxidize chlorine dioxide, and therefore, in the above fields, it is necessary to manage not only the concentration of chlorine dioxide but also the concentration of chlorite ion at the same time. , it is possible to perform necessary and sufficient control of the oxidizing ability of the sample.

ところで、溶存二酸化塩素の測定法としては、ヨウ素滴
定法(化学防災指針(7))と、隔膜形ポーラログラフ
電極法(特開昭54−125095号公報)が知られて
いる。又、亜塩素酸イオンの?lrJ定法としては、ヨ
ウ素滴定法(化学防災指針(7))のみがある。
Incidentally, as methods for measuring dissolved chlorine dioxide, the iodine titration method (Chemical Disaster Prevention Guidelines (7)) and the diaphragm polarographic electrode method (Japanese Patent Laid-Open No. 125095/1982) are known. Also, what about chlorite ions? As the lrJ method, there is only the iodine titration method (Chemical Disaster Prevention Guidelines (7)).

二酸化塩素の測定に用いる隔膜形ポーラログラフ電極法
は連続測定が可能であるが、試料液の他に電解液を必要
とするため、電極反応の進行に伴なって電解液の消耗が
おこるので、電解液の補充や交換の必要から連続使用で
きる期間に限界があった。又、ヨウ素滴定法は間欠測定
であって、連続的な濃度管理には不適当である。
The diaphragm polarographic electrode method used to measure chlorine dioxide allows continuous measurement, but since it requires an electrolyte in addition to the sample solution, the electrolyte is consumed as the electrode reaction progresses. There was a limit to how long it could be used continuously due to the need to replenish and replace the fluid. In addition, the iodine titration method is an intermittent measurement and is not suitable for continuous concentration control.

更に、ヨウ素滴定法による亜塩素酸イオンの測定では、
上記の如く;1!続的測定が不可能である他試料液を酸
性にして二酸化塩素を生成させ、これをヨウ素で置換し
て滴定する間接的な測定方法であるため、試料液中に同
時に含まれる二酸化塩素を分離して亜塩素酸イオンだけ
を測定することは出来ない。
Furthermore, in the measurement of chlorite ion by iodometric titration,
As above; 1! Continuous measurement is not possible.This is an indirect measurement method in which the sample solution is made acidic to generate chlorine dioxide, which is then replaced with iodine and titrated. Therefore, the chlorine dioxide that is simultaneously contained in the sample solution can be separated. It is not possible to measure only chlorite ions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、試料液中に共存する
二酸化塩素と亜塩素酸イオンを同時に、しかも連読的に
測定する方法を提供することを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a method for simultaneously and consecutively measuring chlorine dioxide and chlorite ions coexisting in a sample liquid.

(課題を解決するための手段〕 上記目的を達成するため、本発明の二酸化塩素と亜塩素
酸イオンの同時測定方法では、試料液中に2つの作用電
極と1つ又は2つの対極を浸に!するか、若しくは2つ
の作用電極と1つ又は2つの参照N極と1つ又は2つの
対極を浸漬し、貴金属又は炭素からなる2つの作用電極
を試料液に対し相対的に動かしながら、参照電極を基準
に又は参照N極のない場合は対極を基準にして、片方の
作用電極には二酸化塩素の還元電流を生じる電圧を印加
し又は印加しないで、且つ他方の作用電極には亜塩素酸
イオンの酸化電流を生じる電圧を印加して、発生する還
元電流又は短絡電流と酸化電流を測定することにより、
試料液中の二酸化塩素濃度と亜塩素酸イオン濃度を求め
ることを特徴とするO 〔作用〕 本発明方法は、試料液自体を電解液として直接電解し、
二酸化塩素と亜塩素酸イオンの夫々の電解により発生す
る電解電流を測定するものであって、第2図の加電圧電
流特性に示される如く試料液中の二酸化塩素と亜塩素酸
イオンが異なる電圧領域の印加電圧によって夫々電解さ
れるとの発見に基ずき為されたものである。
(Means for Solving the Problems) In order to achieve the above object, in the method for simultaneously measuring chlorine dioxide and chlorite ions of the present invention, two working electrodes and one or two counter electrodes are immersed in a sample solution. !Alternatively, two working electrodes, one or two reference north electrodes, and one or two counter electrodes are immersed, and while moving the two working electrodes made of noble metal or carbon relative to the sample liquid, With reference to the electrode or to the counter electrode in the absence of a reference N electrode, one working electrode may or may not be applied with a voltage that produces a reduction current of chlorine dioxide, and the other working electrode may be charged with chlorite. By applying a voltage that produces an oxidation current of ions and measuring the generated reduction current or short-circuit current and oxidation current,
The method of the present invention is characterized by determining the chlorine dioxide concentration and chlorite ion concentration in the sample solution.
It measures the electrolytic current generated by the electrolysis of chlorine dioxide and chlorite ions, and as shown in the applied voltage and current characteristics in Figure 2, chlorine dioxide and chlorite ions in the sample solution have different voltages. This was based on the discovery that electrolysis occurs depending on the voltage applied to the area.

印加電圧は使用する作用電極の種類等によって多少異な
るが、二酸化塩素は+0.4V〜−〇、4vの印加電圧
で還元電流(OVで短絡電流)を発生し、亜塩素酸イオ
ンは0.6V〜1.2vの印加電圧で酸化電流を発生す
る。この還元電流又は短絡電流は試料液中に溶存する二
酸化塩素の濃度に比例し、又酸化電流は試料液中の亜塩
素酸イオンの濃度に比例する。従って、二酸化塩素濃度
と還元電流又は短絡電流の値との関係及び亜塩素酸イオ
ンと酸化電流の関係を予め求めておけば、2つの作用電
極に上記2つの範囲の印加電圧を別々に与えながら試料
液における還元電流又は短絡電流と酸化電流を測定する
ことによって、試料液中の二酸化塩素濃度及び亜塩素酸
イオン濃度を知ることが出来る。
The applied voltage varies somewhat depending on the type of working electrode used, but chlorine dioxide generates a reduction current (short-circuit current with OV) at an applied voltage of +0.4V to -0, 4V, and chlorite ion generates a reduction current of 0.6V. An oxidation current is generated with an applied voltage of ~1.2v. This reduction current or short circuit current is proportional to the concentration of chlorine dioxide dissolved in the sample liquid, and the oxidation current is proportional to the concentration of chlorite ions in the sample liquid. Therefore, if the relationship between chlorine dioxide concentration and the reduction current or short-circuit current value and the relationship between chlorite ion and oxidation current are determined in advance, it is possible to apply voltages in the above two ranges to the two working electrodes separately. By measuring the reduction current or short circuit current and oxidation current in the sample solution, the chlorine dioxide concentration and chlorite ion concentration in the sample solution can be determined.

本発明方法は上記の如く電解を利用した方法であるから
、長期間測定を続けると作用電極の表面に酸化物の生成
による汚れが付着して発生電流値の低下をもたらすので
、このような場合には作用Nw1表面をブラシやガラス
ピーズ等でこすって、新しい表面を保つようにする必要
がある。
Since the method of the present invention utilizes electrolysis as described above, if measurements are continued for a long period of time, dirt due to the formation of oxides will adhere to the surface of the working electrode, resulting in a decrease in the generated current value. It is necessary to scrub the surface of the action Nw1 with a brush, glass beads, etc. to maintain a new surface.

〔実施例〕〔Example〕

本発明方法を実施するための測定装置の具体例を第1図
及び第5図から第7図に示した。
A specific example of a measuring device for carrying out the method of the present invention is shown in FIG. 1 and FIGS. 5 to 7.

第1図は測定槽1に供給される試料液2に、2つの作用
電極3と2つの対極4を浸漬した測定装置であり、2つ
の作用m極3は同一の棒状絶縁物上に離れて形成されて
いる。この棒状絶縁物を回転させることにより2つの作
用電極3を試料液2に対して動かしながら、2つの作用
電極3に所定の異なる電圧を印加して、各印加電圧に対
応して発生する還元電流と酸化電流を2つの電流計6で
別々に測定するようになっている。
Figure 1 shows a measuring device in which two working electrodes 3 and two counter electrodes 4 are immersed in a sample solution 2 supplied to a measuring tank 1, and the two working electrodes 3 are spaced apart on the same rod-shaped insulator. It is formed. While moving the two working electrodes 3 relative to the sample solution 2 by rotating this rod-shaped insulator, predetermined different voltages are applied to the two working electrodes 3, and a reduction current is generated corresponding to each applied voltage. and oxidation current are measured separately by two ammeters 6.

第5図は電流を流す電極と電位を規制する電極を分離し
た測定装置の例であり、通常は電位を規制する1tts
として市販の参照N極5を使用し且つ電流を流す作用i
I極3には貴金属を使用する。又この測定装置では、電
圧の印加と発生する電流の測定を2つのポテンショスタ
ット7を用いて行なっている。更に第6図と第7図は第
1図と同様の参照1!極のない測定装置であるが、2つ
の作用電極3に対して対極4を1つにした例である。特
に第7図の装置では、作用電極3を形成した棒状絶縁物
の表面に対極4を配置し、全体を小型化したものである
Figure 5 is an example of a measuring device that separates the electrode that allows current to flow and the electrode that regulates potential.
The action of using a commercially available reference N-pole 5 and passing a current i
Noble metal is used for I pole 3. Further, in this measuring device, two potentiostats 7 are used to apply voltage and measure the generated current. Furthermore, Figures 6 and 7 have the same references as Figure 1! Although this is a measuring device without poles, this is an example in which there are two working electrodes 3 and one counter electrode 4. In particular, in the device shown in FIG. 7, a counter electrode 4 is disposed on the surface of a rod-shaped insulator on which a working electrode 3 is formed, thereby reducing the overall size.

尚、作用電極3と試料液2との相対的な動きをスターラ
ーによる試料液2の攪拌により形成しても良く、その場
合に回転するスターラーバーを作用電極3に接触させれ
ば、作用電極3の表面を常時こすって新しい表面を保つ
ことが可能となる。
Incidentally, the relative movement between the working electrode 3 and the sample liquid 2 may be formed by stirring the sample liquid 2 with a stirrer, and in that case, if a rotating stirrer bar is brought into contact with the working electrode 3, the working electrode 3 It is possible to keep the surface new by constantly rubbing the surface.

第1図の測定装置において、作用電極3として金(Au
) 、白金(pt)又はグラフシーカーボン(GC)を
用い、及び対極4として銀又は銀/塩化銀(Agat)
を使用して、一定濃度の二酸化塩素(濃度約5ppm)
と亜塩素酸イオン(濃度約30 ppm )を含む試料
液(p H6)に対して作用電極3への印加電圧を変化
させた場合の加電圧電流特性を第2図に示した。この場
合、作用電極の種類により多少異なるが、対極4を基準
にして+0.4v〜−0,4Vの範囲の印加電圧(印加
電圧OVを含む)で二酸化塩素の拡散律速に基ずく安定
した還元電流が発生し、更に0.6V〜1.2vの範囲
の印加電圧で亜塩素酸イオンの拡散律速に基ずく安定し
た酸化電流が発生し、これらの範囲では残余電流も小さ
いことが判る。
In the measuring device of FIG. 1, the working electrode 3 is made of gold (Au).
), using platinum (pt) or graphy carbon (GC), and silver or silver/silver chloride (Agat) as the counter electrode 4.
using a constant concentration of chlorine dioxide (concentration approximately 5 ppm)
FIG. 2 shows the applied voltage-current characteristics when the voltage applied to the working electrode 3 was varied for a sample solution (pH 6) containing chlorite ions (concentration: about 30 ppm). In this case, although it varies somewhat depending on the type of working electrode, stable reduction based on the diffusion rate of chlorine dioxide is achieved at an applied voltage in the range of +0.4V to -0.4V (including applied voltage OV) with reference to the counter electrode 4. It can be seen that a current is generated, and a stable oxidation current based on the rate-limiting diffusion of chlorite ions is generated at an applied voltage in the range of 0.6 V to 1.2 V, and that the residual current is also small in these ranges.

又、第3図は、上記と同じ測定装置と試料液で印加電圧
を0.25Vに設定し、試料液のpHを変化させた場合
の二酸化塩素の還元電流と残余電流の変化を示す。第4
図は印加電圧を0.75Vに設定し、試料液のpHを変
化させた場合の亜塩素酸イオンの酸化電流と残余電流の
変化を示す。第3図及び第4図から、作用xiとしてp
tを用いた場合には残余電流や還元電流又は酸化電流が
大きく変動し、PHの影響が大きいことが判る。−万、
作用電極としてAu又はGCを用いるとpHの影響が比
較的少ないことが判るが、その場合でもpHの影響を無
視出来ないので、試料液のpHが変動する場合にはpH
を測定し、測定値を補正することが測定精度を上げるう
えで望ましい。
Furthermore, FIG. 3 shows changes in the reduction current and residual current of chlorine dioxide when using the same measuring device and sample liquid as described above, setting the applied voltage to 0.25 V and changing the pH of the sample liquid. Fourth
The figure shows changes in the oxidation current and residual current of chlorite ions when the applied voltage is set to 0.75 V and the pH of the sample solution is changed. From Fig. 3 and Fig. 4, as the effect xi, p
It can be seen that when t is used, the residual current, reduction current, or oxidation current varies greatly, and the influence of PH is large. Ten thousand,
It can be seen that the effect of pH is relatively small when Au or GC is used as the working electrode, but even in that case, the effect of pH cannot be ignored, so if the pH of the sample solution fluctuates, the pH
It is desirable to measure and correct the measured value in order to improve measurement accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二酸化塩素と亜塩素酸イオンの共存す
る場合にも、試料液自体を電解液として異なる2種の電
圧を印加して夫々の電解電流を測定することにより、試
料液中に共存する二酸化塩素と亜塩素酸イオンを同時に
、しかも連続測定することが出来る。
According to the present invention, even when chlorine dioxide and chlorite ions coexist, the sample solution itself can be used as an electrolyte, and two different voltages are applied and the electrolytic currents of each are measured. It is possible to simultaneously and continuously measure coexisting chlorine dioxide and chlorite ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる測定装置の一例を示
す概略の断面図である。第2図は一定濃度の二酸化塩素
と亜塩素酸イオンを含む試料液の加電圧電流特性を示す
グラフであり、第3図は同じ試料液での還元電流及び残
余電流とpHの関係を示すグラフ、及び第4図は同じ試
料液での酸化電流及び残余電流とpHの関係を示すグラ
フである。第5図から第7図は本発明方法の実施に用い
る別の測定装置を示す概略の断面図である。 1・・測定槽     2・・試料液 3・・作用電極    4・・対極 5・・参照電極    6・・電流計 7・・ポテンショスタット 出願人  東亜電波工業株式会社 第3図 pH 第4図 H
FIG. 1 is a schematic cross-sectional view showing an example of a measuring device used to carry out the method of the present invention. Figure 2 is a graph showing the applied voltage and current characteristics of a sample solution containing constant concentrations of chlorine dioxide and chlorite ions, and Figure 3 is a graph showing the relationship between reduction current, residual current, and pH for the same sample solution. , and FIG. 4 are graphs showing the relationship between oxidation current and residual current and pH for the same sample solution. FIGS. 5 to 7 are schematic cross-sectional views showing another measuring device used for carrying out the method of the invention. 1. Measuring tank 2. Sample solution 3. Working electrode 4. Counter electrode 5. Reference electrode 6. Ammeter 7. Potentiostat Applicant Toa Denpa Kogyo Co., Ltd. Figure 3 pH Figure 4 H

Claims (1)

【特許請求の範囲】[Claims] (1)試料液中に2つの作用電極と1つ又は2つの対極
を浸漬するか、若しくは2つの作用電極と1つ又は2つ
の参照電極と1つ又は2つの対極を浸漬し、貴金属又は
炭素からなる2つの作用電極を試料液に対し相対的に動
かしながら、参照電極を基準に又は参照電極のない場合
は対極を基準にして、片方の作用電極には二酸化炭素の
還元電流を生じる電圧を印加し又は印加しないで、且つ
他方の作用電極には亜塩素酸イオンの酸化電流を生じる
電圧を印加して、発生する還元電流又は短絡電流と酸化
電流を測定することにより、試料液中の二酸化塩素濃度
と亜塩素酸イオン濃度を求めることを特徴とする二酸化
塩素と亜塩素酸イオンの同時測定方法。
(1) Immerse two working electrodes and one or two counter electrodes in the sample solution, or immerse two working electrodes, one or two reference electrodes, and one or two counter electrodes, and While moving the two working electrodes consisting of Dioxide in the sample solution is measured by applying or not applying a voltage, and applying a voltage that generates an oxidation current of chlorite ions to the other working electrode, and measuring the generated reduction current or short-circuit current and oxidation current. A method for simultaneously measuring chlorine dioxide and chlorite ions, characterized by determining chlorine concentration and chlorite ion concentration.
JP1116290A 1989-05-10 1989-05-10 Simultaneous measurement method of chlorine dioxide and chlorite ion Expired - Fee Related JPH0731157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116290A JPH0731157B2 (en) 1989-05-10 1989-05-10 Simultaneous measurement method of chlorine dioxide and chlorite ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116290A JPH0731157B2 (en) 1989-05-10 1989-05-10 Simultaneous measurement method of chlorine dioxide and chlorite ion

Publications (2)

Publication Number Publication Date
JPH02296146A true JPH02296146A (en) 1990-12-06
JPH0731157B2 JPH0731157B2 (en) 1995-04-10

Family

ID=14683388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116290A Expired - Fee Related JPH0731157B2 (en) 1989-05-10 1989-05-10 Simultaneous measurement method of chlorine dioxide and chlorite ion

Country Status (1)

Country Link
JP (1) JPH0731157B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090339A (en) * 2000-09-20 2002-03-27 Dkk Toa Corp Sensor for oxidation-reduction electric current measuring instrument, oxidation-reduction electric current measuring instrument, and method and system using the instrument for controlling water quality
EP1484606A1 (en) * 2003-05-21 2004-12-08 ProMinent Dosiertechnik GmbH Chlorite sensor using a gold electrode
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
WO2007022473A1 (en) * 2005-08-19 2007-02-22 Honeywell International Inc. Electrochemical chlorine dioxide sensor and method for detecting said chlorine dioxide
DE202010007065U1 (en) 2010-05-21 2010-10-07 Dr. Reiß GmbH Chlorite measuring system
DE102009054279A1 (en) 2009-11-23 2011-05-26 Dr. Reiß GmbH Method for continuous determination of chlorite content of aqueous solution for disinfecting e.g. drinking water in pipeline, involves subtracting electrical signal from another signal to form third signal proportional to chlorite content
WO2012010864A1 (en) * 2010-07-20 2012-01-26 Palintest Limited Method and device for determining an oxydant in an aqueous solution
EP2530055A1 (en) * 2011-06-03 2012-12-05 Siemens Aktiengesellschaft System and method of controlling dosing of a disinfectant into water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090339A (en) * 2000-09-20 2002-03-27 Dkk Toa Corp Sensor for oxidation-reduction electric current measuring instrument, oxidation-reduction electric current measuring instrument, and method and system using the instrument for controlling water quality
EP1484606A1 (en) * 2003-05-21 2004-12-08 ProMinent Dosiertechnik GmbH Chlorite sensor using a gold electrode
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
WO2007022473A1 (en) * 2005-08-19 2007-02-22 Honeywell International Inc. Electrochemical chlorine dioxide sensor and method for detecting said chlorine dioxide
GB2443134A (en) * 2005-08-19 2008-04-23 Honeywell Int Inc Electrochemical chlorine dioxide sensor and method for detecting said chlorine dioxide
DE102009054279A1 (en) 2009-11-23 2011-05-26 Dr. Reiß GmbH Method for continuous determination of chlorite content of aqueous solution for disinfecting e.g. drinking water in pipeline, involves subtracting electrical signal from another signal to form third signal proportional to chlorite content
DE202010007065U1 (en) 2010-05-21 2010-10-07 Dr. Reiß GmbH Chlorite measuring system
WO2012010864A1 (en) * 2010-07-20 2012-01-26 Palintest Limited Method and device for determining an oxydant in an aqueous solution
GB2495244B (en) * 2010-07-20 2016-03-09 Palintest Ltd Method for determining an oxidant in an aqueous solution
EP2530055A1 (en) * 2011-06-03 2012-12-05 Siemens Aktiengesellschaft System and method of controlling dosing of a disinfectant into water
WO2012163640A1 (en) * 2011-06-03 2012-12-06 Siemens Aktiengesellschaft System and method of controlling dosing of a disinfectant into water

Also Published As

Publication number Publication date
JPH0731157B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPH02296146A (en) Method for simultaneously measuring chlorine dioxide and chlorite ion
Awad et al. Simultaneous electroanalysis of peroxyacetic acid and hydrogen peroxide
JPWO2020091033A1 (en) Tripolar electrode having a conductive diamond electrode as a reference electrode, an apparatus, and an electrochemical measurement method
Jin et al. A miniaturized FIA system for the determination of residual chlorine in environmental water samples
US20050011771A1 (en) Chlorite sensor
Silva et al. Electrochemical determination of nitrites in natural waters with ultramicroelectrodes
Colombo et al. Coulometric micro-titrator with a ruthenium dioxide pH-electrode
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JPH02296145A (en) Method for measuring chlorite ion
US20190315633A1 (en) Ozone sensor
Myers et al. Development of an automated on-line electrochemical chlorite ion sensor
JPH06249832A (en) Measurement of chlorous acid ion
Steininger et al. ORP sensor response in chlorinated water
Toniolo et al. Simultaneous detection of peracetic acid and hydrogen peroxide by amperometry at Pt and Au electrodes
KR20130075686A (en) Polarographic type residual chlorine sensor
Rudolph et al. Simple electrochemical method for the quantification of chlorite in aqueous and non-aqueous media
JPH06249830A (en) Measurement of chlorous acid ion
Nakareseisoon et al. Determination of chlorite at very low levels by using differential pulse polarography
Morrow Residual‐Chlorine Determination With Dual Polarizable Electrodes
RU2178886C2 (en) Method and apparatus for detecting concentration of active chlorine in electrolyte solution
JP3838435B2 (en) Hypochlorous acid concentration measuring device
Abdennabi et al. Differential electrolytic potentiometry, a detector in flow injection analysis for precipitaton reactions
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
JP2009069025A (en) Diaphragm type hydrogen peroxide electrode
JPH0387649A (en) Method for measuring chlorous acid ion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees