JPH0746090B2 - Method for measuring dissolved chlorine dioxide - Google Patents

Method for measuring dissolved chlorine dioxide

Info

Publication number
JPH0746090B2
JPH0746090B2 JP1116288A JP11628889A JPH0746090B2 JP H0746090 B2 JPH0746090 B2 JP H0746090B2 JP 1116288 A JP1116288 A JP 1116288A JP 11628889 A JP11628889 A JP 11628889A JP H0746090 B2 JPH0746090 B2 JP H0746090B2
Authority
JP
Japan
Prior art keywords
electrode
chlorine dioxide
working electrode
sample solution
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1116288A
Other languages
Japanese (ja)
Other versions
JPH02296143A (en
Inventor
悦雄 降矢
Original Assignee
東亜電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亜電波工業株式会社 filed Critical 東亜電波工業株式会社
Priority to JP1116288A priority Critical patent/JPH0746090B2/en
Publication of JPH02296143A publication Critical patent/JPH02296143A/en
Publication of JPH0746090B2 publication Critical patent/JPH0746090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料液中に溶存している二酸化塩素(ClO2
を連続的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to chlorine dioxide (ClO 2 ) dissolved in a sample solution.
It relates to a method for continuously measuring.

〔従来の技術〕[Conventional technology]

従来から上水やプールの殺菌に塩素が使用されている
が、塩素から発癌性のトリハロメタンが生成することが
判り問題となつている。
Chlorine has been used for the sterilization of tap water and pools, but it is known that chlorine produces carcinogenic trihalomethanes, which is a problem.

そこで最近では、トリハロメタンを生成しない二酸化塩
素による上水やプールの殺菌が検討されている。又、二
酸化塩素は強い酸化力を有するので、繊維の漂白にも利
用されている。
Therefore, recently, sterilization of tap water or pool with chlorine dioxide that does not generate trihalomethane has been studied. Further, since chlorine dioxide has a strong oxidizing power, it is also used for bleaching fibers.

従つて、これらの分野においては、液中に溶解した二酸
化塩素の濃度を適切に管理することが極めて重要であ
る。
Therefore, in these fields, it is extremely important to properly control the concentration of chlorine dioxide dissolved in the liquid.

一方、溶存二酸化塩素の測定法としては、ヨウ素滴定法
(化学防災指針(7))と、隔膜形ポーラログラフ電極
法(特開昭54−125095号公報)が知られている。
On the other hand, as a method for measuring dissolved chlorine dioxide, an iodine titration method (Chemical disaster prevention guideline (7)) and a diaphragm type polarographic electrode method (Japanese Patent Laid-Open No. 54-125095) are known.

しかしながら、上記のヨウ素滴定法は間欠測定であつ
て、連続的な濃度管理には不適当である。隔膜形ポーラ
ログラフ電極法は連続測定が可能であるが、試料液の他
に電解液を必要とするため、電極反応の進行に伴なつて
電解液の消耗が起るので、電解液の補充や交換の必要か
ら連続使用出来る期間に限界があつた。
However, the above-mentioned iodometric titration method is an intermittent measurement and is not suitable for continuous concentration control. The diaphragm-type polarographic electrode method allows continuous measurement, but since the electrolyte solution is required in addition to the sample solution, the electrolyte solution is consumed as the electrode reaction progresses, so the electrolyte solution is replenished or replaced. There was a limit to the period of continuous use due to the need for

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明はかかる従来の事情に鑑み、連続測定が可能であ
り、補充や交換の必要がある特別な電解液などを用いる
ことのない、溶存二酸化塩素の測定方法を提供すること
を目的とする。
In view of such conventional circumstances, it is an object of the present invention to provide a method for measuring dissolved chlorine dioxide that enables continuous measurement and does not use a special electrolytic solution that needs to be replenished or replaced.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、本発明の溶存二酸化塩素の測
定方法では、試料液中に作用電極と対極の2極又は作用
電極と参照電極と対極の3極を浸漬し、貴金属又は炭素
からなる作用電極と試料液とを相対的に動かしながら、
2極の場合は対極を基準に又3極の場合は参照電極を基
準にして溶存二酸化塩素の還元電流を生じる電圧を作用
電極に印加して発生する還元電流を測定するか、又は作
用電極と対極の短絡電流を測定して試料液中の二酸化塩
素濃度を求めることを特徴とする。
In order to achieve the above-mentioned object, in the method for measuring dissolved chlorine dioxide of the present invention, two electrodes of a working electrode and a counter electrode or three electrodes of a working electrode, a reference electrode and a counter electrode are immersed in a sample solution, and an action made of a noble metal or carbon is obtained. While moving the electrode and the sample solution relatively,
In the case of 2 poles, the counter electrode is used as a reference, and in the case of 3 poles, the reference electrode is used as a reference, and a voltage that causes a reduction current of dissolved chlorine dioxide is applied to the working electrode to measure the reduction current generated. It is characterized in that the short-circuit current of the counter electrode is measured to obtain the chlorine dioxide concentration in the sample solution.

〔作用〕[Action]

本発明は、試料液中の溶存二酸化塩素が印加電圧の如何
によつては電解され、電解電流を発生するとの発見に基
づきなされたものである。
The present invention is based on the discovery that dissolved chlorine dioxide in a sample solution is electrolyzed depending on the applied voltage to generate an electrolysis current.

即ち、本発明方法は試料液自体を電解液として直接電解
し、二酸化塩素の電解により発生する電流を測定するも
のであつて、二酸化塩素の電解の場合には還元電流が発
生する。
That is, in the method of the present invention, the sample solution itself is directly electrolyzed to measure the current generated by the electrolysis of chlorine dioxide, and a reduction current is generated in the case of electrolysis of chlorine dioxide.

この還元電流は試料液中に溶存する二酸化塩素の濃度に
比例するので、溶存二酸化塩素濃度と還元電流の値との
関係を予め求めておけば、供給した試料液における還元
電流を測定することによつて溶存二酸化塩素の濃度を知
ることが出来る。
This reduction current is proportional to the concentration of chlorine dioxide dissolved in the sample solution, so if the relationship between the concentration of dissolved chlorine dioxide and the value of the reduction current is obtained in advance, the reduction current in the supplied sample solution will be measured. Therefore, the concentration of dissolved chlorine dioxide can be known.

本発明方法は上記の如く電解を利用した方法であるか
ら、長期間測定を続けると作用電極の表面に酸化物の生
成による汚れが付着して発生電流値の低下をもたらすの
で、このような場合には作用電極表面をブラシやガラス
ビーズ等でこすつて、新しい表面を保つようにする必要
がある。
Since the method of the present invention uses electrolysis as described above, if measurement is continued for a long period of time, stains due to the formation of oxides adhere to the surface of the working electrode, resulting in a decrease in generated current value. It is necessary to rub the surface of the working electrode with a brush or glass beads so that a new surface is maintained.

〔実施例〕〔Example〕

本発明方法を実施するための測定装置の具体例を第1図
及び第4図から第6図に示した。
Specific examples of the measuring apparatus for carrying out the method of the present invention are shown in FIGS. 1 and 4 to 6.

第1図は測定槽1に供給される試料液2に作用電極3と
対極4を浸漬した2極による測定装置であり、作用電極
3を回転させることにより試料液2に対して動かしなが
ら、作用電極3に印加した電圧により発生する還元電流
を電流計6で測定するようになつている。第4図は対極
4として市販の参照電極を用いた2極による測定装置で
ある。
FIG. 1 shows a two-electrode measuring device in which a working electrode 3 and a counter electrode 4 are immersed in a sample solution 2 supplied to a measuring tank 1. An ammeter 6 measures the reduction current generated by the voltage applied to the electrode 3. FIG. 4 shows a two-pole measuring device using a commercially available reference electrode as the counter electrode 4.

第5図は電流を流す電極と電位を規制する電極を分離し
た3極による測定装置の例であり、通常は電位を規制す
る電極として市販の参照電極5を使用し且つ電流を流す
作用電極3には貴金属を使用する。又、第5図の測定装
置では、電圧の印加と発生する還元電流の測定をポテン
シヨスタツト7を用いて行なつている。更に、第6図は
第1図と同様の2極による測定装置であるが、作用電極
3と試料液2との相対的な動きをスターラーによる試料
液2の攪拌により得る例であり、回転するスターラーバ
ー8を作用電極3に接触させることにより、作用電極3
の表面を常時こすつて新しい表面を保つようにしたもの
である。
FIG. 5 shows an example of a three-pole measuring device in which an electrode for flowing a current and an electrode for regulating a potential are separated. Usually, a commercially available reference electrode 5 is used as an electrode for regulating the potential and a working electrode 3 for feeding a current is used. Precious metals are used for. Further, in the measuring apparatus shown in FIG. 5, application of a voltage and measurement of a reducing current generated are carried out by using a potentiostat 7. Further, FIG. 6 shows a measuring device with two poles similar to that of FIG. 1, but this is an example in which the relative movement between the working electrode 3 and the sample solution 2 is obtained by stirring the sample solution 2 with a stirrer, and it rotates. By bringing the stirrer bar 8 into contact with the working electrode 3,
The surface of is constantly rubbed to keep a new surface.

第1図の測定装置において、作用電極3として金(A
u)、白金(Pt)又はグラツシーカーボン(GC)を用
い、及び対極4として銀又は銀/塩化銀(AgCl)を使用
して、約5ppmの溶存二酸化塩素を含む試料液(pH6)に
対して作用電極3への印加電圧を変化させた場合の加電
圧電流特性を第2図に示した。この場合、作用電極の種
類により多少異なるが印加電圧が+0.5Vよりも小さくな
ると拡散律速に基づく安定した還元電流が発生し、特に
作用電極3がAu又はGCの場合には印加電圧+0.4V〜−0.
4Vの範囲で二酸化塩素の安定した還元電流が発生し残余
電流も小さいことが判る。
In the measuring device shown in FIG. 1, gold (A
u), platinum (Pt) or glassy carbon (GC) and using silver or silver / silver chloride (AgCl) as the counter electrode 4 for a sample solution (pH 6) containing about 5 ppm of dissolved chlorine dioxide. FIG. 2 shows applied voltage-current characteristics when the applied voltage to the working electrode 3 was changed. In this case, when the applied voltage becomes smaller than +0.5 V, a stable reduction current is generated based on the diffusion rate-controlling, although it is slightly different depending on the type of the working electrode. Especially, when the working electrode 3 is Au or GC, the applied voltage is +0.4 V. ~ -0.
It can be seen that a stable reduction current of chlorine dioxide is generated in the range of 4 V and the residual current is also small.

作用電極3と対極4による2極の測定の場合、両者の短
絡電流を測定しても良く、この場合は第2図における印
加電圧ゼロと同じ意味である。
In the case of the two-pole measurement using the working electrode 3 and the counter electrode 4, the short-circuit current of both may be measured, and in this case, it has the same meaning as zero applied voltage in FIG.

又、第3図は、上記と同じ測定装置と試料液で印加電圧
を+0.25Vに設定し、試料液のpHを変化させた場合の電
流変化を示す。作用電極としてPtを用いた場合には残余
電流や還元電流が大きく変動し、pHの影響が大きいこと
が判る。一方、作用電極としてAu又はGCを用いるとpHの
影響が少ないことが判り、安定して精度のよい測定が出
来るので好ましい。尚、作用電極にAu又はGCを使用した
場合でもpHの影響を無視できないので、試料液のpHが変
動する場合にはpHを測定し、測定値を補正することが測
定精度を上げるうえで望ましい。
Further, FIG. 3 shows a change in current when the applied voltage is set to +0.25 V with the same measuring device and the sample solution as described above and the pH of the sample solution is changed. It can be seen that when Pt is used as the working electrode, the residual current and the reduction current fluctuate greatly and the effect of pH is large. On the other hand, it is preferable to use Au or GC as the working electrode because it is found that the influence of pH is small and stable and accurate measurement can be performed. Since the influence of pH cannot be ignored even when Au or GC is used for the working electrode, it is desirable to measure the pH when the pH of the sample solution fluctuates and correct the measured value in order to improve the measurement accuracy. .

〔発明の効果〕〔The invention's effect〕

本発明によれば、二酸化塩素の溶解した試料液自体を電
解液として電解電流を測定するので、補充や交換が必要
な特別な電解液などを要せず、従つて長期間に亘る連続
測定が可能な溶存二酸化塩素の測定方法を提供すること
が出来る。
According to the present invention, since the electrolytic current is measured by using the sample solution itself in which chlorine dioxide is dissolved as the electrolytic solution, no special electrolytic solution or the like that needs replenishment or replacement is required, and therefore continuous measurement for a long period of time is possible. A possible method for measuring dissolved chlorine dioxide can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に用いる測定装置の一例を示
す概略の断面図であり、第2図は一定濃度の溶存二酸化
塩素を含む試料液の加電圧電流特性を示すグラフであ
り、第3図は同じ試料液での還元電流及び残余電流とpH
の関係を示すグラフである。第4図から第6図は本発明
方法の実施に用いる別の測定装置を示す概略の断面図で
ある。 1……測定槽、2……試料液 3……作用電極、4……対極 5……参照電極、6……電流計 7……ポテンシヨスタツト 8……スターラーバー
FIG. 1 is a schematic cross-sectional view showing an example of a measuring apparatus used for carrying out the method of the present invention, and FIG. 2 is a graph showing applied voltage-current characteristics of a sample liquid containing a fixed concentration of dissolved chlorine dioxide. Figure 3 shows the reduction current, residual current and pH of the same sample solution.
It is a graph which shows the relationship of. 4 to 6 are schematic sectional views showing another measuring apparatus used for carrying out the method of the present invention. 1 ... Measuring tank, 2 ... Sample solution, 3 ... Working electrode, 4 ... Counter electrode, 5 ... Reference electrode, 6 ... Ammeter, 7 ... Potentiometer, 8 ... Stirrer bar

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料液中に作用電極と対極の2極又は作用
電極と参照電極と対極の3極を浸漬し、貴金属又は炭素
からなる作用電極と試料液とを相対的に動かしながら、
2極の場合は対極を基準に又3極の場合は参照電極を基
準にして溶存二酸化塩素の還元電流を生じる電圧を作用
電極に印加し、発生する還元電流を測定するか又は作用
電極と対極の短絡電流を測定して、試料液中の二酸化塩
素濃度を求めることを特徴とする溶存二酸化塩素の測定
方法。
1. A working electrode and two counter electrodes or a working electrode, a reference electrode and three counter electrodes are immersed in a sample solution, and the working electrode made of a noble metal or carbon and the sample solution are relatively moved,
In the case of 2 poles, the counter electrode is used as a reference, and in the case of 3 poles, the reference electrode is used as a reference, and a voltage that causes a reduction current of dissolved chlorine dioxide is applied to the working electrode, and the generated reduction current is measured, or the working electrode and the counter electrode are measured. A method for measuring dissolved chlorine dioxide, characterized in that the chlorine dioxide concentration in the sample solution is determined by measuring the short-circuit current of the.
【請求項2】作用電極に金又はグラツシーカーボンを使
用し、対極に銀又は銀/塩化銀を使用して、対極を基準
にして作用電極に+0.4V〜−0.4Vの電圧を印加すること
を特徴とする、請求項(1)記載の溶存二酸化塩素の測
定方法。
2. A gold or glassy carbon is used for the working electrode, silver or silver / silver chloride is used for the counter electrode, and a voltage of +0.4 V to -0.4 V is applied to the working electrode with reference to the counter electrode. The method for measuring dissolved chlorine dioxide according to claim 1, which is characterized in that
JP1116288A 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide Expired - Fee Related JPH0746090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116288A JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116288A JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Publications (2)

Publication Number Publication Date
JPH02296143A JPH02296143A (en) 1990-12-06
JPH0746090B2 true JPH0746090B2 (en) 1995-05-17

Family

ID=14683341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116288A Expired - Fee Related JPH0746090B2 (en) 1989-05-10 1989-05-10 Method for measuring dissolved chlorine dioxide

Country Status (1)

Country Link
JP (1) JPH0746090B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298110A (en) * 1999-02-08 2000-10-24 Toa Electronics Ltd Oxidation-reduction current measuring device
KR20040009344A (en) * 2002-07-23 2004-01-31 유일정공 주식회사 Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
CN104459168A (en) * 2014-09-26 2015-03-25 浙江工商大学 Device and method for detecting concentration of D-galactose solution
CN104459167A (en) * 2014-09-26 2015-03-25 浙江工商大学 Lactose concentration detection device and lactose concentration detection method
KR102090694B1 (en) * 2019-11-18 2020-03-19 한국기초과학지원연구원 Electrochemical cell and system including the same

Also Published As

Publication number Publication date
JPH02296143A (en) 1990-12-06

Similar Documents

Publication Publication Date Title
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
KR100481663B1 (en) Biosensor contained mesoporous platinum and method of determining concentration using same
US20120103823A1 (en) Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry
JPH0731157B2 (en) Simultaneous measurement method of chlorine dioxide and chlorite ion
Honda et al. pH measurement in the vicinity of a cathode evolving hydrogen gas using an antimony microelectrode
JPH0746090B2 (en) Method for measuring dissolved chlorine dioxide
Hahn et al. The development of new microelectrode gas sensors: an odyssey. Part 1. O2 and CO2 reduction at unshielded gold microdisc electrodes
JPH0746093B2 (en) Method for measuring chlorite ion
Guilbault et al. Glass-metal composite electrodes
Galík et al. A study on stripping voltammetric determination of osmium (IV) at a carbon paste electrode modified in situ with cationic surfactants
JP2005060761A (en) Hypohalite generating device and method
CA2173464A1 (en) Method and device for the determination of substances in solution
Myers et al. Development of an automated on-line electrochemical chlorite ion sensor
JP2001013102A (en) Fractionately measuring method for peracetic acid and hydrogen peroxide
Uchiyama et al. Highly sensitive electrochemical sensor for ozone in water using porous carbon felt electrode
US5393392A (en) Polarographic PPB oxygen gas sensor
Niese et al. Cyclic voltammetry of neptunium in different media
JPH06249832A (en) Measurement of chlorous acid ion
Lunte et al. Voltammetric/amperometric detection for flow-injection systems
Komkova et al. Scanning electrochemical microscopy: Visualization of local electrocatalytic activity of transition metals hexacyanoferrates
CA2213055C (en) Determination of chlorate ion concentration using microelectrodes
JP3372078B2 (en) How to measure chlorite ion
Maj-Zurawska et al. Effect of the platinum surface on the potential of nitrate-selective electrodes without internal solution
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
Hendler et al. Automated electrodic potentiometry system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees