JP2004226263A - Electrolyte for diaphragm type electrode, the diaphragm type electrode, and method for stabilizing the same - Google Patents

Electrolyte for diaphragm type electrode, the diaphragm type electrode, and method for stabilizing the same Download PDF

Info

Publication number
JP2004226263A
JP2004226263A JP2003014982A JP2003014982A JP2004226263A JP 2004226263 A JP2004226263 A JP 2004226263A JP 2003014982 A JP2003014982 A JP 2003014982A JP 2003014982 A JP2003014982 A JP 2003014982A JP 2004226263 A JP2004226263 A JP 2004226263A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
diaphragm type
type electrode
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014982A
Other languages
Japanese (ja)
Other versions
JP4217077B2 (en
Inventor
Hiroko Konno
裕子 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2003014982A priority Critical patent/JP4217077B2/en
Publication of JP2004226263A publication Critical patent/JP2004226263A/en
Application granted granted Critical
Publication of JP4217077B2 publication Critical patent/JP4217077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for diaphragm type electrodes that can allow electrodes to reach stable potential speedily, reduces aging time, and can be set to a measurable state quickly regardless of the storage state of the electrode, and to provide the diaphragm type electrode, and a method for stabilizing the diaphragm type electrode. <P>SOLUTION: A chamber 2a that is partitioned from the outside by a diaphragm 3 for penetrating gas to be measured in a sample is provided at one end of an electrode body 2, an operation electrode 4 and a counter electrode 7 are arranged in the chamber 2a with the electrodes 4 and 7 present in the electrolyte 6, the electrolyte 6 for the diaphragm type electrode used for the diaphragm type electrode for measuring current flowing between the operation electrode 4 and the counter electrode 7 by allowing the gas to be measured that is penetrated through the diaphragm 3 to react at the counter electrode 4 contains a metal ion of the same type as metal for composing the operation electrode 4 in the diaphragm type electrode 1, a metal complex, or a metal compound. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、試料中の目的物質、即ち、酸化体又は還元体とされる測定対象ガス、例えば溶液中或いは気中の溶存酸素或いは溶存水素等の濃度を測定する隔膜型電極に使用する隔膜型電極用電解液、更には隔膜型電極及び隔膜型電極の安定化方法に関するものである。
【0002】
【従来の技術】
例えば、環境(河川、海水)水処理、発酵、養殖の分野では試料溶液中の溶存酸素(酸化体)の測定が重要であり、モニタリングやプロセス制御に溶存酸素計が広く使用されている。この溶存酸素計のセンサとして、酸素透過膜性の隔膜を使用した隔膜型電極、即ち、ポーラログラフ式隔膜型電極や、ガルバニ電池式隔膜型電極等が主に用いられている。又、原子力発電プラント等では溶存水素(還元体)の測定が重要であり、計器によるモニタリングが行われている。
【0003】
図2に、従来のガス透過性の隔膜を使用したポーラログラフ式の隔膜型電極(以下「ポーラログラフ式電極」という。)1Aを示す。図示するように、ポーラログラフ式電極1Aは、例えば中空円筒状の電極本体2の先端開口部に測定対象ガスを透過させるガス透過性の隔膜3が固定され、この隔膜3に近接して電極本体内部に作用極4が対向配置されている。この作用極4は電極本体2の内部に同軸的に配設された支持管5の先端に取り付けられている。
【0004】
作用極4は、隔膜3と僅かな間隔をもって対向対置されており、従って、作用極4と隔膜3との間に電解液6の薄層が存在することとなる。又、支持管5の外周部には対極7が取り付けられている。そして、この対極7と作用極4との間に、それらに接続されたリード線7a及び4aを介して電源8から所定の電解電圧を連続して印加し(通常は作用極4に負電圧を印加する)、電解電流の定常値を電流計9にて測定することによって試料溶液中の溶存ガス濃度を求めている。作用極4としては、一般に、銀(Ag)、白金(Pt)、金(Au)が用いられ、対極7としては銀(Ag)、銀−塩化銀(Ag/AgCl)が用いられる。
【0005】
例えば、試料溶液中の溶存酸素の濃度を測定する場合、図2に示す構成において、作用極4に白金(Pt)、対極7に銀(Ag)、電解液6に塩化カリウム(KCl)溶液を使用すると、このポーラログラフ式電極1Aの電流−電圧特性は図4に示すようになる。即ち、対極7に対して作用極4に印加される負電圧がほぼ−0.3V〜−1.0Vの範囲において溶存酸素の定常電解電流が得られる。この電解電流が溶存酸素分圧に比例することを利用して、測定された電解電流値から溶存酸素濃度を求めている。本発明を適用し得るポーラログラフ式電極1Aの背景となる技術については、当業者に周知であるが、例えば、特許文献1に詳しい。
【0006】
又、図3にガルバニ電池式隔膜型電極(以下「ガルバニ電池式電極」)1Bを示す。このガルバニ電池式電極1Bは、上記図2に示すポーラログラフ式電極1Aと異なり、電源8を有していない。つまり、ガルバニ電池式電極1Bは、使用時に外部から電圧を印加する必要がなく、一般に、銀(Ag)、白金(Pt)、金(Au)などから成る作用極4と、鉛(Pb)、カドミウム(Cd)などから成る対極7とが組み合わされて使用される。そして、両電極を電解液6中にそれぞれ浸漬して回路を構成することにより、電極間に流れる電流を測定する。本発明を適用し得るガルバニ電池式電極1Bの背景となる技術については、当業者に周知である。
【0007】
【特許文献1】
特公昭43−2833号公報
【0008】
【発明が解決しようとする課題】
ポーラログラフ式電極1A、ガルバニ電池式電極1B等の定電位電解式の電気化学センサは、上述のように作用極4及び対極7を備えて成り、作用極4での酸化或いは還元反応に伴って作用極4と対極7との間に流れる電流量を計測する。計測を行う場合、電解液6中で回路を形成し、両極が平衡した電位に達し、電極における反応が安定するまでの安定化時間(エージング時間)が必要であり、特に、低濃度の対象ガス濃度を測定する場合には、安定した残余電流に達するまで、数日(例えば3日)が必要となる場合がある。
【0009】
従って、従来、隔膜型電極を、装置本体に装着した後直ちに使用可能とするために、予め、ショートプラグを用い回路を接続状態としたり、隔膜型電極を装置本体に接続したりして作動状態にし、エージング時間を確保する方法もある。
【0010】
しかしながら、このような方法では、電圧印加のための電源(電池等)を必要とし、基本的にエージング時間が短縮されたわけではなく、隔膜型電極を初めて使用する場合は一定の安定化時間を要する。
【0011】
又、対極7の材料として銀を用いた場合、反応に伴って対極7が絶縁物である塩化銀(AgCl)に覆われ、電極寿命が短くなるため、電極を使用する数日前(例えば3日前)にエージングを始めるなどの配慮が必要であった。
【0012】
例えば、ポーラログラフ式電極1Aでは、試料溶液中の溶存酸素の濃度を測定する場合、一般的に対極7に銀を用いるが、速やかに対極7が平衡状態になるように、予め対極7に塩化銀メッキを行う方法がある。これにより、対極7は比較的速く平衡状態に達するため、大気飽和水などの濃度の高い酸素の計測は可能である。しかし、μg/Lオーダーの酸素を計測する場合、残余電流が下がるのに数日(例えば3日程度)かかる場合がある。これは、作用極4の還元反応が平衡状態に達するのに要する時間が律速となっているためと考えられる。
【0013】
つまり、電解液6に塩化カリウム溶液を用いたポーラログラフ式電極1Aにおいて、対極7に銀を用いて、これに予め塩化銀メッキを施し、又作用極4に銀を用いた場合、薄い酸化又はハロゲン化物等の皮膜が作用極4に形成される。そして、作用極4は還元反応を行うため、作用極4に形成された酸化又はハロゲン化物等の被膜が還元されて平衡状態に達するのに時間を要するものと考えられる。
【0014】
例えば、一旦隔膜3を取り外した後、この被膜を硝酸で除去してから、電解液6を注入するとエージング時間はやや短縮される。又、塩化カリウム溶液中で電解処理し、予めこの被膜を還元することにより、同様にエージング時間は短縮される。これらの現象から、作用極4の還元状態がエージング時間に関与していることが分かる。
【0015】
しかしながら、上述のように予め硝酸による処理を行うのは、非常に手間がかかり、又硝酸による処理の後に直ちに電解液6を注入しなければ作用極4が酸化してしまうなど、操作性が悪く、しかも危険である。又、電解により還元するには、操作が煩雑で非常に手間がかかり、装置の複雑化を招く。
【0016】
従って、本発明の目的は、極を速く安定した電位に到達させ、エージング時間を短縮し、電極の保存状態に拘わらず短時間で測定可能な状態とし得る隔膜型電極用電解液、隔膜型電極及び隔膜型電極の安定化方法を提供することである。
【0017】
本発明の他の目的は、前処理等を行わずに、又電池等の電源を必要とせずに、作用極を速やかに還元状態に到達させることができ、電極の保存状態に拘わらず、短時間で電極の残余電流を下げて安定化することを可能とする隔膜型電極用電解液、隔膜型電極及び隔膜型電極の安定化方法を提供することである。
【0018】
本発明の他の目的は、ショートプラグを用いて電極を作動状態にして、エージング時間を確保する従来の方式において見られた、対極に塩化銀が生成することによる電極寿命の短縮化を防止することのできる隔膜型電極用電解液、隔膜型電極及び隔膜型電極の安定化方法を提供することである。
【0019】
【課題を解決するための手段】
上記諸問題を解決すべく本発明者は鋭意検討し、例えば、作用極に銀を用いるポーラログラフ式電極において、隔膜型電極の電解液中に銀イオンを補うことにより、前処理等を行わずに、又電池等の電源を必要とせずに、作用極を速やかに還元状態に到達させ得ることを見出した。
【0020】
つまり、上記目的は本発明に係る隔膜型電極用電解液、隔膜型電極及び隔膜型電極の安定化方法にて達成される。要約すれば、第1の本発明は、電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に作用極と対極とが配置され、前記作用極及び対極が電解液中に存在する状態で、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極に使用する隔膜型電極用電解液において、前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を含有することを特徴とする隔膜型電極用電解液である。
【0021】
第2の本発明によれば、電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に電解液を収容すると共に、この電解液中に作用極と対極とを配置し、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極において、前記室内に、前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を予め含有する電解液が収容されることを特徴とする隔膜型電極が提供される。
【0022】
第3の本発明によれば、電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に作用極と対極とが配置され、前記作用極及び対極が電解液中に存在する状態で、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極の安定化方法であって、前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を添加した電解液を前記室内に注入することを特徴とする隔膜型電極の安定化方法が提供される。
【0023】
上記各本発明の一実施態様によると、前記電解液は、前記隔膜型電極の前記作用極と同種の金属イオンを含有する。一実施態様では、前記電解液は、少なくとも、アルカリ金属若しくはアルカリ土類金属のハロゲン化物と、ハロゲン化銀と、を含有する。前記電解液は、塩化カリウム又は塩化ナトリウムと、塩化銀又は臭化銀と、を含有するものであってよい。
【0024】
上記各本発明の一実施態様によると、前記隔膜型電極の前記作用極は銀、前記対極が銀−塩化銀から成る。
【0025】
又、上記各本発明の一実施態様では、前記隔膜型電極は、ポーラログラフ式隔膜型電極又はガルバニ電池式の隔膜型電極である。前記隔膜型電極は、隔膜型溶存酸素センサであってよく、例えば、200μg/L以下の溶存酸素濃度測定が可能なものにおいて、本発明は極めて有効である。或いは、前記隔膜型電極は、隔膜型酸素センサであってよく、例えば、2%以下の酸素濃度測定が可能なものにおいて、本発明は極めて有効である。
【0026】
【発明の実施の形態】
以下、本発明に係る隔膜型電極用電解液、隔膜型電極及び隔膜型電極の安定化方法を図面に則して更に詳しく説明する。
【0027】
実施例1
本発明による隔膜型電極は、先に説明した図2に示すポーラログラフ式の隔膜型電極(ポーラログラフ式電極)及び図3に示すガルバニ電池式の隔膜型電極(ガルバニ電池式電極)に好適に具現化され得るが、本実施例では、溶存酸素ガスセンサとしての、図2に示すポーラログラフ式電極1Aに本発明を適用した場合について説明する。
【0028】
ポーラログラフ式電極1Aは、中空円筒状の電極本体2と、その先端開口部に固定されたガス透過性隔膜3と、この隔膜3に近接して電極本体2の内部に配置された作用極4と、この作用極4を支持する支持管5の内方外周部に取り付けられた対極7とを備え、電極本体2と支持管5との間には隔膜3によって外部と区画された室2aが形成され、この室2a内に電解液6が収容される。
【0029】
例えばガラスにて作製された支持管5は、電極内部に同軸的に配設され、その先端に上記作用極4が取り付けられている。隔膜3と作用極4との間には厚さが一定の僅かな間隙が形成され、一定の厚さの電解液6の層(電解液層)を形成している。
【0030】
作用極4及び対極7にはそれぞれリード線4a及び7aが接続され、これらリード線4a、7aは支持管5内を通って外部に導出され、電圧印加手段(直流電源)8に接続されている。又、隔膜3を透過した測定対象ガスは、作用極4の面で反応し、そのとき作用極4に流れる溶存ガスの電解電流は、電流計9で測定され、ポーラログラフ式電極1Aで検出した溶存ガス濃度を計測するように構成されている。計測結果は測定装置本体(図示せず)に設けた指示計に指示される。或いは、計測結果をプリントアウトするようにしてもよい。
【0031】
ここで、前述のように、ポーラログラフ式電極1Aは、作用極4での反応により作用極4と対極7との間に流れる電流量を計測するが、作用極4及び対極7における反応が平衡状態に達し安定するまでの安定化時間(エージング時間)が必要である。
【0032】
特に、例えばポーラログラフ式電極1Aが、本実施例におけるように液相中の溶存酸素ガス濃度を測定するための溶存酸素ガスセンサとして用いられる場合にあっては、μg/Lオーダーといった低濃度、より詳細には、200μg/L以下(0〜200μg/L)の濃度測定(気相中の酸素ガス濃度を測定するための酸素ガスセンサとして用いられる場合には2%以下(0〜2%)の濃度測定)をするには、確実に残余電流を低下させるために、従来は、時間と手間をかけなければならなかった。
【0033】
これに対して、本発明によれば、極めて簡便に、且つ、迅速に残余電流を低下させて、作用極4及び対極7を平衡状態とすることができる。以下、詳しく説明する。
【0034】
本発明によれば、ポーラログラフ式電極1Aの室2aに収容させる電解液6に、作用極4を構成する金属と同種の金属のイオン、又は作用極4を構成する金属と同種の金属を含む金属錯体若しくは金属化合物を含有させる。
【0035】
電解液6のベースは、従来用いられているものと何ら変わるところはない。つまり、斯界にて一般に用いられているように、アルカリ金属若しくはアルカリ土類金属のハロゲン化物を用いることができる。他の適当な電解質溶液も許容される。例えば、塩化カリウム、塩化ナトリウムなどが実用上好適である。これらのベースとなる電解液6の濃度は、電極の機能を発揮するのに適した任意の濃度とし得るが、一般に、0.5mol/L程度とするのが斯界にて一般的である。
【0036】
より具体的には、本実施例では、作用極4に銀(Ag)を用い、対極7に銀−塩化銀(Ag/AgCl)(塩化銀メッキを施した銀)を用いた。この場合、電解液6としては、少なくとも、アルカリ金属若しくはアルカリ土類金属のハロゲン化物と、ハロゲン化銀と、を含有するものが、実用上好ましく用いられる。上記アルカリ金属若しくはアルカリ土類金属のハロゲン化物としては、塩化カリウム、塩化ナトリウムが実用上好適である。又、ハロゲン化銀としては、塩化銀、臭化銀が実用上好適である。
【0037】
本実施例では、電解液6として、塩化カリウム溶液に、作用極4と同種の金属イオンである銀イオン(Ag)を含有させたものを用いた。銀イオンは、塩化銀を溶解させることで供給した。
【0038】
本発明の目的に適えば、電解液6中に添加する塩化銀の濃度は任意であるが、本実施例では、塩化カリウム水溶液に塩化銀を飽和させた液を電解液6とした。即ち、ここでは、所定濃度の塩化カリウム溶液に適当量の塩化銀粉末を過剰量加えて撹拌した後静置し、その上澄み液を分取して、電解液6として用いた。
【0039】
塩化銀は難溶性であるが、例えば上記方法により電解液6中に提供された銀イオンの量で、本発明は好適に作用することが確認された。尚、例えば塩化カリウム溶液とされる電解液6中では、塩化銀は、純水に対するよりも多く溶解する。
【0040】
但し、上記電解液6の調製方法は、難溶性の塩化銀の飽和溶液を簡易に調製し得る点で好適であるが、本発明はこれに限定されるものではなく、例えば調製する電解液6の量に応じて、所定量の塩化銀を電解液6に計り入れることも当然可能である。又、本発明の目的に適えば、銀イオンは、より少量(低濃度)であってもよい。
【0041】
こうして、電解液6中に銀イオンを予め補充することで、電極の安定化時間を飛躍的に短縮することができる。特定の理論に束縛されることを意図するものではないが、これは、作用極4が電解液6中の銀イオンを還元し、速やかに平衡状態に達するためと考えられる。
【0042】
この時、作用極4の表面に薄い酸化又はハロゲン化物等の皮膜が形成されている場合、これらと共に若しくは重ねて銀が析出するものと思われる。
【0043】
このように、電解液6中の銀イオンは、還元されることにより作用極4の材質と同じ金属銀となるため、作用極4の材質が変化することはない。又、本実施例では、作用極4及び対極7に銀を用いているため、電解液6に塩化銀を添加しても、計測に必要な作用極4、対極7での反応を阻害することなく、安定化時間を短縮することができる。
【0044】
ポーラログラフ式電極1Aは、室2aに電解液6を注入し、作用極4、対極7が電解液6中に存在した状態とすることで、極及び電解液が消耗する。従って、ポーラログラフ式電極1Aは、初めて使用する前にエージング時間を確保して電解液6を室2aに注入するのが望ましい。又、ポーラログラフ式電極1Aのメンテナンス等の目的で、電解液6を交換することがある。
【0045】
斯かる場合において、本発明によれば、隔膜3によって外部と区画された室2aに、上述のような作用極4を構成する金属と同種の金属のイオン、又は作用極4を構成する金属と同種の金属を含む金属錯体又は金属化合物を添加した電解液6を注入することを含んで成る隔膜型電極の安定化方法を適用することで、作用極4及び対極7における計測時の反応を阻害することなく、極を簡便、且つ、迅速に平衡状態とすることができる。
【0046】
エージング時に、ポーラロ式電極1Aをショートプラグを用いて回路を接続状態としたり、或いは測定本体に接続して作動状態としてもよいが、これらを行わずに単に室2a内に上述の本発明に従う電解液6を注入して放置することによって、従来と比べて飛躍的にエージング時間を短縮することができることが確認された。
【0047】
尚、電解液6等の消耗などの観点から許容し得るのならば、ポーラログラフ式電極1Aは、初めて使用する前に、作用極4を構成する金属と同種の金属のイオン、又は作用極4を構成する金属と同種の金属を含む金属錯体、金属化合物を予め含有した電解液6が室2aに収容し、作用極4、対極7がこの電解液6中に存在する状態で提供することもできる。
【0048】
(試験例)
次に、ポーラログラフ式電極1Aのエージング時間について、本実施例と従来例とで比較した一試験例の結果を示す。
【0049】
ポーラログラフ式電極1Aは、電解液6を除いて、作用極4及び対極6の面積、材料等は本実施例と従来例とで同じとした。諸要素の詳細設定は、以下のようなものであった。
【0050】
・作用極:Ag
外径 φ5mm
・対極:Ag/AgCl(メッキ)
外径 φ12mm
軸線方向長さ 15mm
・印加電圧: −900mV(作用極−対極間)
・電解液:
本実施例 0.5mol/LのKCl、飽和AgCl
従来例 0.5mol/LのKCl
【0051】
上記構成の本実施例及び従来例のポーラログラフ式電極1Aを装置本体に接続して、作動状態とし、残余電流の推移を経時的に測定した。結果を図1に示す。
【0052】
図1に示すように、本実施例のポーラログラフ式電極1Aでは、1日足らずで安定化した。一方、従来例では、安定化するのにほぼ5日〜6日を要した。この結果から明らかなように、本実施例に従えば、従来例に比べて極めて短時間で残余電流が下がり、安定状態に達する。
【0053】
尚、ここでは、残余電流測定の便宜上、ポーラログラフ式電極1Aを装置本体に接続して作動状態にしてエージングを行ったが、上述のように、従来の電解液に替えて本実施例に従う電解液6を室2aに単に注入するだけで、エージング時間は飛躍的に短縮される。
【0054】
以上説明したように、本発明によれば、極を速く安定した電位に到達させ、エージング時間を短縮し、電極の保存状態に拘わらず短時間で測定可能な状態とすることができる。上述のように、本発明によれば、前処理等を行わずに、又電池等の電源を必要とせずに、作用極を速やかに還元状態に到達させることができ、又、ショートプラグを用いて電極を作動状態にして、エージング時間を確保する従来の方式と異なり、対極への塩化銀生成により電極寿命を短くすることがなく、電解液に銀イオンを溶解させるだけで、電極の保存状態に拘わらず短時間で安定化し、残余電流を下げることができる。上述のように、特に、確実に残余電流を低下させることが必要とされる低濃度測定用の隔膜型電極において、本発明は非常に有用である。
【0055】
尚、上記説明は、本発明をポーラログラフ式の隔膜型電極(ポーラログラフ式電極)1Aに具現化した場合について説明したが、図3に示すようなガルバニ電池式の隔膜型電極(ガルバニ電池式電極)1Bにも等しく適用することができ、同じ作用効果を得ることができる。
【0056】
又、上記説明では、作用極4として銀を用いる場合について説明したが、本発明はこれに限定されるものではない。作用極4として白金(Pt)、金(Au)を用いる場合にも、作用極4を構成する金属と同種の金属イオン、又は作用極4を構成する金属と同種の金属を含む金属錯体又は金属化合物を電解液6に添加することで、上記同様の効果を得ることができる。
【0057】
更に、上記実施例では、本発明を溶存酸素ガスセンサであるとして説明したが、本発明は、これに限定されるものではなく、例えば、気相の酸素ガスセンサ、オゾンガスセンサ、二酸化塩素ガスセンサなどとして使用される電極にも好適に具現化し得るものである。
【0058】
【発明の効果】
以上説明したように、本発明によれば、隔膜型電極に使用するための隔膜型電極用電解液は、隔膜型電極の作用極を構成する金属と同種の金属のイオン、又は作用極を構成する金属と同種の金属を含む金属錯体又は金属化合物を含有するものとするので、極を速く安定した電位に到達させ、エージング時間を短縮し、電極の保存状態に拘わらず短時間で測定可能な状態とすることができる。又、前処理等を行わずに、又電池等の電源を必要とせずに、作用極を速やかに還元状態に到達させることができ、電極の保存状態に拘わらず、短時間で電極の残余電流を下げて安定化することができる。更に、ショートプラグを用いて電極を作動状態にして、エージング時間を確保する従来の方式において見られた、対極に塩化銀が生成することによる電極寿命の短縮化を防止することができる。本発明によれば、本発明の隔膜型電極用電解液を使用した隔膜型電極及び隔膜型電極の安定化方法をも提供され、それぞれ上記隔膜型電極用電解液にて得られる作用効果に対応する効果を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る隔膜型電極の効果を示すグラフである。
【図2】本発明を適用し得るポーラログラフ式隔膜型電極の概略構成断面図である。
【図3】本発明を適用し得るガルバニ電池式隔膜型電極の概略構成断面図である。
【図4】隔膜型電極の作用を説明するためのグラフ図である。
【符号の説明】
1 隔膜型電極
2 電極本体
3 隔膜
4 作用極
5 支持管
6 電解液
7 対極
8 電源
9 電流計
[0001]
BACKGROUND OF THE INVENTION
The present invention is a diaphragm type used for a diaphragm type electrode for measuring the concentration of a target substance in a sample, that is, a gas to be measured which is an oxidant or a reductant, for example, dissolved oxygen or dissolved hydrogen in a solution or air. The present invention relates to an electrolytic solution for electrodes, and further to a diaphragm electrode and a method for stabilizing a diaphragm electrode.
[0002]
[Prior art]
For example, in the fields of environmental (river, seawater) water treatment, fermentation, and aquaculture, measurement of dissolved oxygen (oxidant) in a sample solution is important, and a dissolved oxygen meter is widely used for monitoring and process control. As a sensor of this dissolved oxygen meter, a diaphragm electrode using an oxygen permeable diaphragm, that is, a polarographic diaphragm electrode, a galvanic cell diaphragm electrode, or the like is mainly used. In nuclear power plants and the like, measurement of dissolved hydrogen (reduced substance) is important, and monitoring is performed by a meter.
[0003]
FIG. 2 shows a polarographic diaphragm-type electrode (hereinafter referred to as “polarographic electrode”) 1A using a conventional gas-permeable diaphragm. As shown in the figure, a polarographic electrode 1A has, for example, a gas permeable diaphragm 3 that allows a gas to be measured to permeate through a front end opening of a hollow cylindrical electrode main body 2, and the inside of the electrode main body close to the diaphragm 3 The working electrode 4 is disposed opposite to each other. The working electrode 4 is attached to the tip of a support tube 5 that is coaxially disposed inside the electrode body 2.
[0004]
The working electrode 4 is opposed to the diaphragm 3 with a slight gap. Therefore, a thin layer of the electrolytic solution 6 exists between the working electrode 4 and the diaphragm 3. A counter electrode 7 is attached to the outer periphery of the support tube 5. Then, a predetermined electrolytic voltage is continuously applied between the counter electrode 7 and the working electrode 4 from the power source 8 via the lead wires 7a and 4a connected thereto (usually, a negative voltage is applied to the working electrode 4). The dissolved gas concentration in the sample solution is obtained by measuring the steady value of the electrolysis current with an ammeter 9. As the working electrode 4, silver (Ag), platinum (Pt), and gold (Au) are generally used, and as the counter electrode 7, silver (Ag) and silver-silver chloride (Ag / AgCl) are used.
[0005]
For example, when measuring the concentration of dissolved oxygen in a sample solution, in the configuration shown in FIG. 2, platinum (Pt) is used as the working electrode 4, silver (Ag) is used as the counter electrode 7, and potassium chloride (KCl) solution is used as the electrolytic solution 6. When used, the current-voltage characteristics of the polarographic electrode 1A are as shown in FIG. That is, a steady electrolytic current of dissolved oxygen is obtained when the negative voltage applied to the working electrode 4 with respect to the counter electrode 7 is in the range of approximately -0.3V to -1.0V. Utilizing the fact that this electrolytic current is proportional to the dissolved oxygen partial pressure, the dissolved oxygen concentration is obtained from the measured electrolytic current value. The technology behind the polarographic electrode 1A to which the present invention can be applied is well known to those skilled in the art.
[0006]
FIG. 3 shows a galvanic cell type diaphragm electrode (hereinafter referred to as “galvanic cell type electrode”) 1B. Unlike the polarographic electrode 1A shown in FIG. 2, the galvanic cell type electrode 1B does not have a power source 8. That is, the galvanic cell type electrode 1B does not need to apply a voltage from the outside at the time of use. Generally, the working electrode 4 made of silver (Ag), platinum (Pt), gold (Au), etc., lead (Pb), A counter electrode 7 made of cadmium (Cd) or the like is used in combination. Then, by immersing both electrodes in the electrolytic solution 6 to form a circuit, the current flowing between the electrodes is measured. The technology behind the galvanic cell type electrode 1B to which the present invention can be applied is well known to those skilled in the art.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 43-2833 [0008]
[Problems to be solved by the invention]
A constant potential electrolysis type electrochemical sensor such as a polarographic electrode 1A, a galvanic cell type electrode 1B, and the like is provided with the working electrode 4 and the counter electrode 7 as described above, and operates in accordance with oxidation or reduction reaction at the working electrode 4. The amount of current flowing between the pole 4 and the counter electrode 7 is measured. When measurement is performed, a circuit is formed in the electrolyte solution 6 and a stabilization time (aging time) is required until the electrode reaches an equilibrium potential and the reaction at the electrode is stabilized. When measuring the concentration, several days (eg, 3 days) may be required until a stable residual current is reached.
[0009]
Therefore, in order to enable the diaphragm type electrode to be used immediately after being attached to the apparatus main body, the circuit is connected in advance using a short plug, or the diaphragm type electrode is connected to the apparatus main body in advance. There is also a method for securing the aging time.
[0010]
However, such a method requires a power source (battery or the like) for applying a voltage and basically does not shorten the aging time. When the diaphragm electrode is used for the first time, a certain stabilization time is required. .
[0011]
In addition, when silver is used as the material for the counter electrode 7, the counter electrode 7 is covered with an insulating silver chloride (AgCl) along with the reaction, and the electrode life is shortened. ) And other considerations such as starting aging.
[0012]
For example, in the polarographic electrode 1A, when measuring the concentration of dissolved oxygen in a sample solution, silver is generally used for the counter electrode 7, but silver chloride is previously applied to the counter electrode 7 so that the counter electrode 7 is in an equilibrium state quickly. There is a method of plating. Thereby, since the counter electrode 7 reaches an equilibrium state relatively quickly, it is possible to measure oxygen having a high concentration such as atmospheric saturated water. However, when measuring oxygen in the order of μg / L, it may take several days (for example, about 3 days) for the residual current to decrease. This is presumably because the time required for the reduction reaction of the working electrode 4 to reach an equilibrium state is rate-limiting.
[0013]
That is, in the polarographic electrode 1A using a potassium chloride solution as the electrolytic solution 6, when silver is used for the counter electrode 7 and silver chloride plating is applied to the counter electrode 7 in advance, and silver is used for the working electrode 4, thin oxidation or halogen A film such as a chemical compound is formed on the working electrode 4. Since the working electrode 4 performs a reduction reaction, it is considered that it takes time for the film such as oxidation or halide formed on the working electrode 4 to be reduced to reach an equilibrium state.
[0014]
For example, once the diaphragm 3 is removed, the coating is removed with nitric acid, and then the electrolytic solution 6 is injected, the aging time is slightly shortened. Also, the aging time can be shortened by electrolytic treatment in a potassium chloride solution and reducing this film in advance. From these phenomena, it can be seen that the reduced state of the working electrode 4 is involved in the aging time.
[0015]
However, the treatment with nitric acid in advance as described above is very troublesome, and the operability is poor, for example, the working electrode 4 is oxidized unless the electrolytic solution 6 is injected immediately after the treatment with nitric acid. And it's dangerous. Further, reduction by electrolysis is complicated and very time-consuming, resulting in a complicated apparatus.
[0016]
Accordingly, an object of the present invention is to provide an electrolyte solution for a diaphragm type electrode and a diaphragm type electrode that can quickly reach a stable potential, shorten the aging time, and enable measurement in a short time regardless of the storage state of the electrode. And a method for stabilizing a diaphragm electrode.
[0017]
Another object of the present invention is to allow the working electrode to quickly reach the reduced state without pretreatment or the need for a power source such as a battery. It is an object to provide an electrolyte solution for a diaphragm electrode, a diaphragm electrode, and a method for stabilizing a diaphragm electrode, which can reduce and stabilize the residual current of the electrode over time.
[0018]
Another object of the present invention is to prevent the shortening of the electrode life due to the formation of silver chloride at the counter electrode, which is seen in the conventional method of securing the aging time by using the short plug to activate the electrode. An electrolyte solution for a diaphragm electrode, a diaphragm electrode, and a method for stabilizing a diaphragm electrode are provided.
[0019]
[Means for Solving the Problems]
In order to solve the above problems, the present inventor has intensively studied, for example, in a polarographic electrode using silver as a working electrode, by supplementing silver ions in the electrolyte solution of the diaphragm electrode, without performing pretreatment or the like. The present inventors have also found that the working electrode can be quickly brought into a reduced state without requiring a power source such as a battery.
[0020]
That is, the above object is achieved by the electrolyte solution for a diaphragm electrode, the diaphragm electrode, and the method for stabilizing a diaphragm electrode according to the present invention. In summary, according to the first aspect of the present invention, a chamber partitioned from the outside by a diaphragm that allows a gas to be measured in a sample to permeate is provided at one end of the electrode body, and a working electrode and a counter electrode are disposed in the chamber. A diaphragm-type electrode used for a diaphragm-type electrode for measuring the current flowing between the working electrode and the counter electrode when the gas to be measured that has permeated through the diaphragm reacts at the working electrode while the electrode and the counter electrode are present in the electrolyte An electrolyte solution for a diaphragm type electrode, comprising: a metal ion, a metal complex, or a metal compound of the same type as the metal constituting the working electrode.
[0021]
According to the second aspect of the present invention, the electrode body is provided with a chamber partitioned from the outside by a diaphragm that allows the gas to be measured in the sample to pass through, and the electrolyte solution is accommodated in the chamber and acts in the electrolyte solution. In the diaphragm type electrode for measuring the current flowing between the working electrode and the counter electrode when the measurement target gas that has passed through the diaphragm reacts at the working electrode, the working electrode is configured in the chamber. A diaphragm-type electrode is provided, in which an electrolytic solution containing in advance a metal ion, a metal complex, or a metal compound of the same type as the metal to be stored is accommodated.
[0022]
According to the third aspect of the present invention, the electrode body is provided with a chamber partitioned from the outside by a diaphragm that allows the gas to be measured in the sample to pass through, and the working electrode and the counter electrode are disposed in the chamber. A method for stabilizing a diaphragm-type electrode for measuring a current flowing between a working electrode and a counter electrode by reacting a gas to be measured that has permeated through the diaphragm in a state where the counter electrode is present in an electrolyte solution, There is provided a method for stabilizing a diaphragm type electrode, wherein an electrolytic solution to which a metal ion, a metal complex, or a metal compound of the same type as the metal constituting the working electrode is added is injected into the chamber.
[0023]
According to one embodiment of each of the present invention, the electrolytic solution contains the same kind of metal ions as the working electrode of the diaphragm electrode. In one embodiment, the electrolytic solution contains at least an alkali metal or alkaline earth metal halide and silver halide. The electrolytic solution may contain potassium chloride or sodium chloride and silver chloride or silver bromide.
[0024]
According to each embodiment of the present invention, the working electrode of the diaphragm electrode is made of silver, and the counter electrode is made of silver-silver chloride.
[0025]
In each embodiment of the present invention, the diaphragm electrode is a polarographic diaphragm electrode or a galvanic cell diaphragm electrode. The diaphragm-type electrode may be a diaphragm-type dissolved oxygen sensor. For example, the present invention is extremely effective in a device capable of measuring a dissolved oxygen concentration of 200 μg / L or less. Alternatively, the diaphragm-type electrode may be a diaphragm-type oxygen sensor. For example, the present invention is extremely effective when the oxygen concentration can be measured at 2% or less.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electrolyte solution for diaphragm type electrodes, the diaphragm type electrode and the method for stabilizing the diaphragm type electrode according to the present invention will be described in more detail with reference to the drawings.
[0027]
Example 1
The diaphragm type electrode according to the present invention is preferably embodied in the polarographic type diaphragm type electrode (polarographic type electrode) shown in FIG. 2 and the galvanic cell type diaphragm type electrode (galvanic battery type electrode) shown in FIG. In this embodiment, the case where the present invention is applied to the polarographic electrode 1A shown in FIG. 2 as a dissolved oxygen gas sensor will be described.
[0028]
The polarographic electrode 1A includes a hollow cylindrical electrode body 2, a gas permeable diaphragm 3 fixed to the opening at the tip thereof, and a working electrode 4 disposed inside the electrode body 2 in the vicinity of the diaphragm 3. And a counter electrode 7 attached to the inner periphery of the support tube 5 that supports the working electrode 4. A chamber 2 a that is partitioned from the outside by the diaphragm 3 is formed between the electrode body 2 and the support tube 5. The electrolytic solution 6 is accommodated in the chamber 2a.
[0029]
For example, the support tube 5 made of glass is coaxially disposed inside the electrode, and the working electrode 4 is attached to the tip thereof. A slight gap having a constant thickness is formed between the diaphragm 3 and the working electrode 4 to form a layer (electrolytic solution layer) of the electrolytic solution 6 having a constant thickness.
[0030]
Lead wires 4 a and 7 a are connected to the working electrode 4 and the counter electrode 7, respectively. These lead wires 4 a and 7 a are led out through the support tube 5 and connected to a voltage application means (DC power supply) 8. . The gas to be measured that has passed through the diaphragm 3 reacts on the surface of the working electrode 4, and the electrolytic current of the dissolved gas flowing to the working electrode 4 at that time is measured by an ammeter 9 and is detected by the polarographic electrode 1 </ b> A. It is configured to measure the gas concentration. The measurement result is instructed by an indicator provided in the measuring apparatus main body (not shown). Alternatively, the measurement result may be printed out.
[0031]
Here, as described above, the polarographic electrode 1A measures the amount of current flowing between the working electrode 4 and the counter electrode 7 due to the reaction at the working electrode 4, but the reactions at the working electrode 4 and the counter electrode 7 are in an equilibrium state. A stabilization time (aging time) is required until it reaches the point of stabilization.
[0032]
In particular, for example, when the polarographic electrode 1A is used as a dissolved oxygen gas sensor for measuring the dissolved oxygen gas concentration in the liquid phase as in this embodiment, the concentration is as low as μg / L, more detailed. For measuring a concentration of 200 μg / L or less (0 to 200 μg / L) (when used as an oxygen gas sensor for measuring the oxygen gas concentration in the gas phase, measuring a concentration of 2% or less (0 to 2%) In order to reliably reduce the residual current, it has conventionally been time consuming and troublesome.
[0033]
On the other hand, according to the present invention, the residual current can be reduced very easily and quickly, and the working electrode 4 and the counter electrode 7 can be brought into an equilibrium state. This will be described in detail below.
[0034]
According to the present invention, the electrolyte 6 accommodated in the chamber 2a of the polarographic electrode 1A contains a metal that is the same type of metal as the metal constituting the working electrode 4 or a metal that contains the same type of metal as the metal constituting the working electrode 4. A complex or a metal compound is contained.
[0035]
The base of the electrolytic solution 6 is not different from that conventionally used. That is, as generally used in this field, alkali metal or alkaline earth metal halides can be used. Other suitable electrolyte solutions are acceptable. For example, potassium chloride, sodium chloride and the like are suitable for practical use. The concentration of the electrolyte solution 6 serving as the base can be any concentration suitable for exhibiting the function of the electrode, but is generally about 0.5 mol / L in this field.
[0036]
More specifically, in this example, silver (Ag) was used for the working electrode 4 and silver-silver chloride (Ag / AgCl) (silver plated with silver chloride) was used for the counter electrode 7. In this case, as the electrolytic solution 6, a material containing at least an alkali metal or alkaline earth metal halide and silver halide is preferably used in practice. As the alkali metal or alkaline earth metal halide, potassium chloride and sodium chloride are practically preferable. As the silver halide, silver chloride and silver bromide are suitable for practical use.
[0037]
In this example, as the electrolytic solution 6, a potassium chloride solution containing silver ions (Ag + ) that are the same kind of metal ions as the working electrode 4 was used. Silver ions were supplied by dissolving silver chloride.
[0038]
If suitable for the purpose of the present invention, the concentration of silver chloride added to the electrolytic solution 6 is arbitrary, but in this example, a solution obtained by saturating an aqueous potassium chloride solution with silver chloride was used as the electrolytic solution 6. That is, here, an excessive amount of an appropriate amount of silver chloride powder was added to a potassium chloride solution having a predetermined concentration, and the mixture was stirred and allowed to stand. The supernatant was separated and used as the electrolytic solution 6.
[0039]
Although silver chloride is sparingly soluble, it has been confirmed that the present invention works suitably, for example, with the amount of silver ions provided in the electrolyte 6 by the above method. In addition, in the electrolyte solution 6 used as a potassium chloride solution, for example, silver chloride dissolves more than in pure water.
[0040]
However, the method for preparing the electrolytic solution 6 is preferable in that it can easily prepare a saturated solution of hardly soluble silver chloride, but the present invention is not limited to this. For example, the electrolytic solution 6 to be prepared is prepared. It is of course possible to measure a predetermined amount of silver chloride into the electrolytic solution 6 in accordance with the amount. Further, if it is suitable for the purpose of the present invention, the silver ion may be in a smaller amount (low concentration).
[0041]
Thus, by replenishing the electrolytic solution 6 with silver ions in advance, the electrode stabilization time can be dramatically shortened. Although not intended to be bound by any particular theory, it is believed that this is because the working electrode 4 reduces silver ions in the electrolyte 6 and quickly reaches an equilibrium state.
[0042]
At this time, when a thin film of oxide or halide is formed on the surface of the working electrode 4, it is considered that silver is deposited together with or overlapping with these.
[0043]
Thus, since the silver ions in the electrolytic solution 6 are reduced to become the same metallic silver as the material of the working electrode 4, the material of the working electrode 4 does not change. Further, in this embodiment, since silver is used for the working electrode 4 and the counter electrode 7, even if silver chloride is added to the electrolytic solution 6, the reaction at the working electrode 4 and the counter electrode 7 necessary for measurement is inhibited. And stabilization time can be shortened.
[0044]
In the polarographic electrode 1A, the electrolytic solution 6 is injected into the chamber 2a so that the working electrode 4 and the counter electrode 7 are present in the electrolytic solution 6, so that the electrode and the electrolytic solution are consumed. Therefore, it is desirable that the polarographic electrode 1A is injected with the electrolyte 6 into the chamber 2a while ensuring an aging time before the first use. Further, the electrolytic solution 6 may be replaced for the purpose of maintenance of the polarographic electrode 1A.
[0045]
In such a case, according to the present invention, the ions of the same type of metal as the metal constituting the working electrode 4 as described above, or the metal constituting the working electrode 4 are provided in the chamber 2 a partitioned from the outside by the diaphragm 3. By applying a method for stabilizing a diaphragm electrode comprising injecting an electrolytic solution 6 to which a metal complex or metal compound containing the same kind of metal is added, reaction at the time of measurement at the working electrode 4 and the counter electrode 7 is inhibited. Without this, the pole can be easily and quickly brought into an equilibrium state.
[0046]
During aging, the polar electrode 1A may be connected to a circuit using a short plug, or may be connected to a measurement main body to be in an operating state. However, the electrolysis according to the above-described present invention is not performed in the chamber 2a. It was confirmed that the aging time can be drastically shortened by injecting the liquid 6 and leaving it to stand as compared with the conventional case.
[0047]
If it is acceptable from the viewpoint of consumption of the electrolytic solution 6 or the like, the polarographic electrode 1A may have ions of the same kind of metal as the metal constituting the working electrode 4 or the working electrode 4 before the first use. An electrolytic solution 6 containing a metal complex containing the same kind of metal as the constituent metal or a metal compound in advance can be accommodated in the chamber 2a, and the working electrode 4 and the counter electrode 7 can be provided in the electrolytic solution 6. .
[0048]
(Test example)
Next, the results of one test example in which the aging time of the polarographic electrode 1A is compared between the present example and the conventional example will be shown.
[0049]
In the polarographic electrode 1A, except for the electrolytic solution 6, the area, material, and the like of the working electrode 4 and the counter electrode 6 were the same in this example and the conventional example. The detailed settings of the various elements were as follows.
[0050]
・ Working electrode: Ag
Outer diameter φ5mm
・ Counter electrode: Ag / AgCl (plating)
Outside diameter φ12mm
Axis length 15mm
-Applied voltage: -900 mV (between working electrode and counter electrode)
・ Electrolyte:
Example 0.5 mol / L KCl, saturated AgCl
Conventional example 0.5 mol / L KCl
[0051]
The polarographic electrode 1A of the present example and the conventional example having the above-described configuration was connected to the apparatus main body to be in an operating state, and the transition of the residual current was measured over time. The results are shown in FIG.
[0052]
As shown in FIG. 1, the polarographic electrode 1A of this example was stabilized in less than one day. On the other hand, in the conventional example, it took approximately 5 to 6 days to stabilize. As is apparent from this result, according to the present embodiment, the residual current decreases in a very short time compared to the conventional example, and a stable state is reached.
[0053]
Here, for the sake of convenience of residual current measurement, the polarographic electrode 1A is connected to the apparatus main body and the aging is performed in the operating state. However, as described above, the electrolytic solution according to the present embodiment is replaced with the conventional electrolytic solution. By simply injecting 6 into the chamber 2a, the aging time is dramatically reduced.
[0054]
As described above, according to the present invention, the pole can be quickly reached to a stable potential, the aging time can be shortened, and the measurement can be performed in a short time regardless of the storage state of the electrode. As described above, according to the present invention, the working electrode can be quickly brought into the reduced state without performing pretreatment or the like, and without requiring a power source such as a battery, and a short plug is used. Unlike the conventional method of ensuring the aging time by putting the electrode in the working state, the electrode storage state can be obtained by simply dissolving silver ions in the electrolyte without shortening the electrode life due to the generation of silver chloride on the counter electrode. Regardless of this, it is possible to stabilize in a short time and to reduce the residual current. As described above, the present invention is very useful particularly in a diaphragm type electrode for low concentration measurement where it is necessary to reliably reduce the residual current.
[0055]
In the above description, the case where the present invention is embodied in a polarographic diaphragm electrode (polarographic electrode) 1A has been described. However, a galvanic cell diaphragm electrode (galvanic cell electrode) as shown in FIG. It can be equally applied to 1B, and the same effect can be obtained.
[0056]
In the above description, the case where silver is used as the working electrode 4 has been described. However, the present invention is not limited to this. Even when platinum (Pt) or gold (Au) is used as the working electrode 4, a metal complex or metal containing the same kind of metal ion as the metal constituting the working electrode 4, or the same kind of metal as the metal constituting the working electrode 4 By adding the compound to the electrolytic solution 6, the same effect as described above can be obtained.
[0057]
Further, in the above-described embodiments, the present invention has been described as being a dissolved oxygen gas sensor, but the present invention is not limited to this. For example, the present invention is used as a gas phase oxygen gas sensor, an ozone gas sensor, a chlorine dioxide gas sensor, or the like. The electrode can be suitably embodied.
[0058]
【The invention's effect】
As described above, according to the present invention, the electrolyte for the diaphragm electrode for use in the diaphragm electrode constitutes ions of the same kind of metal as the working electrode of the diaphragm electrode or the working electrode. Because it contains a metal complex or metal compound containing the same type of metal as the metal to be used, the pole can be quickly reached to a stable potential, the aging time can be shortened, and measurement can be performed in a short time regardless of the storage state of the electrode. State. In addition, the working electrode can quickly reach the reduced state without pretreatment or the need for a power source such as a battery, and the residual current of the electrode can be achieved in a short time regardless of the storage state of the electrode. Can be stabilized. Further, it is possible to prevent the shortening of the electrode life due to the generation of silver chloride at the counter electrode, which is seen in the conventional method of securing the aging time by using the short plug to activate the electrode. According to the present invention, there are also provided a diaphragm-type electrode and a method for stabilizing a diaphragm-type electrode using the electrolyte solution for a diaphragm-type electrode of the present invention, each corresponding to the effects obtained with the electrolyte solution for a diaphragm-type electrode. Effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of a diaphragm electrode according to the present invention.
FIG. 2 is a schematic sectional view of a polarographic diaphragm electrode to which the present invention can be applied.
FIG. 3 is a schematic sectional view of a galvanic cell type diaphragm electrode to which the present invention can be applied.
FIG. 4 is a graph for explaining the operation of the diaphragm type electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diaphragm type electrode 2 Electrode main body 3 Diaphragm 4 Working electrode 5 Support pipe 6 Electrolyte 7 Counter electrode 8 Power supply 9 Ammeter

Claims (30)

電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に作用極と対極とが配置され、前記作用極及び対極が電解液中に存在する状態で、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極に使用する隔膜型電極用電解液において、
前記隔膜型電極の前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を含有することを特徴とする隔膜型電極用電解液。
One end of the electrode body is provided with a chamber partitioned from the outside by a diaphragm that allows the gas to be measured in the sample to pass through, and the working electrode and the counter electrode are disposed in the chamber, and the working electrode and the counter electrode are present in the electrolyte. In the electrolyte solution for the diaphragm type electrode used for the diaphragm type electrode for measuring the current flowing between the working electrode and the counter electrode when the gas to be measured that has passed through the diaphragm reacts at the working electrode.
An electrolyte solution for a diaphragm-type electrode, comprising a metal ion, a metal complex, or a metal compound of the same type as the metal constituting the working electrode of the diaphragm-type electrode.
前記隔膜型電極の前記作用極と同種の金属イオンを含有することを特徴とする請求項1の隔膜型電極用電解液。The electrolyte solution for a diaphragm type electrode according to claim 1, comprising the same kind of metal ions as the working electrode of the diaphragm type electrode. 少なくとも、アルカリ金属若しくはアルカリ土類金属のハロゲン化物と、ハロゲン化銀と、を含有することを特徴とする請求項2の隔膜型電極用電解液。3. The electrolyte solution for a diaphragm type electrode according to claim 2, comprising at least an alkali metal or alkaline earth metal halide and silver halide. 塩化カリウム又は塩化ナトリウムと、塩化銀又は臭化銀と、を含有することを特徴とする請求項3の隔膜型電極用電解液。4. The electrolyte solution for a diaphragm type electrode according to claim 3, comprising potassium chloride or sodium chloride and silver chloride or silver bromide. 前記隔膜型電極の前記作用極は銀、前記対極は銀−塩化銀から成ることを特徴とする請求項3又は4の隔膜型電極用電解液。5. The electrolyte solution for a diaphragm type electrode according to claim 3, wherein the working electrode of the diaphragm type electrode is made of silver and the counter electrode is made of silver-silver chloride. 前記隔膜型電極は、ポーラログラフ式隔膜型電極又はガルバニ電池式隔膜型電極であることを特徴とする請求項1〜5のいずれかの項に記載の隔膜型電極用電解液。6. The electrolyte solution for a diaphragm type electrode according to claim 1, wherein the diaphragm type electrode is a polarographic diaphragm type electrode or a galvanic cell type diaphragm type electrode. 前記隔膜型電極は、隔膜型溶存酸素センサであることを特徴とする請求項6の隔膜型電極用電解液。7. The electrolyte solution for a diaphragm type electrode according to claim 6, wherein the diaphragm type electrode is a diaphragm type dissolved oxygen sensor. 前記隔膜型電極は、200μg/L以下の溶存酸素濃度測定が可能であることを特徴とする請求項7の隔膜型電極用電解液。The electrolyte solution for a diaphragm type electrode according to claim 7, wherein the diaphragm type electrode is capable of measuring a dissolved oxygen concentration of 200 µg / L or less. 前記隔膜型電極は、隔膜型酸素センサであることを特徴とする請求項6の隔膜型電極用電解液。The electrolyte for a diaphragm type electrode according to claim 6, wherein the diaphragm type electrode is a diaphragm type oxygen sensor. 前記隔膜型電極は、2%以下の酸素濃度測定が可能であることを特徴とする請求項9の隔膜型電極用電解液。The electrolyte solution for a diaphragm type electrode according to claim 9, wherein the diaphragm type electrode can measure an oxygen concentration of 2% or less. 電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に電解液を収容すると共に、この電解液中に作用極と対極とを配置し、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極において、
前記室内に、前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を予め含有する電解液が収容されることを特徴とする隔膜型電極。
One end of the electrode body is provided with a chamber partitioned from the outside by a diaphragm that allows the gas to be measured in the sample to pass through. The electrolyte is accommodated in the chamber, and the working electrode and the counter electrode are disposed in the electrolyte. In the diaphragm type electrode for measuring the current flowing between the working electrode and the counter electrode by reacting the gas to be measured that has passed through the working electrode,
A diaphragm type electrode, wherein an electrolytic solution containing in advance a metal ion, a metal complex, or a metal compound of the same type as the metal constituting the working electrode is accommodated in the chamber.
前記電解液は、前記作用極と同種の金属イオンを予め含有することを特徴とする請求項11の隔膜型電極。The diaphragm type electrode according to claim 11, wherein the electrolytic solution contains metal ions of the same kind as the working electrode in advance. 前記電解液は、少なくとも、アルカリ金属若しくはアルカリ土類金属のハロゲン化物と、ハロゲン化銀と、を予め含有することを特徴とする請求項12の隔膜型電極。13. The diaphragm type electrode according to claim 12, wherein the electrolytic solution contains at least an alkali metal or alkaline earth metal halide and silver halide in advance. 前記電解液は、塩化カリウム又は塩化ナトリウムと、塩化銀又は臭化銀と、を予め含有することを特徴とする請求項13の隔膜型電極。The diaphragm type electrode according to claim 13, wherein the electrolytic solution contains potassium chloride or sodium chloride and silver chloride or silver bromide in advance. 前記作用極は銀、前記対極は銀−塩化銀から成ることを特徴とする請求項13又は14の隔膜型電極。The diaphragm type electrode according to claim 13 or 14, wherein the working electrode is made of silver and the counter electrode is made of silver-silver chloride. ポーラログラフ式隔膜型電極又はガルバニ電池式隔膜型電極であることを特徴とする請求項11〜15のいずれかの項に記載の隔膜型電極。The diaphragm type electrode according to any one of claims 11 to 15, which is a polarographic diaphragm type electrode or a galvanic cell type diaphragm type electrode. 隔膜型溶存酸素センサであることを特徴とする請求項16の隔膜型電極。The diaphragm type electrode according to claim 16, which is a diaphragm type dissolved oxygen sensor. 200μg/L以下の溶存酸素濃度測定が可能であることを特徴とする請求項17の隔膜型電極。The diaphragm type electrode according to claim 17, wherein the dissolved oxygen concentration can be measured at 200 µg / L or less. 隔膜型酸素センサであることを特徴とする請求項16の隔膜型電極。The diaphragm type electrode according to claim 16, which is a diaphragm type oxygen sensor. 2%以下の酸素濃度測定が可能であることを特徴とする請求項19の隔膜型電極。20. The diaphragm type electrode according to claim 19, wherein an oxygen concentration of 2% or less can be measured. 電極本体の一端に試料中の測定対象ガスを透過させる隔膜によって外部と区画された室を備え、この室内に作用極と対極とが配置され、前記作用極及び対極が電解液中に存在する状態で、隔膜を透過した測定対象ガスが作用極で反応することにより作用極と対極間に流れる電流を測定するための隔膜型電極の安定化方法であって、
前記作用極を構成する金属と同種の金属イオン、金属錯体又は金属化合物を添加した電解液を前記室内に注入することを特徴とする隔膜型電極の安定化方法。
One end of the electrode body is provided with a chamber partitioned from the outside by a diaphragm that allows the gas to be measured in the sample to pass through, and the working electrode and the counter electrode are disposed in the chamber, and the working electrode and the counter electrode are present in the electrolyte. A method for stabilizing a diaphragm-type electrode for measuring a current flowing between a working electrode and a counter electrode when a gas to be measured that has passed through the diaphragm reacts at the working electrode,
A method for stabilizing a diaphragm-type electrode, wherein an electrolytic solution to which a metal ion, a metal complex, or a metal compound of the same type as the metal constituting the working electrode is added is injected into the chamber.
前記電解液は、前記隔膜型電極の前記作用極と同種の金属イオンを含有することを特徴とする請求項21の隔膜型電極の安定化方法。The method for stabilizing a diaphragm type electrode according to claim 21, wherein the electrolytic solution contains the same type of metal ions as the working electrode of the diaphragm type electrode. 前記電解液は、少なくとも、アルカリ金属若しくはアルカリ土類金属のハロゲン化物と、ハロゲン化銀と、を含有することを特徴とする請求項22の隔膜型電極の安定化方法。23. The method for stabilizing a diaphragm electrode according to claim 22, wherein the electrolytic solution contains at least an alkali metal or alkaline earth metal halide and silver halide. 前記電解液は、塩化カリウム又は塩化ナトリウムと、塩化銀又は臭化銀と、を含有することを特徴とする請求項23の隔膜型電極の安定化方法。The method for stabilizing a diaphragm type electrode according to claim 23, wherein the electrolytic solution contains potassium chloride or sodium chloride and silver chloride or silver bromide. 前記隔膜型電極の前記作用極は銀、前記対極は銀−塩化銀から成ることを特徴とする請求項23又は24の隔膜形電極の安定化方法。The method for stabilizing a diaphragm electrode according to claim 23 or 24, wherein the working electrode of the diaphragm electrode is made of silver and the counter electrode is made of silver-silver chloride. 前記隔膜型電極は、ポーラログラフ式隔膜型電極又はガルバニ電池式隔膜型電極であることを特徴とする請求項21〜25のいずれかの項に記載の隔膜型電極の安定化方法。The method for stabilizing a diaphragm type electrode according to any one of claims 21 to 25, wherein the diaphragm type electrode is a polarographic diaphragm type electrode or a galvanic cell type diaphragm type electrode. 前記隔膜型電極は、隔膜型溶存酸素センサであることを特徴とする請求項26の隔膜型電極の安定化方法。27. The method of stabilizing a diaphragm type electrode according to claim 26, wherein the diaphragm type electrode is a diaphragm type dissolved oxygen sensor. 前記隔膜型電極は、200μg/L以下の溶存酸素濃度測定が可能であることを特徴とする請求項27の隔膜型電極の安定化方法。28. The method for stabilizing a diaphragm type electrode according to claim 27, wherein the diaphragm type electrode is capable of measuring a dissolved oxygen concentration of 200 [mu] g / L or less. 前記隔膜型電極は、隔膜型酸素センサであることを特徴とする請求項請求項26の隔膜型電極の安定化方法。27. The method according to claim 26, wherein the diaphragm electrode is a diaphragm oxygen sensor. 前記隔膜型電極は、2%以下の酸素濃度測定が可能であることを特徴とする請求項29の隔膜型電極の安定化方法。30. The method of stabilizing a diaphragm electrode according to claim 29, wherein the diaphragm electrode can measure an oxygen concentration of 2% or less.
JP2003014982A 2003-01-23 2003-01-23 Stabilization method of diaphragm type electrode Expired - Fee Related JP4217077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014982A JP4217077B2 (en) 2003-01-23 2003-01-23 Stabilization method of diaphragm type electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014982A JP4217077B2 (en) 2003-01-23 2003-01-23 Stabilization method of diaphragm type electrode

Publications (2)

Publication Number Publication Date
JP2004226263A true JP2004226263A (en) 2004-08-12
JP4217077B2 JP4217077B2 (en) 2009-01-28

Family

ID=32902868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014982A Expired - Fee Related JP4217077B2 (en) 2003-01-23 2003-01-23 Stabilization method of diaphragm type electrode

Country Status (1)

Country Link
JP (1) JP4217077B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205904A (en) * 2006-02-02 2007-08-16 Gs Yuasa Corporation:Kk Electrochemical oxygen sensor
JP2009150657A (en) * 2007-12-18 2009-07-09 Dkk Toa Corp Electrolyte for polarographic diaphragm type electrode and polarographic diaphragm type electrode
JP2013181796A (en) * 2012-02-29 2013-09-12 Dkk Toa Corp Method for manufacturing microelectrode, microelectrode and diaphragm type sensor
JP6466022B1 (en) * 2018-11-22 2019-02-06 新コスモス電機株式会社 Constant potential electrolytic gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870283B1 (en) * 2017-10-31 2018-07-23 주식회사 프레시즘 System for sterilizing toilet using chlorine dioxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205904A (en) * 2006-02-02 2007-08-16 Gs Yuasa Corporation:Kk Electrochemical oxygen sensor
JP2009150657A (en) * 2007-12-18 2009-07-09 Dkk Toa Corp Electrolyte for polarographic diaphragm type electrode and polarographic diaphragm type electrode
JP2013181796A (en) * 2012-02-29 2013-09-12 Dkk Toa Corp Method for manufacturing microelectrode, microelectrode and diaphragm type sensor
JP6466022B1 (en) * 2018-11-22 2019-02-06 新コスモス電機株式会社 Constant potential electrolytic gas sensor

Also Published As

Publication number Publication date
JP4217077B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US3380905A (en) Electrolytic sensor with anodic depolarization
EP2219024B1 (en) Electrochemical oxygen sensor
US4176032A (en) Chlorine dioxide analyzer
US4227974A (en) Electrochemical cell having a polarographic device with ion selective electrode as working electrode and method of use
JPS6114561A (en) Ph sensor
JPS6363858B2 (en)
JP6579315B2 (en) Residual chlorine measuring device and residual chlorine measuring method
EP1332358B1 (en) Acid gas measuring sensors and method of making same
JP4217077B2 (en) Stabilization method of diaphragm type electrode
EP3495810B1 (en) Electrochemical oxygen sensor
JP4671565B2 (en) Diaphragm electrode
US11215579B2 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
US20070227908A1 (en) Electrochemical cell sensor
EP0162622B1 (en) Gas sensor such as for carbon dioxide in the presence of oxygen
JP2004212174A (en) METHOD OF pH MEASUREMENT, COMPARISON ELECTRODE, AND MULTIPLE ELECTRODE
JP3650919B2 (en) Electrochemical sensor
US3377256A (en) Alkali analysis
Maj-Zurawska et al. Effect of the platinum surface on the potential of nitrate-selective electrodes without internal solution
Mihajlović et al. Application of hydrogen—palladium and deuterium—palladium electrodes in the coulometric—potentiometric determination of bases in some dipolar aprotic solvents
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
Yosypchuk et al. Combined Voltammetric‐Potentiometric Sensor with Silver Solid Amalgam Link for Electroanalytical Measurements
JPH07159367A (en) Reference electrode
JP2003254936A (en) Oxidation-reduction potential measuring method and oxidation-reduction potential measuring device
JPH06222038A (en) Dissolved oxygen sensor
Midgley Reference electrodes for use in the potentiometric determination of chloride. Part II. Quinhydrone electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees