JPS6317180B2 - - Google Patents
Info
- Publication number
- JPS6317180B2 JPS6317180B2 JP55165596A JP16559680A JPS6317180B2 JP S6317180 B2 JPS6317180 B2 JP S6317180B2 JP 55165596 A JP55165596 A JP 55165596A JP 16559680 A JP16559680 A JP 16559680A JP S6317180 B2 JPS6317180 B2 JP S6317180B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- liquid
- residual chlorine
- diaphragm tube
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 29
- 229910052801 chlorine Inorganic materials 0.000 claims description 29
- 239000000460 chlorine Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 8
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 3
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- QNGVNLMMEQUVQK-UHFFFAOYSA-N 4-n,4-n-diethylbenzene-1,4-diamine Chemical compound CCN(CC)C1=CC=C(N)C=C1 QNGVNLMMEQUVQK-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】
本発明は、上下水道、工業用水および河川等に
おける残留塩素の濃度を測定する残留塩素測定方
法および測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual chlorine measuring method and a measuring device for measuring the concentration of residual chlorine in water and sewage systems, industrial water, rivers, etc.
水処理の1つとして、塩素処理は極めて重要な
役割を果しており、上水道における殺菌のための
塩素処理をはじめ、プール、下水放流水、清涼飲
料水用滅菌水、浴場、クリーニングから発電所、
工場、船舶等の冷却水に対する藻類、貝類の進入
防止やスライム防止等を目的とするものまで多く
の分野で広範囲に行なわれている。このような塩
素処理において、使用する塩素量の適正化を計る
一般的な方法として、処理後の残留塩素濃度を測
定して注入塩素量を調節する方法がある。而し
て、残留塩素測定法として従来から知られている
主な方法にジエチルパラフエニレンジアミン(以
下「DPD」と略す)法とオルトトリジン法があ
るが、前者はDPDが塩素によつて酸化されて赤
色を呈することから該赤色濃度を比色測定するこ
とにより残留塩素濃度を測定する方法であり、後
者はオルトトリジンが塩素の存在によつて黄色ホ
ロキノンを生成することから、該黄色濃度を比色
測定することにより残留塩素濃度を測定する方法
である。 As a type of water treatment, chlorination plays an extremely important role, including chlorination for disinfection in water supplies, swimming pools, sewage discharge water, sterilized water for soft drinks, baths, cleaning, power plants, etc.
It is widely used in many fields to prevent algae and shellfish from entering the cooling water of factories, ships, etc., and to prevent slime. In such chlorine treatment, a common method for optimizing the amount of chlorine used is to measure the residual chlorine concentration after treatment and adjust the amount of chlorine injected. The main methods conventionally known for measuring residual chlorine are the diethyl paraphenylene diamine (hereinafter abbreviated as "DPD") method and the orthotolidine method, but the former method is based on the fact that DPD is oxidized by chlorine. This method measures the residual chlorine concentration by colorimetrically measuring the red color concentration, since orthotolidine produces yellow holoquinone in the presence of chlorine. This method measures the residual chlorine concentration by measuring.
然し乍ら、上記従来例においては、発色した赤
色濃度若しくは黄色濃度を比色測定する比色法を
用いて残留塩素の定量を行なうため、被測定液を
くみあげて専用容器に入れ、試薬を添加して後反
応する時間を待ち、発色した液をカバーガラス等
の標準色と比較するといつた煩雑な作業と長い時
間とを必要としていた。 However, in the above conventional example, in order to quantify residual chlorine using a colorimetric method that measures the developed red or yellow concentration colorimetrically, the liquid to be measured is pumped up and placed in a special container, and a reagent is added. Waiting for post-reaction time and comparing the developed solution with the standard color of a cover glass, etc., requires complicated work and a long time.
本発明は、かかる欠点に鑑みてなされたもので
あり、その目的は、煩雑な作業を要することなく
簡単な作業で迅速に被測定液中の残留塩素濃度を
測定できる残留塩素測定方法および測定装置を提
供するにある。 The present invention has been made in view of these drawbacks, and its purpose is to provide a residual chlorine measuring method and a measuring device that can quickly measure the residual chlorine concentration in a liquid to be measured with simple work without requiring complicated work. is to provide.
本発明の特徴は、被測定液中の残留塩素濃度を
測定する方法および装置において、被測定液に含
まれている残留塩素をKIによつてI2に変化させ、
その後該被測定液を吸引して電解液と電極を有す
る電解セルに導き、定電位の下で前記I2を電気分
解させて電解電流等の電気量を測定することによ
り、被測定液中の残留塩素を測定することにあ
る。 The feature of the present invention is that in a method and apparatus for measuring the concentration of residual chlorine in a liquid to be measured, the residual chlorine contained in the liquid to be measured is changed to I2 by KI,
Thereafter, the liquid to be measured is sucked and introduced into an electrolytic cell having an electrolyte and an electrode, and the I2 is electrolyzed under a constant potential to measure electrical quantities such as electrolytic current. The purpose is to measure residual chlorine.
以下、本発明について、図を用いて詳細に説明
する。第1図は、本発明の実施例を示す構成説明
図である。同図において、吸入器1はピストン1
1とシリンダ12から構成されており、シリンダ
12の底部には所定の長さを有するイオン交換膜
等からなる隔膜チユーブ13が接続されている。
また、電解セル2はガラス等でなる筒状部材2
1、該筒状部材21の両端開口部を塞ぐとともに
上記隔膜チユーブ13が中心部を貫通するように
設けられシリコーンゴム等でなる栓22,22′
とで構成されており、栓22,22′、筒状部材
21、および隔膜チユーブ13の一部とで形成さ
れる空間部にはKIとCH3COOHの溶液からなる
電解液23が入れられるとともに該電解液23に
浸漬されるようにしてPt若しくはAuからなる筒
状、網状、若しくはラセン状の陽極24が設けら
れている。更に、栓22,22′の中心部を貫通
する隔膜チユーブ13の中にはPt線若しくはAu
線からなる陰極25が設けられており、該陰極2
5は定電圧電源3、電流計4、およびスイツチ5
を介して上記陽極24と導線などで接続されてい
る。更にまた、容器7には被測定液6が入れられ
ており、上記隔膜チユーブ13の先端部から被測
定液6が吸引されるようになつている。尚、隔膜
チユーブ13のうち栓22と栓22′に挾まれた
部分は、上記一実施例に限定されるものではな
く、抵抗の小さい素焼板等で代替することも可能
である。 Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention. In the same figure, an inhaler 1 has a piston 1
1 and a cylinder 12, and a diaphragm tube 13 made of an ion exchange membrane or the like having a predetermined length is connected to the bottom of the cylinder 12.
Further, the electrolytic cell 2 includes a cylindrical member 2 made of glass or the like.
1. Plugs 22, 22' made of silicone rubber or the like, which close the openings at both ends of the cylindrical member 21 and are provided so that the diaphragm tube 13 passes through the center.
The space formed by the plugs 22, 22', the cylindrical member 21, and a part of the diaphragm tube 13 is filled with an electrolytic solution 23 consisting of a solution of KI and CH 3 COOH. A cylindrical, mesh, or helical anode 24 made of Pt or Au is provided so as to be immersed in the electrolytic solution 23 . Furthermore, a Pt wire or Au
A cathode 25 made of wire is provided, and the cathode 2
5 is a constant voltage power supply 3, an ammeter 4, and a switch 5
The anode 24 is connected to the anode 24 via a conductive wire or the like. Furthermore, a liquid to be measured 6 is placed in the container 7, and the liquid to be measured 6 is sucked from the tip of the diaphragm tube 13. Incidentally, the portion of the diaphragm tube 13 sandwiched between the plugs 22 and 22' is not limited to the above embodiment, and may be replaced with a clay plate or the like having low resistance.
上記構成からなる本発明の実施例における動作
について以下説明する。先ず、容器7中の被測定
液6にKIとCH3COOHからなる溶液が加えられ
被測定液6中の残留塩素が全てI2に変えられる。
次に、ピストン11が操作されて、被測定液6が
吸引され隔膜チユーブ13内に導入されるととも
に該被測定液6が隔膜チユーブ13の中で静止状
態に保たれる。この状態で、スイツチ5が閉にさ
れ、陽極24と陰極25の間に定電圧(例えば
0.3V)が印加されると、陽極24および陰極2
5において夫々下式(1)、(2)のような反応が生ず
る。 The operation of the embodiment of the present invention having the above configuration will be described below. First, a solution consisting of KI and CH 3 COOH is added to the liquid to be measured 6 in the container 7, and all residual chlorine in the liquid to be measured 6 is converted to I 2 .
Next, the piston 11 is operated, and the liquid to be measured 6 is sucked and introduced into the diaphragm tube 13, and the liquid to be measured 6 is kept stationary in the diaphragm tube 13. In this state, the switch 5 is closed and a constant voltage (for example,
0.3V), the anode 24 and cathode 2
5, the reactions shown in the following formulas (1) and (2) occur, respectively.
2I-−2e→I2 ……(1)
I2+2e→2I- ……(2)
尚、上式(1)で生成したI2は、隔膜チユーブ13
の壁膜を透過することができないため、該I2が隔
膜チユーブ13の内部に導入されている被測定液
に達し、被測定液に含まれているI2と混合するよ
うなことはない。2I - −2e→I 2 ...(1) I 2 +2e→2I - ...(2) In addition, I 2 generated in the above formula (1) is the diaphragm tube 13
Since the I 2 cannot pass through the wall membrane of the diaphragm tube 13, the I 2 will not reach the liquid to be measured introduced into the diaphragm tube 13 and will not mix with the I 2 contained in the liquid to be measured.
ところで、陽極24の周囲には電解液23に含
まれているKIが多量に存在し、陰極25の周囲
には被測定液中へ容器7において加えられた大過
剰のKIが存在している。従つて、上式(1)、(2)の
反応においてはKI即ちI-が過剰に存在するため、
上式(1)の方が支配的となつて反応が進行する。 By the way, a large amount of KI contained in the electrolytic solution 23 exists around the anode 24, and a large excess of KI, which was added to the liquid to be measured in the container 7, exists around the cathode 25. Therefore, in the reactions of the above formulas (1) and (2), since KI, that is, I - is present in excess,
The reaction proceeds with the above formula (1) being dominant.
第2図は、電流計4で検出される電解電流とス
イツチ5が閉になつてからの経過時間との関係を
示す特性曲線図である。第2図において、電解電
流()は、時間(T)の経過にともなつて減少
し、前記陰極25の近辺に存在するI2がなくなつ
たときに零となる。 FIG. 2 is a characteristic curve diagram showing the relationship between the electrolytic current detected by the ammeter 4 and the elapsed time after the switch 5 is closed. In FIG. 2, the electrolytic current ( ) decreases with the passage of time (T) and becomes zero when I 2 existing in the vicinity of the cathode 25 disappears.
また、第3図は、電流計4で検出される電解電
流の値が積分された電気量Cと、スイツチ5が閉
になつてからの経過時間との関係を示す特性曲線
図である。第3図において、電気量(C)は、被測定
液中の残留塩素濃度と比例関係にあり、通常は、
2分経過時のほぼ安定した電気量の値から被測定
液中の残留塩素濃度が測定される。すなわち、被
測定液中の残留塩素と添加されたKIとの反応で
生じたI2がI-に変化するのに要する電気量を測定
することにより、フアラデーの法則を利用して被
測定液中の残留塩素が測定されるのである。 Further, FIG. 3 is a characteristic curve diagram showing the relationship between the amount of electricity C, which is the integrated value of the electrolytic current detected by the ammeter 4, and the elapsed time after the switch 5 is closed. In Figure 3, the quantity of electricity (C) is proportional to the residual chlorine concentration in the liquid to be measured, and normally,
The residual chlorine concentration in the liquid to be measured is measured from the almost stable value of the quantity of electricity after 2 minutes have elapsed. In other words, by measuring the amount of electricity required for I 2 produced by the reaction between the residual chlorine in the liquid to be measured and the added KI to change to I - , the amount of electricity in the liquid to be measured is measured using Faraday's law. The amount of residual chlorine is measured.
以上、詳しく説明したような本発明の実施例に
よれば、残留塩素を酸性の下でKIと高効率で反
応させてI2を析出させ、所定容量の被測定液中に
存在するI2をクーロメトリーによつてI-に変化さ
せるときの電気量を測定しているため、前記従来
例に比して著しく高い精度で被測定液中の残留塩
素量を測定できるという利点を有している。ま
た、本発明の実施例において、残留塩素のI2置換
が100%行なわれ、且つ隔膜チユーブ13や電極
24,25の大きさおよび反応に寄与する被測定
液の容量が一定に保たれると、標準液を用いて測
定のたびに測定装置を校正する必要もなくなると
いう利点も有している。 According to the embodiments of the present invention as described above in detail, residual chlorine is reacted with KI under acidic conditions with high efficiency to precipitate I2 , and I2 present in a predetermined volume of the liquid to be measured is removed. Since the amount of electricity when changing to I - is measured by coulometry, it has the advantage that the amount of residual chlorine in the liquid to be measured can be measured with significantly higher accuracy than in the conventional example. In addition, in the embodiment of the present invention, 100% of the residual chlorine is replaced with I2 , and the sizes of the diaphragm tube 13 and the electrodes 24 and 25 and the volume of the liquid to be measured that contributes to the reaction are kept constant. Another advantage is that there is no need to calibrate the measuring device using a standard solution every time a measurement is made.
第1図は、本発明の実施例を示す構成説明図、
第2図は、電解電流と経過時間との関係を示す特
性曲線図、第3図は、電気量と経過時間との関係
を示す特性曲線図である。
1…吸入器、11…ピストン、12…シリン
ダ、13…隔膜チユーブ、2…電解セル、21…
筒状部材、22,22′…栓、23…電解液、2
4…陽極、25…陰極、3…定電圧電源、4…電
流計、5…スイツチ、6…被測定液、7…容器。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention;
FIG. 2 is a characteristic curve diagram showing the relationship between the electrolytic current and the elapsed time, and FIG. 3 is a characteristic curve diagram showing the relationship between the amount of electricity and the elapsed time. DESCRIPTION OF SYMBOLS 1... Inhaler, 11... Piston, 12... Cylinder, 13... Diaphragm tube, 2... Electrolytic cell, 21...
Cylindrical member, 22, 22'... Plug, 23... Electrolyte, 2
4... Anode, 25... Cathode, 3... Constant voltage power supply, 4... Ammeter, 5... Switch, 6... Liquid to be measured, 7... Container.
Claims (1)
電解セルを貫通するように設けられると共に内部
に陰極が装着された隔膜チユーブの中へ前記I2を
含む被測定液を吸引して導いてのち静止させ、前
記I2について定電位電気分解反応を生じさせ電気
量を測定して前記被測定液中の残留塩素濃度を測
定することを特徴とする残留塩素の測定方法。 2 ピストン、シリンダ、及び該シリンダに接続
され内部に陰極が装着されると共に一定の長さを
有する隔膜チユーブからなり被測定液を吸引して
前記隔膜チユーブ内へ導いてのち静止させる吸入
器と、筒状部材及び該筒状部材の両端開口部を塞
ぐと共に前記隔膜チユーブが中心部を貫通するよ
うに設けられた2個の栓とで構成され内部に電解
液と陽極が設けられた電解セルとを具備すること
を特徴とする残留塩素の測定装置。[Claims] 1. Replace residual chlorine in the liquid to be measured with I2 using KI,
The liquid to be measured containing the I 2 is drawn and guided into a diaphragm tube that is provided to penetrate the electrolytic cell and is equipped with a cathode inside, and is then allowed to stand still, allowing a constant potential electrolysis reaction to occur for the I 2 . A method for measuring residual chlorine, comprising: measuring the amount of electricity generated to measure the residual chlorine concentration in the liquid to be measured. 2. An inhaler consisting of a piston, a cylinder, and a diaphragm tube that is connected to the cylinder, has a cathode installed inside, and has a certain length, sucks the liquid to be measured, guides it into the diaphragm tube, and then stops it; An electrolytic cell comprising a cylindrical member and two plugs that close openings at both ends of the cylindrical member and are provided with the diaphragm tube passing through the center, and an electrolytic solution and an anode are provided inside. A residual chlorine measuring device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55165596A JPS5788359A (en) | 1980-11-25 | 1980-11-25 | Method and appratus for measuring residual chlorine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55165596A JPS5788359A (en) | 1980-11-25 | 1980-11-25 | Method and appratus for measuring residual chlorine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5788359A JPS5788359A (en) | 1982-06-02 |
JPS6317180B2 true JPS6317180B2 (en) | 1988-04-12 |
Family
ID=15815349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55165596A Granted JPS5788359A (en) | 1980-11-25 | 1980-11-25 | Method and appratus for measuring residual chlorine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5788359A (en) |
-
1980
- 1980-11-25 JP JP55165596A patent/JPS5788359A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5788359A (en) | 1982-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4256552A (en) | Chlorine generator | |
US7985377B2 (en) | Apparatus for monitoring chlorine concentration in water | |
US4049382A (en) | Total residual chlorine | |
CA1039810A (en) | Dissolved oxygen probe | |
JPH04500555A (en) | Method and apparatus for determining oxidizable water-containing substances in aqueous sample liquids | |
KR101077919B1 (en) | Card-type mult tester | |
Carson et al. | Coulometric Determination of Acid | |
Monk et al. | Microchemical methods in radiochemical analysis: Determination of chemical yields by micro-coulometry | |
CN205210019U (en) | Novel intelligence chlorine residue short -term test appearance | |
JPS6317180B2 (en) | ||
US3315270A (en) | Dissolved oxidant analysis | |
US2069562A (en) | Apparatus for the analysis of a chemically purified water | |
US4441979A (en) | Nutating probe for gas analysis | |
JPS6223818B2 (en) | ||
JPS6246825B2 (en) | ||
US5041202A (en) | Apparatus for the continuous production of a standard ionic solution | |
US3523872A (en) | Gas analysis | |
US3764508A (en) | Electrochemical oxygen demand measuring system | |
RU2139530C1 (en) | Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water | |
KR100759531B1 (en) | Residual chlorine analyzer of ventilation form | |
JPS6258464B2 (en) | ||
SU1046667A1 (en) | Device for solution composition analysis | |
CS262711B1 (en) | Process for continuous amperometric measuring of trace fluorides concentration in water | |
JPH1164275A (en) | Oxidation-reduction potential measuring device | |
JPH01313754A (en) | Method of measuring concentration of chlorine |