JPH01313754A - Method of measuring concentration of chlorine - Google Patents

Method of measuring concentration of chlorine

Info

Publication number
JPH01313754A
JPH01313754A JP14599388A JP14599388A JPH01313754A JP H01313754 A JPH01313754 A JP H01313754A JP 14599388 A JP14599388 A JP 14599388A JP 14599388 A JP14599388 A JP 14599388A JP H01313754 A JPH01313754 A JP H01313754A
Authority
JP
Japan
Prior art keywords
chlorine
silver
sample
ions
titration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14599388A
Other languages
Japanese (ja)
Inventor
Shigeo Kamisaka
上坂 繁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI RAIFU SCI KK
Original Assignee
ASAHI RAIFU SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI RAIFU SCI KK filed Critical ASAHI RAIFU SCI KK
Priority to JP14599388A priority Critical patent/JPH01313754A/en
Publication of JPH01313754A publication Critical patent/JPH01313754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the low concn. of chlorine from the required quantity of electricity by taking the prescribed amt. of a sample into a cell for titration disposed with negative and positive electrodes made of silver, adding a required amt. of an acid reagent thereto, passing constant current and executing effective electrolysis to the disappearance of the chlorine ions. CONSTITUTION:The prescribed amt. of the sample 3 is exactly measured in the cell 1 for titration. A required amt. of the acid reagent 2 such as nitric acid is then added as a supply source of the hydrogen ions necessary for electrolysis. The constant current of DC is then passed between the positive electrode 6 consisting of a silver wire for electrolysis and the cathode 7 consisting of a silver electrode disposed in the cell 1 for titration while both are mixed uniformly by a stirring vane 5, so that the silver chloride is formed of the dissolved silver ions and the chlorine ions in the sample 3. The generation of the excess silver ions is detected by a pair of silver electrodes 8, 8 and the concn. of the chlorine in the reagent 3 is determined from the quantity of the electricity required to the disappearance of the chlorine ions in the reagent 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電量滴定による液相中の塩素濃度の測定方法に
関するものであり、殊に従来測定が困難であったきわめ
て低い塩素濃度の測定を。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring chlorine concentration in a liquid phase by coulometric titration, and is particularly applicable to the measurement of extremely low chlorine concentrations, which have been difficult to measure in the past. .

従来用いられている電量滴定機器を用いて行なうことが
できる塩素濃度の測定方法に関するものである。
The present invention relates to a method for measuring chlorine concentration that can be performed using conventional coulometric titration equipment.

[従来の技術] 液相中の塩素濃度を定量する方法の一つとして電量滴定
による測定方法が知られている。
[Prior Art] A measurement method using coulometric titration is known as one of the methods for quantifying the chlorine concentration in a liquid phase.

この測定方法は第2図に示すように30−程度の容積を
有するガラス製の滴定用セル1内に例えば電解゛などに
より予め塩素成分を除去した15〜20−の硝酸などの
所定濃度の酸試薬2を入れ、これに0.2−程度の試料
3をピペット4を用いて正確に計り入れ、攪拌羽根5に
より両者を均一に混合させながら滴定用セル1内に配置
した電解用鎖線よりなる陽電極6と銀電極よりなる陰電
極7との間に定電流を流して電解し、陽電極6から電解
浴中に溶出する銀イオンと試料3中の塩素イオンとで塩
化銀を生成させ、試料3中の塩素イオンが全て反応して
余剰の銀イオンが発生したことを銀電極対8.8により
検知して試薬3中の塩素イオンが消失するまでに要した
電気量から試薬3中の塩素濃度を求めるものである。本
方法は液相中の塩素濃度を蒸発や薬剤などの処理をほと
んど施すことなく簡単且つ短時間の内に測定することが
でき、きわめて便利である。
As shown in Fig. 2, this measurement method involves placing a predetermined concentration of acid such as 15 to 20 nitric acid in which the chlorine component has been removed by electrolysis etc. in a glass titration cell 1 having a volume of about 30. It consists of a chain line for electrolysis, in which the reagent 2 is placed, and a sample 3 of about 0.2 mm is accurately weighed into it using a pipette 4, and the two are uniformly mixed by a stirring blade 5 while being placed inside the titration cell 1. Electrolysis is carried out by passing a constant current between the positive electrode 6 and the negative electrode 7 made of a silver electrode, and silver chloride is generated by the silver ions eluted from the positive electrode 6 into the electrolytic bath and the chlorine ions in the sample 3, The silver electrode pair 8.8 detects that all the chlorine ions in the sample 3 have reacted and excess silver ions have been generated, and the amount of electricity required for the chlorine ions in the reagent 3 to disappear is calculated based on the amount of electricity required for the chlorine ions in the reagent 3 to disappear. This is to find the chlorine concentration. This method is extremely convenient because it can measure the chlorine concentration in the liquid phase easily and within a short time without requiring any treatment such as evaporation or chemicals.

[発明が解決しようとする課題] ところが、前記従来の電量滴定機器による塩素濃度の測
定方法は、30−程度の容積を有する滴定用セル1内に
15〜20−の酸試薬2を入れ、そこに0.1〜0.2
−程度の試料3を添加して測定するものであり、水素イ
オンの供給源である酸試薬2が過剰に存在する。このた
めそのまま連続して10回位まで測定することが可能で
であるが、試料3の添加量がきわめて少ないために測定
可能な塩素濃度50p、 p、 rti、程度であり、
例えば水道水や精製水、或いは各種の食品など50p。
[Problems to be Solved by the Invention] However, the conventional method for measuring chlorine concentration using a coulometric titration device is to place a 15-20-acid reagent 2 into a titration cell 1 having a volume of about 30- 0.1 to 0.2
The measurement is carried out by adding sample 3 of - degree, and the acid reagent 2, which is a source of hydrogen ions, is present in excess. Therefore, it is possible to measure up to 10 times in a row, but since the amount of sample 3 added is extremely small, the measurable chlorine concentration is only about 50p, p, rti.
For example, 50p of tap water, purified water, or various foods.

p、 m、以下の塩素濃度を有するものについては測定
不可能である。また、従来法においてこれよりも低い塩
素濃度の測定を可能とするには試料3の添加量を増加す
ることが考えられるが、従来の電量滴定機器にあっては
滴定層セル1の容積に制限があるため試料3のの増加は
最大限1〇−程度であり、且つ限度まで増加しても5 
p、 l)。
It is not possible to measure chlorine concentrations below p, m. In addition, in order to make it possible to measure chlorine concentrations lower than this using the conventional method, it is possible to increase the amount of sample 3 added, but with conventional coulometric titration equipment, it is limited to the volume of titration layer cell 1. Because of this, the maximum increase in sample 3 is about 10-1, and even if it increases to the limit, it will only increase by 5.
p, l).

m、程度の濃度の塩素が低い精度で辛うじて測定できる
だけにとどまる。更に、試料3の容量を大幅に増加させ
るには滴定用セル1ならびに電極6,7などを大形化し
なければならず経済的にも不利であるばかりか、装置を
大形化すると比較的高濃度の塩素を測定する場合に必要
以上に多量の試料3および酸試薬2を要するという不都
合を生じる。
It is only possible to measure chlorine at a concentration of about 1.0 m with low accuracy. Furthermore, in order to significantly increase the capacity of the sample 3, it is necessary to increase the size of the titration cell 1 and the electrodes 6, 7, etc., which is not only economically disadvantageous, but also requires a relatively high cost if the device is made large. When measuring the concentration of chlorine, an unnecessarily large amount of sample 3 and acid reagent 2 are required.

本発明は斯る実情に鑑みてなされたものであり、従来用
いられている電量滴定装置を用いてきわめて低い塩素濃
度の測定を行なうことができる電量滴定による塩素濃度
の測定方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for measuring chlorine concentration by coulometric titration, which allows extremely low chlorine concentration to be measured using a conventionally used coulometric titration device. be.

[課題を解決するための手段] も 本発明においては、銀製の陰陽4極を配置した滴定用セ
ルを使用し、塩素を含有する試料の所定量を前記滴定用
セルに正確に計り取り、これに必要量の酸試薬を添加し
前記胃シ憂廷を電極間に定電流を流して塩素イオンが消
失するまで電解を行ない、要した電気量から試料中の塩
素濃度を求める構成とすることによって前記課題を解決
するための手段とした。
[Means for Solving the Problems] In the present invention, a titration cell in which four negative and negative silver electrodes are arranged is used, a predetermined amount of a sample containing chlorine is accurately measured into the titration cell, and the titration cell is By adding the necessary amount of acid reagent to the sample, electrolyzing the gastric sample by passing a constant current between the electrodes until the chlorine ions disappear, and determining the chlorine concentration in the sample from the amount of electricity required. This is a means to solve the above problem.

このような本発明は従来の滴定装置をそのまま用いるこ
とができる。即ち、第1図を参照して、先ず、30M1
程度の容積を有する滴定用セル1に例えば50p、 p
、 m、以下、一般には20〜O,ip、 p。
In the present invention, a conventional titration apparatus can be used as is. That is, referring to FIG. 1, first, 30M1
For example, a titration cell 1 having a volume of about 50p, p
, m, hereinafter generally 20 to O, ip, p.

m、程度の塩素濃度を有する試料3の約15〜20tn
Aの範囲内で定めた所定量を誤差1%以下の精度で正確
に計り取る。次に電解に必要な水素イオンの供給源とし
て硝酸などの酸試薬2を必要量、例えば硝酸の濃度が1
4.5Nの場合には0.100mg、5〜6Nの場合に
は0.200d、2〜3Nの場合には0.500−をマ
イクロピペット4を用いて誤差1%以下の精度で計量し
添加する。次で、従来方法と同様に攪拌羽根5により両
者を均一に混合させながら滴定用セル1内に配置した電
解用銀線よりなる陽電極6と銀電極よりなる陰極7との
間に例えば0.004〜0.005 A/h程度の直流
の定電流を流し、溶解する銀イオンと試料3中の塩素イ
オンとで塩化銀を生成させる。塩素イオンが消失するま
で電解した後は余剰の銀イオンが発生するが、この発生
を銀電極対8.8により検知して試薬3中の塩素イオン
が消失するまでに要した電気量から試薬3中の塩素濃度
を求めるものである。
About 15 to 20 tn of sample 3 with a chlorine concentration of about
Accurately measure a predetermined amount within the range A with an accuracy of 1% or less. Next, as a source of hydrogen ions necessary for electrolysis, add an acid reagent such as nitric acid in the required amount, for example, when the concentration of nitric acid is 1
Weigh and add 0.100mg for 4.5N, 0.200d for 5-6N, and 0.500- for 2-3N using micropipette 4 with an accuracy of 1% or less. do. Next, as in the conventional method, while uniformly mixing the two with a stirring blade 5, a 0.000.degree. A constant DC current of approximately 0.004 to 0.005 A/h is applied to generate silver chloride from the dissolved silver ions and the chlorine ions in the sample 3. After electrolyzing until the chlorine ions disappear, surplus silver ions are generated, but this generation is detected by the silver electrode pair 8.8, and from the amount of electricity required for the chlorine ions in the reagent 3 to disappear, the reagent 3 is detected. This is to find the chlorine concentration in the water.

尚、本発明はきわめて低濃度の塩素濃度を測定するもの
であり、滴定前に滴定用セル1、使用する電極6.7,
8.8に付着している塩素および酸試薬2に含まれてい
る塩素が測定値に影響する。従って、滴定用セル1、使
用する電極6.7.8,8に対しては、例えば滴定用セ
ル1内に15〜2〇−程度の酸試薬を入れて電解するこ
とにより付着塩素を予め除去する。
Note that the present invention measures extremely low chlorine concentrations, and before titration, the titration cell 1, the electrodes 6, 7, and
The chlorine attached to 8.8 and the chlorine contained in acid reagent 2 affect the measured value. Therefore, for the titration cell 1 and the electrodes 6, 7, 8, and 8 used, adhering chlorine must be removed in advance by, for example, placing an acid reagent of about 15 to 20% in the titration cell 1 and electrolyzing it. do.

また、酸試薬2に対しては例えば純水20清Nに所定量
の酸試薬2を添加して本発明の手段により塩素濃度を求
めて基礎塩素量とし、実際の測定値から減じて試料3の
含有塩素量を求める。
For acid reagent 2, for example, a predetermined amount of acid reagent 2 is added to 20 N pure water, the chlorine concentration is determined by the means of the present invention, and the basic chlorine amount is subtracted from the actual measured value. Find the amount of chlorine contained in.

[実施例コ 精製水および水道水中の含有塩素量を求めた本発明の実
施例および比較例についての測定値を次表に示す。実施
例は試料201gに3.5N−硝酸0.2mNを添加し
、また比較例は3.5N−硝酸20清ρに試料0.2−
を添加して、それぞれ0.005A/hの電流で滴定を
行なった。尚、表中×は測定できなかったことを示す。
[Example 7] The following table shows the measured values for Examples and Comparative Examples of the present invention, in which the amount of chlorine contained in purified water and tap water was determined. In the example, 0.2 mN of 3.5N nitric acid was added to 201 g of the sample, and in the comparative example, 0.2 mN of the sample was added to 20% ρ of 3.5N nitric acid.
were added, and titration was performed at a current of 0.005 A/h. In addition, in the table, × indicates that the measurement could not be performed.

以上の結果によれば、本発明の実施例1,2が何れの場
合も含有塩素濃度を正確に測定できたのに対し、比較例
1では滴定ごとに測定できたりできなかったりする傾向
がみられ、測定できた場合も測定値が一律でなく信頼で
きない。
According to the above results, in both Examples 1 and 2 of the present invention, the concentration of chlorine contained could be accurately measured, whereas in Comparative Example 1, there was a tendency that measurement could be performed or not at each titration. Even if measurements are possible, the measured values are inconsistent and unreliable.

また、比較例2では含有塩素濃度が低過ぎて測定するこ
とができない。従って本発明が従来法に比べてきわめて
低濃度の塩素の測定が可能であることが判明する。
Furthermore, in Comparative Example 2, the concentration of chlorine contained was too low to be measured. Therefore, it is clear that the present invention is capable of measuring extremely low concentrations of chlorine compared to conventional methods.

[発明の効果] 以上の構成を有する本発明によれば、従来用いられてい
る電量滴定装置を用いて従来では測定不可能であったき
わめて低い塩素濃度の測定をきわめて簡単且つ確実に行
なうことができるものである。
[Effects of the Invention] According to the present invention having the above-described configuration, extremely low chlorine concentrations, which could not be measured in the past, can be measured very easily and reliably using a conventionally used coulometric titration device. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した場合の一例を示す概略図、第
2図は従来の滴定方法を示す概略図である。 1・・・滴定用セル、2・・・酸試薬、3・・・試 料
、6・・・陽電極、7・・・陰電極、8.8・・・銀電
極。
FIG. 1 is a schematic diagram showing an example of the case where the present invention is implemented, and FIG. 2 is a schematic diagram showing a conventional titration method. 1... Titration cell, 2... Acid reagent, 3... Sample, 6... Positive electrode, 7... Negative electrode, 8.8... Silver electrode.

Claims (1)

【特許請求の範囲】[Claims] 銀製の陰陽電極を配置した滴定用セルを使用し、塩素を
含有する試料の所定量を前記滴定用セルに正確に計り取
り、これに必要量の酸試薬を添加し前記電極間に定電流
を流して塩素イオンが消失するまで電解を行ない、要し
た電気量から試料中の塩素濃度を求めることを特徴とす
る塩素濃度の測定方法。
Using a titration cell equipped with a silver cathode and yang electrode, a predetermined amount of a sample containing chlorine is accurately measured into the titration cell, a required amount of acid reagent is added thereto, and a constant current is applied between the electrodes. A method for measuring chlorine concentration, characterized in that the chlorine concentration in the sample is determined from the amount of electricity required by electrolyzing the sample until chlorine ions disappear.
JP14599388A 1988-06-13 1988-06-13 Method of measuring concentration of chlorine Pending JPH01313754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14599388A JPH01313754A (en) 1988-06-13 1988-06-13 Method of measuring concentration of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14599388A JPH01313754A (en) 1988-06-13 1988-06-13 Method of measuring concentration of chlorine

Publications (1)

Publication Number Publication Date
JPH01313754A true JPH01313754A (en) 1989-12-19

Family

ID=15397688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14599388A Pending JPH01313754A (en) 1988-06-13 1988-06-13 Method of measuring concentration of chlorine

Country Status (1)

Country Link
JP (1) JPH01313754A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308679A (en) * 2004-04-26 2005-11-04 Asahi Life Sci Kk Salinity concentration measuring method, unit water amount measuring method, and measuring instrument therefor
JP2006177800A (en) * 2004-12-22 2006-07-06 Tokuyama Corp Trace chlorine ion concentration analysis method
CN100401055C (en) * 2004-07-29 2008-07-09 宝山钢铁股份有限公司 Method for measuring total content of chlorine in iron ore and brown iron oxide
JP2010149057A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method of measuring chlorine content of incineration ash, method of making incineration ash into cement raw material, and method of manufacturing cement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308679A (en) * 2004-04-26 2005-11-04 Asahi Life Sci Kk Salinity concentration measuring method, unit water amount measuring method, and measuring instrument therefor
CN100401055C (en) * 2004-07-29 2008-07-09 宝山钢铁股份有限公司 Method for measuring total content of chlorine in iron ore and brown iron oxide
JP2006177800A (en) * 2004-12-22 2006-07-06 Tokuyama Corp Trace chlorine ion concentration analysis method
JP4617153B2 (en) * 2004-12-22 2011-01-19 株式会社トクヤマ Trace chlorine ion concentration analysis method
JP2010149057A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method of measuring chlorine content of incineration ash, method of making incineration ash into cement raw material, and method of manufacturing cement

Similar Documents

Publication Publication Date Title
Carson et al. Coulometric Determination of Acid
Ramsey et al. Coulometric Titrations With Iodine
Korolczuk Sensitive and selective determination of mercury by differential pulse stripping voltammetry after accumulation of mercury vapour on a gold plated graphite electrode
JPH01313754A (en) Method of measuring concentration of chlorine
Salaria et al. Polarographic and Coulometric Determination of Technetium.
US2870067A (en) Process for fluoride detection
Florence Differential potentiometric determination of parts per billion chloride with ion-selective electrodes
Trojanowicz Continuous potentiometric determination of sulphate in a differential flow system
Fijaľek et al. Voltammetric and EQCM studies on selenium (IV) at mercury, gold and glassy carbon electrodes in the presence of Cu (II), Au (III), Pb (II) and Cd (II)
Frankenthal et al. Coulometric reduction of oxides on tin plate
Asakai et al. Precise coulometric titration of cerium (IV) as an oxidising agent with electrogenerated iron (II) and reliability in cerium (IV) standardisation with sodium thiosulfate
US3528778A (en) Method for the determination of acid concentrations
Pratt et al. Determination of trace-level chromium (VI) in the presence of chromium (III) and iron (III) by flow-injection amperometry
Chreitzbeeg et al. The overpotential of the manganese dioxide electrode
Chomisteková et al. Boron-doped diamond as the new electrode material for determination of heavy metals
Marinenko et al. A new determination of the atomic weight of zinc
Kolthoff et al. The Mean and Individual Ion Activity Coefficients of Silver Benzoate in Salt Solutions
JP3443230B2 (en) Trace oxygen concentration measurement device
Hannisdal et al. Amalgam voltammetric approach to heavy metal speciation in natural waters: Part II. Experimental verification of theoretical aspects. A study of complexation with lead ions
Cohen et al. Voltammetric Studies of Metal Complexes with a Rotated Platinum Electrode. I. The Monoöxalatosilver (I) Complex
Schrenk et al. Electrolytic Determination of Lead as Lead Dioxide
Ellis Mereury contamination during pH measurement and its effect on creatine kinase activity
Dunnett et al. The kinetics of the zinc ion reduction at the dropping mercury electrode in dimethylformamide
James et al. The electrometric determination of dissolved oxygen in aqueous solution
Shults et al. Coulometric Titrations with Electrolytically Generated Uranous Ion