JP2005308679A - Salinity concentration measuring method, unit water amount measuring method, and measuring instrument therefor - Google Patents
Salinity concentration measuring method, unit water amount measuring method, and measuring instrument therefor Download PDFInfo
- Publication number
- JP2005308679A JP2005308679A JP2004129538A JP2004129538A JP2005308679A JP 2005308679 A JP2005308679 A JP 2005308679A JP 2004129538 A JP2004129538 A JP 2004129538A JP 2004129538 A JP2004129538 A JP 2004129538A JP 2005308679 A JP2005308679 A JP 2005308679A
- Authority
- JP
- Japan
- Prior art keywords
- level
- constant current
- salinity
- potential
- salinity concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Abstract
Description
本発明は、塩分濃度測定方法および単位水量測定方法ならびにその測定装置に関し、殊に、電量滴定を用いて生コンクリートなどの塩分濃度測定および単位水量測定を行う方法ならびに装置に関する。 The present invention relates to a salinity concentration measuring method, a unit water amount measuring method, and an apparatus for measuring the same, and more particularly to a method and apparatus for measuring a salinity concentration and unit water amount of raw concrete using coulometric titration.
生コンクリートの品質管理において、塩分濃度および単位水量はコンクリート構造物の強度、耐久性に対する信頼性を確保するために必要とされる検査項目であるが、殊に単位水量は近年の生コンクリートの加水問題を発端として一日に100m3以上打設する工事で実施が義務付けられるなど、その必要性が注目されるようになっている。 In quality control of ready-mixed concrete, the salinity concentration and unit water volume are inspection items required to ensure the reliability of the strength and durability of the concrete structure. The necessity of this has come to be noticed, for example, because it is obliged to be carried out in the construction where 100 m 3 or more is laid per day starting from the problem.
生コンクリートの塩分濃度測定として、硝酸銀水溶液を用いたモール法と呼ばれる滴定法が広く知られており、またこの原理を応用して酸試薬および試料を入れた滴定容器に電源に接続されたプラスとマイナスのAg棒を浸漬し、電気分解により溶出した銀イオンと試料の塩素イオンと結合させ、塩素イオンが総て消費されるまでの時間から塩分濃度を求めるさらにてい置に関し、殊に、電量滴定を用いた電量滴定を用いた測定方法が広く実施されている。 A titration method called Mohr's method using silver nitrate aqueous solution is widely known for measuring the salinity concentration of ready-mixed concrete, and by applying this principle, a titration vessel containing an acid reagent and a sample is connected to a power source. A further method for determining the salinity from the time until all the chlorine ions are consumed by immersing a negative Ag bar and combining the silver ions eluted by electrolysis with the chlorine ions of the sample, in particular coulometric titration. A measurement method using coulometric titration using is widely implemented.
これは、一定の安定電流を流して行う電量滴定において滴定終点までに要した時間と標準液あるいは試料に含まれる塩分濃度には比例関係が成立することを利用したものである。更に近年においては、この塩素イオンが消費されることにより酸試薬中に所定量以上の電流が流れることを検知して自動的に塩分濃度を算出する自動式の塩分濃度測定装置も使用されるようになった。 This utilizes the fact that a proportional relationship is established between the time required until the end of titration and the concentration of salt contained in the standard solution or sample in coulometric titration performed with a constant stable current. Further, in recent years, an automatic salinity measuring apparatus that automatically calculates a salinity concentration by detecting that a predetermined amount of current or more flows in the acid reagent due to consumption of the chlorine ions is also used. Became.
一方、生コンクリートの単位水量測定においては、生コンクリートに含有する水分を加熱または減圧により蒸発させて、その前後の重量を比較することで算出する方法が特開平8―338838号公報や特開平11−83846号公報に記載されている。また、特開2000−304708号公報には水分がマイクロ波を吸収しやすいことを利用したマイクロ波透過方式が記載され、特開2004―77454号公報には静電容量・インピーダンスを測定して基準値と比較することによる単位水量測定方法が記載されている。 On the other hand, in the measurement of the unit water amount of ready-mixed concrete, there is a method of calculating by evaporating the water contained in ready-mixed concrete by heating or depressurizing and comparing the weight before and after that, as disclosed in JP-A-8-338838 and JP-A-11 -83846. Japanese Laid-Open Patent Publication No. 2000-304708 describes a microwave transmission method utilizing the fact that moisture easily absorbs microwaves, and Japanese Laid-Open Patent Publication No. 2004-77454 discloses a standard by measuring capacitance and impedance. A method for measuring unit water volume by comparing with the value is described.
更に、特開昭62−106368号公報や特開2001−116748号公報には、上述した塩分濃度測定方法を応用して単位水量を求める測定方法が記載されている。これらは、試料中に塩素イオンなどの特定イオンを所定濃度含有する基準液を添加し、特定イオンが試料中の水分で希釈されることによる濃度変化から試料中の単位水量を算出するものである。 Furthermore, JP-A-62-106368 and JP-A-2001-116748 describe a measuring method for obtaining a unit water amount by applying the above-described salinity concentration measuring method. In these samples, a reference solution containing a specific concentration of specific ions such as chlorine ions is added to the sample, and the unit water amount in the sample is calculated from the concentration change caused by the specific ions being diluted with the water in the sample. .
そして、このような塩分濃度測定方法を単位水量の測定に応用した測定方法では、前述した単位水量測定に用いる装置が複雑な構成でコストの高いものであって測定に長時間要するのに対し、比較的コンパクト且つ低廉な汎用の塩分濃度測定装置を用いて比較的短時間で測定が終了するため、広範囲に多数箇所存在するコンクリート打設現場にそれぞれ測定装置を持参し、その場で短時間に単位水量測定を実施できる点にメリットがある。そして、その測定装置によれば単位水量を測定すると同時に塩分濃度も知ることができるため、生コンクリートの品質管理における検査の手間を大きく削減することができる。 And, in the measurement method applying such a salinity concentration measurement method to the unit water amount measurement, the device used for the unit water amount measurement has a complicated configuration and is expensive and takes a long time for the measurement. Since the measurement is completed in a relatively short time using a relatively compact and inexpensive general-purpose salinity measurement device, each measurement device must be brought to a large number of concrete placement sites in a wide area, and in a short time on the spot. There is a merit that the unit water quantity can be measured. And according to the measuring apparatus, since the unit water amount can be measured and the salinity concentration can be known at the same time, it is possible to greatly reduce the labor of the inspection in the quality control of the ready-mixed concrete.
ところで、電量滴定においては滴定時に流す一定電流の大きさと滴定終点までに要する時間は反比例することから、塩分濃度が高い場合は流す電流の大きさを増せば滴定時間を短くすることができ、塩分濃度が低い場合はその逆の関係になる。そのため、一般に塩分濃度測定装置には試料の塩分濃度に合わせて電流レベルを3乃至4段階に手動で切換える切換えスイッチを付設している。 By the way, in coulometric titration, the amount of constant current that flows during titration and the time required to complete the titration are inversely proportional, so if the salt concentration is high, the titration time can be shortened by increasing the amount of current that flows. When the concentration is low, the reverse relationship is established. Therefore, a salinity measuring device is generally provided with a changeover switch for manually switching the current level in 3 to 4 steps according to the salinity of the sample.
ところが、生コンクリートの塩分濃度測定は他の分野における塩分濃度測定と異なり、生コンクリートから採取した試料には0.50%台の比較的塩分濃度の高いものから、0.10%台の中程度の塩分濃度、更に0.05%以下の比較的低い塩分濃度まで広範囲の塩分濃度のものがあり、しかも測定前において試料の塩分濃度は全く不明で予測もできないのが通常である。そのため、例えば塩分濃度が0.03%と低濃度の場合に高濃度用の電流レベルである40mAで測定してしまうと、測定開始直後に終点に達して正確な数値を計測できないことになり、反対に塩分濃度が0.50%と高濃度の場合に低濃度用の電流レベルである5mAで測定してしまうと測定に時間がかかりすぎて現場での利便性に欠ける、という問題が生じる。
本発明は、上記のような電量滴定を用いた塩分濃度の測定およびこれによる生コンクリートの単位水量の測定における問題点を解決しようとするものであり、測定する試料の塩分濃度が予測できなくても、時間と手間を要することなく塩分濃度を正確に求められるようにして、塩分濃度測定または単位水量測定を簡易に実施できるようにすることを課題とする。 The present invention is to solve the problems in the measurement of the salinity concentration using the coulometric titration as described above and the measurement of the unit water amount of the ready-mixed concrete, and the salinity concentration of the sample to be measured cannot be predicted. However, it is an object of the present invention to enable the salinity concentration measurement or the unit water amount measurement to be easily performed so that the salinity concentration can be accurately obtained without requiring time and labor.
そこで、本発明は、予め終点電位として設定された電位以上の電流が終点検出電極対に流れた場合に、これを終点電流として終点検出回路で検出するとともに、電気分解用の2本のAg棒間の定電流レベルを試料の塩分濃度に応じて複数段階に切換えるものとした電量滴定を用いた塩分濃度測定方法において、所定電流レベルの開始用定電流で電量滴定開始後に、電子式コントローラが終点検出電極対の電位をモニタしてこれが予め設定した定電流切換基準値に達したことを検知したとき、定電流を試料の塩分濃度に適合する他の電流レベルに切換えるものとした。 In view of this, the present invention detects when the current equal to or higher than the potential set in advance as the end point potential flows to the end point detection electrode pair, detects this as the end point current by the end point detection circuit, and uses two Ag bars for electrolysis. In the salinity measurement method using coulometric titration, in which the constant current level is switched to multiple levels according to the salinity of the sample, the electronic controller ends after the coulometric titration is started with the constant current for starting at the predetermined current level. When the potential of the detection electrode pair is monitored and it is detected that this has reached a preset constant current switching reference value, the constant current is switched to another current level suitable for the salt concentration of the sample.
このことにより、試料の塩分濃度が予測できなくても、モニタ電位が予め定めた電流切換え基準に達したときをもって、コントローラが試料の定電流レベルを塩分濃度に適合する電流レベルに調整するため、定電流レベルが高すぎることにより電量滴定が極めて短時間に終了して正確な測定が困難になったり、或いは低電流レベルが低すぎることにより測定時間が長時間化したりすることを容易に回避することができる。 This allows the controller to adjust the constant current level of the sample to a current level that matches the salinity concentration when the monitor potential reaches a predetermined current switching reference even if the salinity concentration of the sample cannot be predicted. It is easy to avoid the fact that the coulometric titration is completed in a very short time due to the constant current level being too high, making accurate measurement difficult, or the measurement time is prolonged due to the low current level being too low. be able to.
また、上述した塩分濃度測定方法において、電量滴定開始時に終点検出電極対の電位を始点電位として検知して記憶するとともに、
式:(終点電位−始点電位)×Z%+始点電位(但し、Zは0乃至100の定数)
によりコントローラがその定電流切換基準値を決定するものとすれば、始点電位と終点電位の間において所定の定数を設定することでこの定電流切換基準値を容易に決定することができ、しかもこの基準値による定電流の切換えの基準を複数段階に設定することで様々な条件に対応しながら高い測定精度を確保することが容易となる。
Further, in the above-described salinity concentration measurement method, at the start of coulometric titration, the potential of the end point detection electrode pair is detected and stored as the start point potential,
Formula: (end point potential−start point potential) × Z% + start point potential (where Z is a constant from 0 to 100)
If the controller determines the constant current switching reference value, the constant current switching reference value can be easily determined by setting a predetermined constant between the start point potential and the end point potential. By setting the constant current switching reference based on the reference value in a plurality of stages, it becomes easy to ensure high measurement accuracy while responding to various conditions.
更に、この始点電位が予め定めた所定の基準電位よりも高いときに定電流を最も低い段階で電量滴定を開始し、所定の基準電位よりも低いときに定電流を最も高い段階で電量滴定を開始するものとすれば、電量滴定において測定精度を確保しながら測定時間を適切に制御することが容易となる。そして、この基準電位レベルを50mV前後に設定すれば、塩分濃度が0.01乃至0.50%の幅を有する生コンクリート等の塩分濃度測定において滴定開始時の定電流を好適なものとすることが更に容易となる。 Furthermore, when the starting point potential is higher than a predetermined reference potential, coulometric titration is started at the lowest constant current, and when the starting potential is lower than the predetermined reference potential, coulometric titration is started at the highest constant current. If started, it becomes easy to appropriately control the measurement time while ensuring measurement accuracy in coulometric titration. And, if this reference potential level is set to around 50 mV, a constant current at the start of titration should be suitable in the measurement of salinity of fresh concrete having a salinity of 0.01 to 0.50%. Becomes even easier.
更にまた、この定電流を最も上の段階から一つ下の段階に切換えるときの定電流切換基準値の算定式における定数Zを、25乃至35と設定し、定電流の段階を最も下の一つ上の段階から最も下の段階に切換えるときの定電流切換基準値の算定式における定数Zを65乃至80と設定すれば、滴定終了までの時間および測定精度を適正なものとすることができる。 Furthermore, the constant Z in the formula for calculating the constant current switching reference value when the constant current is switched from the uppermost stage to the next lower stage is set to 25 to 35, and the constant current stage is set to the lowest stage. If the constant Z in the formula for calculating the constant current switching reference value when switching from the upper stage to the lowest stage is set to 65 to 80, the time to completion of titration and the measurement accuracy can be made appropriate. .
加えて、定電流レベルにおける複数の段階を、5mA前後のレベル1、20mA前後のレベル2、25mA前後のレベル3、40mA前後のレベル4の4段階とし、対応する試料塩分濃度を、レベル1でほぼ0.03%未満、レベル2でほぼ0.03%以上0.10%未満、レベル3でほぼ0.10%以上0.50%未満、レベル4でほぼ0.50%以上とすれば、特に生コンクリートの塩分濃度測定に好適な定電流のレベル設定となる。
In addition, a plurality of stages at a constant current level are divided into four stages, ie, a
更に加えて、上述した定電流レベルを4段階に設定した塩分濃度測定方法において、レベル4からレベル3に切換えるときの定電流切換基準値の算定式における定数Zを30前後とし、レベル3からレベル2に切り換えるときの定数Zを50前後とし、レベル2から1に切り換えるときの定数Zを75前後とすれば、生コンクリートの塩分濃度測定において終点付近での定電流が微量に制御されるため、測定精度を良好なものとすることができる。
In addition, in the above-described salinity concentration measurement method in which the constant current level is set in four stages, the constant Z in the constant current switching reference value calculation formula when switching from
そして、上述した塩分濃度測定方法における塩分濃度測定時の数値カウントを、定電流レベルが切換わる度にその電流レベルに応じた表示最少桁のカウント時間に切換えるものとすれば、定電流レベルが変化しても塩分濃度を正確に求めることができる。 If the numerical value count at the time of salinity measurement in the above-mentioned salinity concentration measurement method is switched to the count time of the least displayed digit corresponding to the current level every time the constant current level is switched, the constant current level changes. Even so, the salinity concentration can be obtained accurately.
そしてまた、前述した塩分濃度測定方法を用いて生コンクリートの塩分濃度測定を行えばその測定が極めて容易かつ正確なものとなるが、この生コンクリートの塩分濃度測定方法を用いた生コンクリートの単位水量測定方法として、一定容積の生コンクリート試料に所定塩分濃度の標準液を添加・混合するとともに混合前と混合後の濾液を採集しそれぞれ塩分濃度を測定して、添加した標準液が生コンクリートに含まれる水分により希釈されることによる濃度変化によりその単位水量を算出するものとすれば、大掛かりで高価な装置を使用することなく短時間で単位水量を正確に求めることができるため、コンクリート打設現場においてその場で簡易に単位水量の測定を実施できるようになる。 In addition, if the salinity measurement of the ready-mixed concrete is performed using the above-described salinity concentration measuring method, the measurement becomes extremely easy and accurate. As a measuring method, a standard solution with a predetermined salt concentration is added to and mixed with a certain volume of ready-mixed concrete sample, and the filtrate before and after mixing is collected and the salt concentration is measured. The added standard solution is contained in ready-mixed concrete. If the unit water volume is calculated based on the concentration change caused by dilution with water, the unit water volume can be obtained accurately in a short time without using a large and expensive device. The unit water volume can be easily measured on the spot.
さらに、所定の酸試薬および試料を保持する滴定容器と、電源に接続された電気分解用の二本のAg棒と、終点検出電極対を有する終点検出回路と、定電流レベルを複数段階に切換える切換え手段と、測定結果を表示する表示手段と、演算・制御装置および記憶装置を具え上述した測定方法における手順を実行するためのプログラムが格納された電子式コントローラとを具え、このコントローラで制御されて上述の測定方法を実施する生コンクリートの塩分濃度または単位水量の測定装置とすれば、操作者の手間を最小限としながら上述した各作用効果を容易に実現することができる。 Further, the titration container holding a predetermined acid reagent and sample, two Ag bars for electrolysis connected to a power source, an end point detection circuit having an end point detection electrode pair, and a constant current level are switched in a plurality of stages. A switching means, a display means for displaying a measurement result, an electronic controller having a calculation / control device and a storage device and storing a program for executing the procedure in the measurement method described above, and controlled by this controller. Thus, if the measuring device for the salinity concentration or unit water amount of the ready-mixed concrete for carrying out the above-described measuring method is used, the above-described effects can be easily realized while minimizing the labor of the operator.
さらにまた、この測定装置をコントローラが試料測定後に所定の計算式を用いて、試料の塩分濃度または単位水量を算出して表示手段に表示するものとすれば、測定者の手間を更に軽減できるとともに計算ミスの発生を回避することができ、これに加えて骨材などの配合物データおよび混入空気量データを入力可能として、コントローラが配合物補正および空気量補正を行うものとすれば、更に測定精度を正確なものとすることができる。 Furthermore, if the controller calculates the salinity concentration or unit water amount of the sample and displays it on the display means using a predetermined calculation formula after measuring the sample, the labor of the measurer can be further reduced. It is possible to avoid the occurrence of calculation errors, and in addition to this, it is possible to input composition data such as aggregate and mixed air amount data, and if the controller performs compound correction and air amount correction, further measurement The accuracy can be accurate.
本発明によると、測定する試料の塩分濃度が予測できなくても時間と手間を要することなく正確に塩分濃度を測定できるようにすることができるものであり、これにより塩分濃度測定または生コンクリートの単位水量測定を簡易に実施できるものである。 According to the present invention, even if the salinity of a sample to be measured cannot be predicted, the salinity can be measured accurately without requiring time and labor. Unit water volume can be easily measured.
本発明の第一の実施の形態である生コンクリートの塩分濃度測定方法を実施するための測定装置について、以下に図面を参照しながら説明する。図1の配置図に示す本実施の形態の測定装置1は、生コンクリートの測定に好適な塩分濃度測定装置であって、プラスとマイナスのAg棒10a,10bと電極11a、11bからなる終点検出電極対11および撹拌機9の撹拌羽根9aを、酸緩衝液および生コンクリート試料を収容するカップ状の滴定容器10内に上方から挿入するように配置されている。
A measuring apparatus for carrying out a method for measuring a salinity concentration of ready-mixed concrete according to a first embodiment of the present invention will be described below with reference to the drawings. The
電子式コントローラ2は、演算・制御装置および記憶装置を具えているとともに、操作部である操作パネル21、測定時間カウント手動調整器22、電流レベル手動切換器23、検出部である終点検出回路7、作動部である定電流発生器8、撹拌機9、プリンタ6、ディスプレイ5に、所定の接続手段を介して接続されたマイクロコンピュータであり、そのROMに後述する塩分濃度測定方法および単位水量測定方法を実行するプログラムが格納されたものである。
The
即ち、メイン電源回路4で取り入れた電流を定電流発生器8で定電流にしてAg棒10a,10bに流すことで電気分解によりAg+を発生させ、これが試料中のCl-と結合してAgClとなる反応を起こすようになっており、この反応中は終点検出電極対11の電位が所定電位(終点電位Eend)以上に上昇しないことを利用して電量滴定開始から終点電位Eendを終点検出回路7で検知するまでの時間を電子式コントローラ2が検知し、これを基に試料中の塩分濃度を求めるものとしている電量滴定による塩分濃度測定方法を実施する汎用の測定装置と同様のものであるが、本実施の形態はその測定方法におけるコントローラ2の制御に特徴を有するものである。
That is, the current taken in by the main
本実施の形態の生コンクリート試料の塩分濃度測定方法の詳細について以下に説明する。生コンクリート試料の塩分濃度測定においては、他の分野における塩分濃度測定と異なり、塩分濃度に0.03%以下から0.5%と大きい幅があるため、前述したように定電流レベルを電流レベル手動切換器23で切換える必要があるが、測定以前にそのおよその濃度でさえ不明であるのが通常である。
Details of the method for measuring the salinity concentration of the ready-mixed concrete sample of the present embodiment will be described below. Unlike the salinity measurement in other fields, the salinity measurement of ready-mixed concrete samples has a large range from 0.03% to 0.5% in salinity. Although it is necessary to switch by the
例えば、本願発明者は自身の経験から、塩分濃度が0.03%未満の場合は電流レベルが約5mA、0.03%以上0.10%未満の場合は約20mA、0.10%以上0.50%未満の場合は約25mA、0.50%以上の場合は40mAで電量滴定を実施することが、滴定時間を適正範囲としながら正確な測定結果を得やすいと考えている。従って、本実施の形態でもこれと同じ電流レベルのレベル1乃至4の四段階に電流レベル手動切換器23を用いて調整できるようになしており、これに加えて、電子式コントローラ2が適正な定電流レベルに自動的に切換える制御を行うようになしている。
For example, the present inventor has found from his own experience that when the salinity is less than 0.03%, the current level is about 5 mA, and when the salinity is 0.03% or more and less than 0.10%, about 20 mA, 0.10% or more and 0. When it is less than 50%, it is considered that coulometric titration at about 25 mA and 0.50% or more at 40 mA makes it easy to obtain accurate measurement results while keeping the titration time within an appropriate range. Therefore, in the present embodiment, the current level
試料の塩分濃度測定に先立ち、濃度既知の標準液(食塩水)の濃度測定を行って、実施する電流レベルごとに数値カウントの微調整を手動または自動で行うことについては、周知の塩分濃度測定装置と同様であるのでその詳細な説明は省略するが、本実施の形態では測定開始時に撹拌だけを数秒間(例えば5秒間)行って、その最終段階の数m秒間(例えば5m秒間)に終点検出電極対11の電位をコントローラ2が所定回数(例えば5回)モニタし、その平均値を演算して始点電位E0として記憶するようになっている。
Prior to measuring the salinity of the sample, measure the concentration of a standard solution (saline) with a known concentration, and perform manual or automatic fine adjustment of the numerical count for each current level to be performed. Since it is the same as the apparatus, detailed description thereof is omitted, but in this embodiment, only stirring is performed for several seconds (for example, 5 seconds) at the start of measurement, and the end point is reached in the final stage for several milliseconds (for example, 5 milliseconds). The
そして、この始点電位E0が基準電位50mVより高い場合は最初から定電流をレベル1の5mAで滴定を開始するものとし、50mV未満の場合はレベル4の40mAで滴定を開始するようになっている。尚、開始時定電流の設定は操作者が電流レベル手動切換器23で切換えるようにしてもよいし、コントローラ2が自動的に切換えるようにしてもよい。
When the starting point potential E 0 is higher than the reference potential 50 mV, the titration is started at a constant current of 5 mA from
そして、終点検出電極対11の電位が、予め複数段階に定めた
式:(Eend−E0)×Z%+E0(但し、Zは0乃至100の定数)
で表される定電流切換基準値に達したときに、電子式コントローラ2は定電流のレベルを切換える。
The potential of the end point
Is reached, the
また、生コンクリートの塩分測定に適合するように、定数Zの設定をレベル4から3への切換時は30、レベル3から2への切換時に50、レベル2から1への切換時は75としている。これは、本実施の形態においては滴定終点に近づく程、定電流レベルをセーブさせる観点から、前述した塩分濃度とこれに適合する定電流レベルの関係を一段階ずらして、レベル3で対象濃度を0.03%乃至0.1%の範囲とし、レベル2で対象濃度が0.03%付近になる定数Zを求め、これによる測定精度や測定時間を勘案して決定したものである(表1参照)。
In addition, the constant Z is set to 30 when switching from
一方、基準電位として50mVに決定した根拠を以下に説明すると、表2は塩分濃度と滴定開始時の基準電位を繰り返し計測して得た平均値を示しているが、塩分濃度が0.02%以下と低く最も低いレベル1で滴定すべき試料の滴定開始時の電位は50mVを超えており、これより上のレベル2乃至4で測定すべき塩分濃度の試料は総て50mV未満であることが分かる。
On the other hand, the basis for determining 50 mV as the reference potential will be described below. Table 2 shows the average value obtained by repeatedly measuring the salinity concentration and the reference potential at the start of titration, and the salinity concentration is 0.02%. The potential at the beginning of the titration of the sample to be titrated at the
例えば、塩分濃度0.05%で、E0=42mV、Eend=80mVの場合、定電流レベルが切換わるのはそれぞれ以下の電位を終点検出回路7が検出した時点となる。即ち、レベル4から3への定電流切換基準値;(80−42)×0.3+42=53.4mV、レベル3から2への定電流切換基準値;(80−42)×0.5+42=61.0mV、レベル4から3への定電流切換基準値;(80−42)×0.75+42=70.5mV、となる。
For example, when the salinity concentration is 0.05%, E 0 = 42 mV, and E end = 80 mV, the constant current level is switched at the time when the end
一方、塩分濃度0.02%の場合に、この50mVの定電流切換基準値による開始電流の設定を実施しないでレベル4で滴定を開始した場合、定電流レベルが切換わるのは次の電位を検出した時点となる。即ち、レベル4から3への定電流切換基準値;(80−65)×0.3+65=69.5mV、レベル3から2への定電流切換基準値;(80−65)×0.5+65=72.5mV、レベル4から3への定電流切換基準値;(80−65)×0.75+65=76.3mV、である。
On the other hand, when the salt concentration is 0.02% and the titration is started at
この場合でも、理論上は明確に電位が求められるが、これらは終点電位80mVに極めて近いため、このように塩分濃度が低い場合に計測を開始すると、レベル4からレベル1まで瞬時に切換わってしまうことになる。そこで、本願発明者は多数の実験結果により低濃度試料において再現性や測定精度への影響が出始める濃度が0.02%であることが確認し、滴定開始時の基準電位として50mVを一つの分岐点と決定して、それ以下ならばレベル4で開始して算定式に従って滴定電流を順次切換える自動制御を実施し、それ以上ならばレベル1のみで電量滴定を実施するようにしたものである。
Even in this case, the potential is clearly determined theoretically, but these are extremely close to the end point potential of 80 mV, so when the measurement is started when the salinity concentration is low in this way, the level is instantaneously switched from
以下、滴定開始後の電子式コントローラ2の動作を説明する。図2のフローチャートを参照して、例えば、始点電位が50mV未満のとき(A1)、電子式コントローラ2の滴定開始指令(B1)で、レベル4の40mAで滴定を開始した場合(C1)、電子式コントローラ2は滴定開始後に終点検出回路7から数m秒間(例えば5m秒間)に所定回数(例えば5回)、終点検出回路11からの電位データを継続的にモニタし(A2)、その平均値を演算して平均電位Eを求めながら(B2)電量滴定を継続し、以下の条件に達した時点で、定電流レベルを順次以下のように切換える。
Hereinafter, the operation of the
即ち、定電流切換基準値:(Eend−E0)×0.3+E0に達したとき(A3)、切換え指令(B3)により定電流をレベル4からレベル3に切換え(C2)、定電流切換基準値:(Eend−E0)×0.5+E0に達したとき(A4)、切換え指令(B4)によりレベル3からレベル2に切換える(C3)。更に、定電流切換基準値:(Eend−E0)×0.75+E0に達したとき(A5)、切換え指令(B5)によりレベル2からレベル1に切換える(C4)。
That is, when the constant current switching reference value: (E end −E 0 ) × 0.3 + E 0 is reached (A3), the switching command (B3) switches the constant current from
尚、塩分測定時における数値のカウントは、定電流レベルが切換わる度にその電流レベルに応じた表示最小桁のカウント時間に自動的に切換わるようになっている。即ち、電子式コントローラ2が式:[定電流レベル1の電流値×定電流レベル1の数値カウント時間]=f2×[定電流レベル2の電流値×定電流レベル2の数値カウント時間]=f3×[定電流レベル3の電流値×定電流レベル3の数値カウント時間]=f4×[定電流レベル4の電流値×定電流レベル4の数値カウント時間] (但し、f2,f3,f4は直線性補正のための実験値ファクター)の関係を保持できるように制御するものである。
The numerical value count at the time of salinity measurement is automatically switched to the minimum display digit count time corresponding to the current level whenever the constant current level is switched. That is, the
終点時の制御については、目的試料に合致した制御法が製造者側で設定できるようにするため、以下の二つの方法のうちいずれかを採用するものとしている。即ち、最終的に最も低い電流レベル1の定電流に達した以降は、上述した所定時間における所定回数の電位サンプリングおよび平均電位Eの演算を実施することなく、終点電位Eendを越えるまで電量滴定をそのまま継続させる方法と、最終的に最も低い電流レベル1の定電流に達した以降も上述した電位サンプリングおよび平均電位Eの演算を逐一実施することにより終点電位Eendを越えるまでその推移を監視しながら電量滴定を継続する方法の二つである。本実施の形態ではレベル1に達した以降、電位サンプリングおよび平均電位Eの演算を実施しない(B6)ものとし、終点電位Eendを越えたとき(A6)、電量滴定終了指令を発し(B7)、定電流を停止して(C5)電量滴定を終了する。
As for the control at the end point, one of the following two methods is adopted so that the manufacturer can set a control method that matches the target sample. That is, after the constant current of the lowest
そして、電子式コントローラ2は滴定開始から滴定終了までの時間を特定して標準液の塩分濃度Cstdおよびその滴定終了までの時間Tstdと比較することにより塩分濃度を求める。即ち、一定の安定電流を流して行う電量滴定においては、滴定終点までに要した時間Tと標準液の塩分濃度Cstdまたは試料の塩分濃度Csamとの間には比例関係が成立することから、濃度未知の試料の塩分濃度Csamは、
式:Csam=(Cstd×Tsam)/Tstd(%)
で求められることになり、コントローラ2はこの計算式に基づく計算を行い(B8)、その結果をディスプレイ5に自動的に表示する(B9)。
The
Formula: Csam = (Cstd × Tsam) / Tstd (%)
The
以上述べたように、本実施の形態により生コンクリートの塩分濃度が大まかでもわからない場合においても、電子式コントローラが終点検出電極対における電位をモニタして複数段階に設けた定電流切換え基準値に達する度に定電流のレベルを切換えるので、比較的短時間で試料の塩分濃度に合致した定電流レベルに制御することができ、適正な測定時間と測定精度を確保することができるものである。そして、この塩分濃度測定は同一の酸緩衝液で通常10回程度実施することができる。 As described above, even if the salinity concentration of the ready-mixed concrete is rough or not known according to this embodiment, the electronic controller monitors the potential at the end point detection electrode pair and reaches the constant current switching reference value provided in a plurality of stages. Since the constant current level is switched each time, it can be controlled to a constant current level that matches the salinity of the sample in a relatively short time, and appropriate measurement time and measurement accuracy can be ensured. And this salt concentration measurement can be normally implemented about 10 times with the same acid buffer solution.
尚、本実施の形態における塩分濃度測定方法および塩分濃度測定装置の説明は、試料が生コンクリートの場合について述べたが、これに限らずモルタルの場合でもよく、さらに他の分野、例えば食品分野などの比較的高い塩分濃度をもつ試料、或いは飲料分野などの比較的低い塩分濃度をもつ試料についても応用できるものであり、測定方法のプログラムにおいて各種定数や終点時の制御法を適宣選択変更することにより、多くの分野に対応できるようになっている。 The description of the salinity concentration measuring method and the salinity concentration measuring apparatus in the present embodiment has been described for the case where the sample is ready-mixed concrete, but is not limited thereto, and may be a mortar. It can also be applied to samples with relatively high salinity, or samples with relatively low salinity such as in the beverage field, and various constants and control methods at the end point can be selected and changed appropriately in the measurement method program. This makes it possible to deal with many fields.
次に、本発明の第二の実施の形態である生コンクリートの単位水量測定に用いる測定装置について説明するが、測定に用いる装置は前述の測定装置1をそのまま利用することができるものである。この場合の単位水量測定方法は、一定容積の生コンクリート試料に濃度既知の標準液(食塩水)を添加・混合し、その前後の濾液を採取して塩分濃度を測定することで、添加した標準液が生コンクリート中の水分により薄められる原理を用いた、いわゆる塩分濃度差法による測定方法であり、この方法自体は周知である。
Next, although the measuring apparatus used for the unit water quantity measurement of the ready-mixed concrete which is 2nd embodiment of this invention is demonstrated, the apparatus used for a measurement can utilize the above-mentioned
本実施の形態では、上述した塩分濃度測定方法により求めた標準液混合前および混合後の各塩分濃度から、所定の計算を行って試料中の単位水量を算出するものであり、この算出についてもこれを実行するための単位水量測定用のプログラムが格納された電子式コントローラ2が自動的に計算を行って、その結果をディスプレイ23に表示するものである。
In the present embodiment, the unit water amount in the sample is calculated by performing a predetermined calculation from the respective salt concentrations before and after mixing the standard solution obtained by the above-described salt concentration measurement method. The
即ち、電子式コントローラ2は
式:単位水量(W1)=f(Cstd−Cmix)/(Cmix−Csam)(但し、Cstdは混合する標準液の塩分濃度(%)、Cmixは標準液添加後の抽出液中の塩分濃度(%)、Csamは標準液添加前のブリーディング水の塩分濃度(%)、fは標準液の添加量(kg/m3))
の計算式を用いて計算を行うものである。
That is, the
The calculation is performed using the following formula.
尚、空気量の補正のため、
式:補正単位水量(W2)=(1000−A1×10)÷(1000−A2×10)(但し、A1は目標空気量(%)、A2は実測空気量(%))
の計算式を用いて計算を行う。更に、骨材等の吸着水の補正のため、
式:補正単位水量(W3)=W2+0.017C−(S×Sq−0.18)+15.9)−G×Gq×(35.5÷(Gq+0.07)+9.90))/10000(但し、Cは単位セメント量(kg/m3)、S,Gは細骨材量・粗骨材量(kg/m3)、Sq,Gqは細・粗骨材の吸水率(%))
の計算式を用いて計算を行う。
In order to correct the air volume,
Formula: Correction unit water amount (W2) = (1000−A1 × 10) ÷ (1000−A2 × 10) (where A1 is the target air amount (%) and A2 is the actually measured air amount (%))
Calculate using the following formula. Furthermore, for correction of adsorbed water such as aggregates,
Formula: Correction unit water amount (W3) = W2 + 0.017C− (S × Sq−0.18) +15.9) −G × Gq × (35.5 ÷ (Gq + 0.07) +9.90)) / 10000 (however, , C is the unit cement amount (kg / m 3 ), S and G are the fine aggregate amount and coarse aggregate amount (kg / m 3 ), and Sq and Gq are the water absorption rate of the fine and coarse aggregate (%).
Calculate using the following formula.
これらの計算式を用いて計算を行うにあたり、操作パネル21を用いて事前に各数値を入力しておくことにより電子式コントローラ2が自動的に計算を行うようになっており、このことで生コンクリートに混入される骨材や空気等の混入物の影響が自動的に補正されるため、測定結果は更に精度の高いものとなる。
When performing calculations using these calculation formulas, the
以下に、本実施の形態による生コンクリートの単位水量測定の手順の一例を説明する。尚、前述した塩分濃度測定における事前操作は既に実施済みであるものとし、変動のない数値および単位水量補正のための各数値は既に入力済みであるものとする。 Below, an example of the procedure of the unit water quantity measurement of the ready-mixed concrete by this Embodiment is demonstrated. It is assumed that the above-described preliminary operation in the salinity concentration measurement has already been performed, and that there are already no numerical values and numerical values for unit water amount correction already input.
生コンクリート40の1.5lをハンドスコップなどで計量容器30aに移し(図3(A)参照)、突き棒で1回/10・(直径10cmで8回)程度突いた後、容器の側面をゴムハンマなどで打撃して大きな気泡を抜き、表面をストレートエッジで平坦に仕上げる。尚、この試料は同じものを二つ作っておく。
Transfer 1.5 liters of ready-
そして、一方の試料の計量容器30a上面側に接続具30bを取り付け(図3(B)参照)、更にこれに撹拌筒30cを接続して、事前に計量しておいた標準液である濃度既知の食塩水50の240mlを筒撹拌筒30cに流し込み蓋30dを閉めて混合容器30とする(図3(C)参照)。これを生コンクリート40と食塩水50とが混ざるように容器を傾けた状態で混合し、流動性が生じた状態で上下を逆にしながら20秒間程度激しく振って混合する。
Then, a connecting
次に、混合容器30を回転混合装置上に置き、合計時間が2分間になるまで流動状態を保つ。この混合中に同時に採取したもう一方の試料の上面に円錐形濾紙などを差し込んで採取したブリーディング水(間隙水)を0.2mlのピペッタで計量し、滴定容器10に排出し測定器1のスタートスイッチを押して塩分濃度測定を開始する。この測定は3回程度実施するが、測定値にバラツキが大きい場合は測定を1回追加する。
Next, the mixing
混合時間が2分に達した後、回転混合装置から混合容器30を取り上げて両手で10秒間程度激しく振って混合後、蓋30dを下にして置き、計量容器を外してその上部の試料を絞り器に流し込み、加圧して間隙水を1ml程度絞り出す。これを0.2mlのピペッタで採取して図1に示した滴定容器10内に全量排出し、スタートスイッチを押して塩分濃度測定を行う。
After the mixing time reaches 2 minutes, the mixing
この測定を3回程度行って、測定値のバラツキが大きい場合は測定を1回追加することは標準液の測定と同様である。そして、測定値がディスプレイ5に表示されたら、単位水量算出スイッチを押して電子式コントローラ2に前述の計算を行わせ、試料に含有している単位水量(%)を算出させてディスプレイ5に表示させる。
When this measurement is performed about three times and the variation in the measured value is large, adding the measurement once is the same as the measurement of the standard solution. When the measured value is displayed on the
以上述べたように、本実施の形態における単位水量測定は、試料の塩分濃度が大まかでも予測できなくても電子式コントローラが低電流レベルを自動調整するものであるため、操作者の手間を最小限としながら短時間(15分程度)で正確な測定結果を得られるものである。しかも、用いる測定装置は汎用の塩分濃度測定装置を利用したものであってコントローラに本発明の測定方法を実行するプログラムを格納したものであり、測定装置自体がコンパクト且つ低廉なものである。従って、バッテリを内蔵または接続させることでコンクリート打設現場に測定の度に持参して現場で簡易に測定を実施することができるものである。また、自動計算機能を具えていることから計算用のパソコンを別に用意する必要もなく熟練者でなくとも計算ミスのない正確な測定結果を容易に得ることができるものである。 As described above, the unit water amount measurement in the present embodiment is such that the electronic controller automatically adjusts the low current level even if the salinity of the sample is rough or unpredictable. However, an accurate measurement result can be obtained in a short time (about 15 minutes). In addition, the measuring device used is a general-purpose salinity concentration measuring device that stores a program for executing the measuring method of the present invention in a controller, and the measuring device itself is compact and inexpensive. Therefore, by incorporating or connecting a battery, it is possible to bring the concrete to the concrete placement site for each measurement and easily carry out the measurement at the site. Moreover, since it has an automatic calculation function, it is not necessary to prepare a separate computer for calculation, and an accurate measurement result without any calculation error can be easily obtained even if it is not an expert.
1 測定装置、2 電子式コントローラ、5 ディスプレイ、7 終点検出回路、8定電流発生器、9 攪拌機、10 滴定容器、10a、10b Ag棒、11 終点検出電極対、21 操作パネル、22 測定時間カウント手動調整器、23 電流レベル手動切換器
DESCRIPTION OF
Claims (12)
所定電流レベルの開始用定電流で滴定開始後に、電子式コントローラが前記終点検出電極対の電位をモニタして当該モニタ電位が予め設定した定電流切換基準値に達したことを検知したとき、前記定電流を試料の塩分濃度に適合する他の電流レベルに切換えるものとされている、
ことを特徴とする塩分濃度測定方法。 When a current equal to or higher than the potential set in advance as the end point potential flows to the end point detection electrode pair, this is detected by the end point detection circuit as the end point current, and the constant current level between the two Ag rods for electrolysis is detected. In the salt concentration measurement method using coulometric titration that switches to multiple stages according to the salt concentration of
After starting titration with a starting constant current at a predetermined current level, the electronic controller monitors the potential of the end point detection electrode pair and detects that the monitoring potential has reached a preset constant current switching reference value. The constant current is to be switched to another current level that matches the salinity of the sample,
The salinity concentration measuring method characterized by this.
式:(終点電位−始点電位)×Z%+始点電位(但し、Zは0乃至100の定数)
により前記コントローラが前記定電流切換基準値を決定することを特徴とする塩分濃度測定方法。 In the salinity concentration measurement method according to claim 1, while detecting and storing the potential of the end point detection electrode pair as a start point potential at the start of coulometric titration,
Formula: (end point potential−start point potential) × Z% + start point potential (where Z is a constant from 0 to 100)
Wherein the controller determines the constant current switching reference value.
一定容積の生コンクリート試料に所定濃度の食塩水を添加・混合するとともに混合前と混合後の濾液を採集し前記塩分濃度測定方法によりそれぞれ塩分濃度を求め、添加した食塩水が生コンクリートに含まれる水分で希釈されることを利用した計算式でその単位水量を算出するものとされている生コンクリートの単位水量測定方法。 A method for measuring the unit water content of ready-mixed concrete using the method for measuring the salinity concentration of ready-mixed concrete according to claim 9,
Add and mix salt solution of a certain concentration to a certain volume of ready-mixed concrete, collect the filtrate before and after mixing, determine the salt concentration by the above-mentioned salt concentration measurement method, and the added salt solution is included in ready-mixed concrete A method for measuring the unit water volume of ready-mixed concrete, which calculates the unit water volume using a formula that utilizes dilution with water.
In the measuring apparatus according to claim 11, the composition correction data and the air amount correction data can be input, and the controller performs the composition correction and the air amount correction when calculating the measurement value. Characteristic measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004129538A JP4591812B2 (en) | 2004-04-26 | 2004-04-26 | Salinity concentration measuring method, unit water content measuring method, and measuring apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004129538A JP4591812B2 (en) | 2004-04-26 | 2004-04-26 | Salinity concentration measuring method, unit water content measuring method, and measuring apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005308679A true JP2005308679A (en) | 2005-11-04 |
JP4591812B2 JP4591812B2 (en) | 2010-12-01 |
Family
ID=35437611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004129538A Expired - Fee Related JP4591812B2 (en) | 2004-04-26 | 2004-04-26 | Salinity concentration measuring method, unit water content measuring method, and measuring apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4591812B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030981A (en) * | 2007-07-24 | 2009-02-12 | Tanita Corp | Liquid component measuring device, reference liquid, and liquid component measuring method |
KR100909706B1 (en) * | 2007-07-25 | 2009-07-29 | 대윤계기산업 주식회사 | Concrete unit quantity measuring instrument and measuring method |
JP2011158437A (en) * | 2010-02-04 | 2011-08-18 | East Nippon Expressway Co Ltd | Method for quickly measuring chloride ion concentration in hardened concrete |
CN109425687A (en) * | 2017-08-30 | 2019-03-05 | 东亚Dkk株式会社 | COD measurement device and COD measuring method |
CN112742283A (en) * | 2020-12-31 | 2021-05-04 | 苏州波仕顿水产养殖设备有限公司 | Multi-cylinder interconnected seawater proportioning system for aquaculture equipment |
CN112816615A (en) * | 2021-01-07 | 2021-05-18 | 沈阳力创环保科技有限公司 | Chloride ion detector and chloride ion detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313754A (en) * | 1988-06-13 | 1989-12-19 | Asahi Raifu Sci Kk | Method of measuring concentration of chlorine |
JPH04147051A (en) * | 1990-10-09 | 1992-05-20 | Ee & D:Kk | Apparatus for measuring salinity |
JPH07313754A (en) * | 1994-05-27 | 1995-12-05 | Ikeda Bussan Co Ltd | Seat for vehicle |
-
2004
- 2004-04-26 JP JP2004129538A patent/JP4591812B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313754A (en) * | 1988-06-13 | 1989-12-19 | Asahi Raifu Sci Kk | Method of measuring concentration of chlorine |
JPH04147051A (en) * | 1990-10-09 | 1992-05-20 | Ee & D:Kk | Apparatus for measuring salinity |
JPH07313754A (en) * | 1994-05-27 | 1995-12-05 | Ikeda Bussan Co Ltd | Seat for vehicle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030981A (en) * | 2007-07-24 | 2009-02-12 | Tanita Corp | Liquid component measuring device, reference liquid, and liquid component measuring method |
KR100909706B1 (en) * | 2007-07-25 | 2009-07-29 | 대윤계기산업 주식회사 | Concrete unit quantity measuring instrument and measuring method |
JP2011158437A (en) * | 2010-02-04 | 2011-08-18 | East Nippon Expressway Co Ltd | Method for quickly measuring chloride ion concentration in hardened concrete |
CN109425687A (en) * | 2017-08-30 | 2019-03-05 | 东亚Dkk株式会社 | COD measurement device and COD measuring method |
JP2019045187A (en) * | 2017-08-30 | 2019-03-22 | 東亜ディーケーケー株式会社 | Cod measurement device, and program |
CN112742283A (en) * | 2020-12-31 | 2021-05-04 | 苏州波仕顿水产养殖设备有限公司 | Multi-cylinder interconnected seawater proportioning system for aquaculture equipment |
CN112816615A (en) * | 2021-01-07 | 2021-05-18 | 沈阳力创环保科技有限公司 | Chloride ion detector and chloride ion detection method |
Also Published As
Publication number | Publication date |
---|---|
JP4591812B2 (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101519359B1 (en) | On-Line Multipurpose Chloride Analyzer | |
JPS59195159A (en) | Method and device for inspecting quality of ready-mixed concrete | |
JP4591812B2 (en) | Salinity concentration measuring method, unit water content measuring method, and measuring apparatus therefor | |
TWI533930B (en) | Correct pipette discharge capacity correction method and device | |
JP2010230570A (en) | Reagent preparing apparatus and sample analyzer | |
JP2008039486A (en) | Electrolyte analyzer and measuring data processing method therefor | |
KR101205098B1 (en) | Apparatus and method for performing neutralization titration using led color sensor | |
JP2008076342A (en) | Automatic analyzer | |
JPH0636B2 (en) | Bread dough mixing process management method and device | |
WO2003085393A1 (en) | Method of simultaneous fractional analysis of peracetic acid and hydrogen peroxide | |
CN108508138A (en) | A kind of weight metering automatic titration device and its application method | |
HUT54806A (en) | Process for gravimetric determination of iodine number of soot | |
JP7535872B2 (en) | How to use concrete sludge water | |
JP6462402B2 (en) | Sodium chloride concentration analysis method, sodium chloride concentration analyzer and sodium hypochlorite analyzer | |
JPH11108917A (en) | Titration control method | |
JP2012189405A (en) | Electrolyte measuring method and electrolyte measuring apparatus | |
JP4054110B2 (en) | Apparatus for measuring fluorine concentration in zinc electrolyte and method for measuring fluorine concentration in zinc electrolyte | |
JP2709041B2 (en) | Method and apparatus for measuring specific gravity of surface dry sand | |
WO2020170320A1 (en) | Liquid chromatograph | |
JP2010133742A (en) | Electrolyte analysis method and electrolyte analyzer | |
KR100909706B1 (en) | Concrete unit quantity measuring instrument and measuring method | |
JPH0666783A (en) | Method and instrument for measuring concentration of nitric acid and hydrofluoric acid in stainless steel pickling liquid | |
CN104062337B (en) | A kind of graphite electrode and the method measuring chloride ion content in copper sulphate thereof | |
JPH0339802B2 (en) | ||
JP4009819B2 (en) | Concrete material measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100902 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |