JP2008191159A - Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary - Google Patents

Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary Download PDF

Info

Publication number
JP2008191159A
JP2008191159A JP2008028466A JP2008028466A JP2008191159A JP 2008191159 A JP2008191159 A JP 2008191159A JP 2008028466 A JP2008028466 A JP 2008028466A JP 2008028466 A JP2008028466 A JP 2008028466A JP 2008191159 A JP2008191159 A JP 2008191159A
Authority
JP
Japan
Prior art keywords
component
concentration
specific gravity
analysis
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028466A
Other languages
Japanese (ja)
Inventor
Yoshihiko Morikawa
佳彦 森川
Yasuyuki Saigo
康幸 西郷
Seijiro Zen
政二郎 善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Densan Ltd
Original Assignee
Ebara Densan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Densan Ltd filed Critical Ebara Densan Ltd
Priority to JP2008028466A priority Critical patent/JP2008191159A/en
Publication of JP2008191159A publication Critical patent/JP2008191159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for easily and accurately analyzing the concentration of components of a system which makes the specific gravity and the concentration of components vary with the passage of time. <P>SOLUTION: An analyzing part 10 is provided with an analyzing cell 11; a load cell 12; an optical sensor 13; and a means 14 for supporting a white agitating member. An analyte supply line Ls; a titration reagent supply line Lt<SB>n</SB>; an indicator supply line LI<SB>n</SB>; a dilution water supply line Lw; and a discharge line Ld are connected to the analyzing cell 11. The weight concentration of components is measured on the basis of the weight of an analyte in the analyzing cell 11 and a titration end point detected by the optical sensor 13 to compute the specific gravity of the system and determine the volume concentration of the components. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、経時的に比重及び成分濃度が変動する系の成分濃度分析方法及び成分濃度分析装置に関する。
また、本発明は、経時的に比重及び成分濃度が変動する系の成分濃度管理に適する成分濃度分析方法及び成分濃度分析装置に関する。特に、多成分系中の各成分の濃度管理に適する成分濃度分析方法及び成分濃度分析装置に関する。
The present invention relates to a component concentration analysis method and a component concentration analyzer for a system in which specific gravity and component concentration change over time.
The present invention also relates to a component concentration analysis method and a component concentration analysis apparatus suitable for managing the component concentration of a system in which the specific gravity and the component concentration change over time. In particular, the present invention relates to a component concentration analysis method and a component concentration analyzer suitable for managing the concentration of each component in a multicomponent system.

さらに、本発明は、経時的に比重及び成分濃度が変動する系の成分濃度管理装置に関する。   Furthermore, the present invention relates to a component concentration management device for a system in which specific gravity and component concentration change over time.

例えば湿式表面処理に用いられる表面処理液は、経時的に成分濃度及び比重が変動することが知られている。しかし、被処理物の品質を維持するためには表面処理液の組成を常に一定に維持する必要がある。このため、一定間隔で表面処理液の分析を行い、不足成分を補給することが行われている(特公平3−65489号公報)。   For example, it is known that the component concentration and specific gravity of a surface treatment solution used for wet surface treatment vary with time. However, in order to maintain the quality of the object to be treated, it is necessary to always keep the composition of the surface treatment liquid constant. For this reason, the surface treatment liquid is analyzed at regular intervals to replenish deficient components (Japanese Patent Publication No. 3-65489).

現在、市販されている自動分析装置においては、シリンジ及びチューブポンプ等を用いて、滴定分析により成分の容量濃度を求めている。しかし、シリンジ及びチューブポンプを用いる場合には、分析試料又は滴定試薬中に気泡が発生し、正確な測定値が得られないという問題がある。また、シリンジの老朽化により、外部から気体が流入してしまって気泡が発生し、正確な測定値が得られないという問題もある。   Currently, commercially available automatic analyzers use a syringe, a tube pump, or the like to determine the volume concentration of a component by titration analysis. However, when a syringe and a tube pump are used, there is a problem that bubbles are generated in the analysis sample or titration reagent, and an accurate measurement value cannot be obtained. Another problem is that due to the aging of the syringe, gas flows from the outside and bubbles are generated, and accurate measurement values cannot be obtained.

そこで、シリンジによる容量分析に代えて、ロードセルを用いる重量濃度分析方法が提案されている(特開平7−134112号公報)。しかし、工業的な湿式表面処理など多量の表面処理液を使用する場合には、成分濃度の調整を重量ではなく容量で行うことが一般的である。そこで、ロードセルを用いて測定した重量濃度を容量濃度に変換することが必要になるが、重量から容量への変換は、被検物の比重が一定でなければ正確な濃度は得られない。すなわち、湿式表面処理液など、成分濃度及び比重が経時的に変動する系においては、比重の経時的な変動を入力しなければ精密な成分濃度の測定ができないことになる。ところが、工業的に連続湿式表面処理を行う場合には、経時的に変動する比重を実測して湿式表面処理液の濃度制御を行うことは煩雑であり、実質上不可能である。そこで、経時的に比重及び成分濃度が変動する系の成分濃度を簡易且つ精密に、好ましくは自動的に制御する方法及び装置が必要とされている。   Therefore, a weight concentration analysis method using a load cell is proposed instead of volume analysis using a syringe (Japanese Patent Laid-Open No. 7-134112). However, when a large amount of surface treatment liquid such as industrial wet surface treatment is used, it is general to adjust the component concentration by volume rather than weight. Therefore, it is necessary to convert the weight concentration measured using the load cell into the volume concentration. However, in the conversion from the weight to the volume, an accurate concentration cannot be obtained unless the specific gravity of the test object is constant. That is, in a system in which the component concentration and specific gravity fluctuate with time, such as a wet surface treatment liquid, accurate measurement of component concentration cannot be performed unless a change with time in specific gravity is input. However, when industrially performing continuous wet surface treatment, it is cumbersome and practically impossible to control the concentration of the wet surface treatment liquid by actually measuring the specific gravity that varies over time. Therefore, there is a need for a method and apparatus for easily and precisely controlling, preferably automatically, the component concentration of a system whose specific gravity and component concentration change over time.

一方、重量濃度分析に際しては、一般的に、被検物に試薬を滴下して被検物に生じる変化を検出する滴定分析方法が用いられている。被検物に生じる変化としては、pH変化、酸化還元電位変化、伝導度変化、色変化などがあり、それぞれ、pH計、酸化還元電極、伝導度測定電極、比色センサなどを用いて計測している。しかし、pH計、酸化還元電極及び伝導度測定電極などは、常に被検物液中に浸漬させておく必要があり、被検物成分や汚染物の付着などによる感度低下のため、頻繁に交換する必要がある。また、pH計はガラス電極であるから壊れやすく、KCl溶液を毎日注入しなければならず、メンテナンスが煩雑である。比色センサは、検量線を必要とし、また、単色光を対象としているので成分ごとにフィルタを交換する必要があり煩雑である。そこで、メンテナンスが不要で、簡単に滴定終点を検出することができる滴定分析方法及び装置が求められている。
特公平3−65489 特開平7−134112 特開2001−296305 特開平6−273368
On the other hand, in the case of weight concentration analysis, a titration analysis method is generally used in which a reagent is dropped on a specimen to detect a change occurring in the specimen. Changes that occur in the specimen include pH changes, redox potential changes, conductivity changes, color changes, etc., which are measured using a pH meter, redox electrode, conductivity measuring electrode, colorimetric sensor, etc., respectively. ing. However, the pH meter, oxidation-reduction electrode, conductivity measurement electrode, etc. must always be immersed in the sample liquid, and they are frequently replaced due to a decrease in sensitivity due to adhesion of sample components and contaminants. There is a need to. In addition, since the pH meter is a glass electrode, it is fragile, and a KCl solution must be injected every day, and maintenance is complicated. Since the colorimetric sensor requires a calibration curve and is intended for monochromatic light, it is necessary to replace the filter for each component, which is complicated. Therefore, there is a need for a titration analysis method and apparatus that do not require maintenance and can easily detect the titration end point.
Japanese Patent Publication 3-65489 JP 7-134112 A JP 2001-296305 A JP-A-6-273368

本発明の目的は、経時的に比重及び成分濃度が変動する系における簡易で正確な成分濃度分析方法及び装置を提供することにある。
また、本発明の目的は、メンテナンスが不要で、簡単に滴定終点を検出する方法及び装置を組み入れた経時的に比重及び成分濃度が変動する系の簡易で正確な成分濃度分析方法及び装置を提供することにある。
An object of the present invention is to provide a simple and accurate component concentration analysis method and apparatus in a system in which specific gravity and component concentration change over time.
Another object of the present invention is to provide a simple and accurate component concentration analysis method and apparatus for a system in which specific gravity and component concentration change over time, incorporating a method and apparatus for easily detecting a titration end point without requiring maintenance. There is to do.

さらに、本発明の目的は、例えば湿式表面処理装置などにおける処理槽中の表面処理液の成分濃度を一定に維持するための成分濃度管理方法及び装置に適用できる、簡易で正確な成分濃度分析方法及び装置を提供することにある。   Furthermore, an object of the present invention is a simple and accurate component concentration analysis method that can be applied to a component concentration management method and apparatus for maintaining a constant component concentration of a surface treatment liquid in a treatment tank in a wet surface treatment apparatus, for example. And providing an apparatus.

さらにまた、本発明の目的は、経時的に比重及び成分濃度が変動する系における成分濃度を正確に一定範囲の成分濃度に維持する、成分濃度管理装置を提供することにある。   Still another object of the present invention is to provide a component concentration management apparatus that maintains the component concentration in a system in which the specific gravity and the component concentration change over time accurately within a certain range.

本発明によれば、経時的に比重及び成分濃度が変動する系の比重を演算により求めて、成分重量濃度を成分容量濃度に変換する成分濃度分析方法が提供される。本分析方法は、経時的に比重及び成分濃度が変動する系であれば、いかなる系にも適用可能であるが、湿式表面処理など、常に正確な成分濃度を維持することが求められる系、例えば工業的に湿式表面処理を行う半導体製造工程などの成分濃度の連続精密制御が必要とされる系に最適である。具体的には、例えば、プリント基板などの電気回路基板から特定量の銅を溶解除去するためのエッチング液の濃度管理に適用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the specific gravity of the system from which specific gravity and a component density | concentration fluctuate with time is calculated | required by calculation, and the component density | concentration analysis method which converts a component weight density | concentration into a component volume density | concentration is provided. This analysis method can be applied to any system as long as the specific gravity and the component concentration fluctuate over time, but a system that is required to always maintain an accurate component concentration, such as a wet surface treatment, for example, It is optimal for systems that require continuous precise control of component concentrations, such as semiconductor manufacturing processes that perform industrial wet surface treatment. Specifically, for example, the present invention can be applied to concentration management of an etching solution for dissolving and removing a specific amount of copper from an electric circuit board such as a printed board.

本発明において、経時的に変動する系の比重の演算は、経時的に変動する系の比重と成分重量濃度との関係式を予め作成しておき、成分重量濃度の測定値を関係式に代入して、比重を求めることにより行うことができる。   In the present invention, for calculating the specific gravity of a system that varies over time, a relational expression between the specific gravity of the system that varies over time and the component weight concentration is created in advance, and the measured value of the component weight concentration is substituted into the relational expression. And it can carry out by calculating | requiring specific gravity.

例えば、水を溶媒とし、過酸化水素、硫酸及び銅からなる三成分系を溶質とした系の比重と各成分重量濃度との関係式を求める場合を例にして説明する。
試料調製用試薬として、過酸化水素=5%(50g/kg)、硫酸=40%(400g/kg)及び銅=2%(20g/kg)の組合せを用い、下記表1に示す8点の試料を調製し、ウォーターバス等を用い全て同一の温度(20℃〜40℃)にする。
For example, a case where a relational expression between the specific gravity of a system using water as a solvent and a ternary system consisting of hydrogen peroxide, sulfuric acid and copper as a solute and the weight concentration of each component will be described.
As a sample preparation reagent, a combination of hydrogen peroxide = 5% (50 g / kg), sulfuric acid = 40% (400 g / kg) and copper = 2% (20 g / kg) was used. Prepare a sample and use a water bath or the like to bring all of the samples to the same temperature (20 ° C to 40 ° C).

Figure 2008191159
Figure 2008191159

調製した試料8点それぞれについて、比重測定用機器として、ピクノメータ(50ml)及び電子天秤を用いて、以下の手順により比重を測定する。
(1)ピクノメータの乾燥重量を電子天秤で測定し、風袋重量とする。
(2)各試料をピクノメータに充填し、電子天秤で風袋込重量を測定する。
(3)比重(20℃における)は、下記式1
For each of the 8 prepared samples, the specific gravity is measured by the following procedure using a pycnometer (50 ml) and an electronic balance as specific gravity measuring equipment.
(1) The dry weight of the pycnometer is measured with an electronic balance to obtain the tare weight.
(2) Fill each sample into a pycnometer and measure the tare weight with an electronic balance.
(3) Specific gravity (at 20 ° C) is expressed by the following formula 1.

Figure 2008191159
Figure 2008191159

により計算して求める。
各試料の成分濃度(重量%)および比重実測値を下記表2に示す。
Calculated by
Table 2 below shows the component concentration (% by weight) and the measured specific gravity of each sample.

Figure 2008191159
Figure 2008191159

水を溶媒とする過酸化水素、硫酸及び銅の三成分系における系の比重dは、下記関係式2により求めることができる。   The specific gravity d of the ternary system of hydrogen peroxide, sulfuric acid and copper using water as a solvent can be obtained by the following relational expression 2.

Figure 2008191159
Figure 2008191159

一定濃度以下では、成分の増加と比重の増加とは一次式(直線)で表すことができるので、各成分が単独で比重に与える影響は、次式のようになる。   Below a certain concentration, the increase in the component and the increase in the specific gravity can be expressed by a linear expression (straight line), so the influence of each component on the specific gravity is expressed by the following expression.

Figure 2008191159
Figure 2008191159

しかし、二成分以上を組み合わせた場合には、下記表3に示すように、ある成分の濃度を変化させると他の成分の比重に対する一次式の傾きが変化する。   However, when two or more components are combined, as shown in Table 3 below, when the concentration of a certain component is changed, the slope of the linear expression with respect to the specific gravity of the other component changes.

Figure 2008191159
Figure 2008191159

本発明者らは、各成分が相互に影響を及ぼし合い、比重を変化させるものであると推測し、各成分の相互影響の係数を求め、比重演算式に導入することで解決できることを知見した。各成分が相互に比重に与える影響は、次式のようになる。   The present inventors have inferred that each component affects each other and changes the specific gravity, and found that it can be solved by obtaining a coefficient of mutual influence of each component and introducing it into the specific gravity calculation formula. . The influence of each component on the specific gravity is as follows.

Figure 2008191159
Figure 2008191159

Figure 2008191159
Figure 2008191159

Figure 2008191159
Figure 2008191159

Figure 2008191159
Figure 2008191159

以上の計算に基づき、式2の過酸化水素/硫酸/銅系溶液の比重演算式(各濃度は重量%)は、下記のように表すことができる。   Based on the above calculation, the specific gravity calculation formula (each concentration is weight%) of the hydrogen peroxide / sulfuric acid / copper solution of Formula 2 can be expressed as follows.

Figure 2008191159
Figure 2008191159

次に、各成分、過酸化水素、硫酸及び銅の重量濃度を計測して、各成分の重量濃度測定値を上記比重演算式に代入して、系の比重を求めることができる。次いで、系の比重と各成分の重量濃度測定値とから各成分の容量濃度を演算により求めることができる。   Next, the weight density of each component, hydrogen peroxide, sulfuric acid, and copper is measured, and the weight density measurement value of each component is substituted into the specific gravity calculation formula to obtain the specific gravity of the system. Next, the volume concentration of each component can be obtained by calculation from the specific gravity of the system and the measured weight concentration value of each component.

なお、上記比重演算式は、過酸化水素、硫酸及び銅の三成分系について求めたものであるが、系の成分が異なれば係数が異なることは容易に理解されよう。測定対象である系の各成分の重量濃度と系の比重とを予め測定して、演算式を求めることにより、本方法を種々の成分系に適用することができる。また、比重演算式を求めるにおいて、上記以外にも回帰分析等により比重演算式を求めることも可能である。   The above specific gravity calculation formula is obtained for a ternary system of hydrogen peroxide, sulfuric acid, and copper, but it will be easily understood that the coefficients are different if the components of the system are different. The present method can be applied to various component systems by measuring in advance the weight concentration of each component of the system to be measured and the specific gravity of the system, and obtaining an arithmetic expression. In addition, in calculating the specific gravity calculation expression, it is also possible to obtain the specific gravity calculation expression by regression analysis or the like other than the above.

本発明において、被検物重量の測定は、採取した被検物の重量を重量センサ、例えばロードセルを用いて測定することにより行うことができる。ロードセルを用いて重量を測定する場合には、被検物及び滴定試薬などの供給を精密に制御しなくても正確な重量測定を行うことができ、液面センサなどを必要とせずに残液を検知したり、オーバーフローを防止することができるので、好ましい。   In the present invention, the weight of the specimen can be measured by measuring the weight of the collected specimen using a weight sensor such as a load cell. When measuring the weight using a load cell, accurate weight measurement can be performed without precisely controlling the supply of the sample and titration reagent, and the remaining liquid can be measured without the need for a liquid level sensor. Can be detected and overflow can be prevented.

本発明において、成分濃度の測定は、滴定分析法により行うことが好ましい。滴定終点の検出は、滴定方法により酸化還元電極電位の測定、伝導度の測定、pHの測定、比色センサによる光の透過率の測定などにより行うこともできる。しかし、酸化還元電極、伝導度測定電極、pH計及び比色センサのメンテナンスの必要性や取り扱い上の問題点を考慮すれば、成分に応じた滴定指示薬を用いる滴定分析により行い、滴定分析の終点検出は成分に応じた色彩の変化を検出することにより行うことが好ましい。例えば、測定対象成分が過酸化水素の場合には、過マンガン酸カリウムを滴定試薬として用い、被検液の色彩が無色から紫色に変化した時点を滴定終点とする酸化還元滴定分析により行うことができる。測定対象成分が硫酸の場合には、水酸化ナトリウムを滴定試薬として用い、メチルオレンジを指示薬として用い、被検液の色彩が赤色から黄色に変化した時点を滴定終点とする中和滴定分析により行うことができる。また、測定対象成分が銅の場合には、アンモニアを錯化剤として用い、EDTA(エチレンジアミン四酢酸)を滴定試薬として用い、5−Br−PAPS(2-(5-Bromo-2-pyridylazo)-5-[N-n-propyl-N(3-sulfopropyl)amino]-phenol, disodium salt, dihydrate;分子式C17H19BrN4Na2O4S・H2O)を指示薬として用い、被検液の色彩が紫色から緑色に変化した時点を滴定終点とするキレート滴定分析により行うことができる。当業者には明らかなように、滴定方法、滴定試薬及び指示薬は、測定対象成分に応じて適宜選択することができる。   In the present invention, the component concentration is preferably measured by titration analysis. The end point of the titration can be detected by measuring the redox electrode potential, measuring the conductivity, measuring the pH, measuring the light transmittance with a colorimetric sensor, etc. by a titration method. However, considering the maintenance and handling problems of redox electrodes, conductivity measuring electrodes, pH meters and colorimetric sensors, titration analysis using titration indicators according to the components is performed, and the end point of titration analysis The detection is preferably performed by detecting a change in color according to the component. For example, when the component to be measured is hydrogen peroxide, potassium permanganate can be used as a titration reagent, and oxidation / reduction titration analysis can be performed with the end point of titration when the color of the test solution changes from colorless to purple. it can. When the component to be measured is sulfuric acid, use sodium hydroxide as the titration reagent, methyl orange as the indicator, and perform neutralization titration with the time when the color of the test solution changes from red to yellow as the titration end point. be able to. When the measurement target component is copper, ammonia is used as a complexing agent, EDTA (ethylenediaminetetraacetic acid) is used as a titration reagent, and 5-Br-PAPS (2- (5-Bromo-2-pyridylazo)- 5- [Nn-propyl-N (3-sulfopropyl) amino] -phenol, disodium salt, dihydrate; molecular formula C17H19BrN4Na2O4S · H2O) is used as an indicator, and the time when the color of the test solution changes from purple to green is the titration end point. Can be performed by chelate titration analysis. As will be apparent to those skilled in the art, the titration method, titration reagent and indicator can be appropriately selected according to the component to be measured.

これらの被検液の色彩の変化は、光学センサを用いて検出することが好ましい。光学センサは、被検物及び被検物に添加した指示薬の色彩の変化を検出することができるものであれば、特に限定されず、任意の光学センサを用いることができる。例えば、投光した光が物体により反射してくる反射光、あるいは物体を透過してくる透過光を、例えば、赤色、緑色、青色の異なる波長の光ごとに受光し、受光した光ごとの各受光量に基づいて物体の色彩を検出する色識別センサなどの光学センサを好ましく用いることができる。このような光学センサは、センサ部分を被検液中に浸漬させる必要がないので、センサ部分の汚れや破損などの問題もなく、メンテナンスが不要で、簡単に滴定終点を検出することができるので好ましい。   It is preferable to detect the change in the color of the test liquid using an optical sensor. The optical sensor is not particularly limited as long as it can detect the test object and the color change of the indicator added to the test object, and any optical sensor can be used. For example, the reflected light reflected by the object or the transmitted light transmitted through the object is received for each light of different wavelengths, for example, red, green, and blue, and each received light An optical sensor such as a color identification sensor that detects the color of an object based on the amount of received light can be preferably used. Since such an optical sensor does not require the sensor part to be immersed in the test solution, there is no problem such as contamination or damage to the sensor part, maintenance is not required, and the titration end point can be detected easily. preferable.

また、本発明によれば、経時的に比重及び成分濃度が変動する系から採取した被検物の成分重量濃度を測定する分析部と、被検物の成分重量濃度測定値から該系の比重及び被検物の成分容量濃度を演算する演算部と、を具備する濃度分析装置が提供される。   In addition, according to the present invention, an analysis unit for measuring the component weight concentration of a test sample collected from a system in which the specific gravity and the component concentration change over time, and the specific gravity of the system from the measured component weight concentration value of the test sample. And a calculation unit that calculates the component volume concentration of the test object.

分析部は、被検物を受け入れる分析セルと、該分析セル外部に設けられた被検物の滴定終点の色彩を検出する光学センサと、該分析セル外部に設けられたロードセルと、を具備することが好ましい。   The analysis unit includes an analysis cell that receives the test object, an optical sensor that detects a color at the end of titration of the test object provided outside the analysis cell, and a load cell provided outside the analysis cell. It is preferable.

光学センサは任意の光学センサでよい。分析セル内部には、光学センサからの照射光の焦点位置に、反射部としても作用する白色撹拌部材支持手段が設けられていることが好ましい。この白色撹拌部材支持手段は、通常の撹拌羽根支持回転軸を白色のテフロン(登録商標)で製作したものなどでもよく、光学センサからの光を反射することができるものであればよい。光学センサを分析セル外部に設けることで、センサの汚れや破損などの問題もなく、被検物への影響もなく、メンテナンスも不要とすることができる。   The optical sensor may be any optical sensor. In the analysis cell, it is preferable that a white stirring member supporting means that also functions as a reflecting portion is provided at the focal position of the irradiation light from the optical sensor. The white stirring member support means may be one in which a normal stirring blade support rotating shaft is made of white Teflon (registered trademark) or the like, as long as it can reflect light from the optical sensor. By providing the optical sensor outside the analysis cell, there is no problem such as contamination or breakage of the sensor, no influence on the test object, and no maintenance is required.

ロードセルは、採取した被検物の重量及び滴下した滴定試薬及び指示薬の重量を随時測定することができる。
このように、分析セル外部に、被検物滴定終点を検出するための光学センサ及び被検物の重量を測定するためのロードセルを設けることで、センサの汚れや破損及びメンテナンスの問題を解決し、簡単に成分の重量濃度を測定することができる。そして、経時的に変動する系の比重を、被検物の成分重量濃度測定値から演算により求めて、容量濃度に変換することにより、正確な成分濃度を求めることができる。
The load cell can measure the weight of the collected specimen and the weight of the dropped titration reagent and indicator as needed.
In this way, by providing an optical sensor for detecting the end point of the sample titration and a load cell for measuring the weight of the sample outside the analysis cell, the problem of sensor contamination, damage and maintenance can be solved. The weight concentration of ingredients can be measured easily. An accurate component concentration can be obtained by calculating the specific gravity of the system that fluctuates with time from the measured component weight concentration value of the test object and converting it to a volume concentration.

また、本発明によれば、経時的に比重及び成分濃度が変動する系を含む処理槽と、該系から採取した被検物の成分重量濃度を測定する分析部と、得られた被検物の成分重量濃度から該系の比重及び被検物の成分容量濃度を演算する演算部と、成分容量濃度測定値と成分容量濃度設定値との差に応じた成分供給信号を出力する制御部と、該制御部からの成分供給信号を受けて該処理槽に成分を供給する成分供給部と、を具備する成分濃度管理装置が提供される。   Further, according to the present invention, a treatment tank including a system in which the specific gravity and the component concentration change with time, an analysis unit for measuring the component weight concentration of the test sample collected from the system, and the obtained test product A calculation unit that calculates the specific gravity of the system and the component volume concentration of the test object from the component weight concentration of the system; There is provided a component concentration management device comprising a component supply unit that receives a component supply signal from the control unit and supplies a component to the processing tank.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

図を参照しながら、本発明の好ましい実施形態を説明するが、本発明はこれらに限定されるものではない。
図1は、経時的に比重及び成分濃度が変動する系として、銅基板を過酸化水素−硫酸系エッチング液(H/HSO)によりエッチング処理する場合のエッチング処理槽中の系に適用した場合の本発明の成分濃度分析装置の分析部を示す概略説明図である。
Preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows an example of an etching treatment tank in a case where a copper substrate is etched with a hydrogen peroxide-sulfuric acid etching solution (H 2 O 2 / H 2 SO 4 ) as a system in which specific gravity and component concentration change with time. It is a schematic explanatory drawing which shows the analysis part of the component concentration analyzer of this invention when applied to a system.

分析部10には、被検物並びに滴定試薬及び指示薬を受け入れるための分析セル11が載置されていて被検物並びに滴定試薬及び指示薬の重量を測定するためのロードセル12と、被検物の滴定終点を検知するための光学センサ13と、光学センサ13の反射部としても作用する白色撹拌部材支持手段14と、が設けられている。白色撹拌部材支持手段14には、撹拌羽根14aが取り付けられており、被検物を撹拌するようになされている。光学センサ13の反射部は、撹拌羽根14aの撹拌時に撹拌の影響により、実際とは異なる終点検知がなされることを防止するよう、可能な限り下方の部分に位置している。分析セル11には、分析セル11に被検物を供給するための被検物供給ラインLs、分析セル11に各種滴定試薬を供給するための1以上の滴定試薬供給ラインLtn(nは1以上の整数)、分析セル11に各種指示薬を供給するための1以上の指示薬供給ラインLIn(nは1以上の整数)、分析セル11に希釈水を供給するための希釈水供給ラインLw及び分析セル11から測定終了後の被検物などを排出するための排出ラインLdがそれぞれ接続されている。 The analysis unit 10 is equipped with an analysis cell 11 for receiving the test object, the titration reagent and the indicator, and a load cell 12 for measuring the weight of the test object, the titration reagent and the indicator, and the test object An optical sensor 13 for detecting the titration end point and a white stirring member support means 14 that also functions as a reflection portion of the optical sensor 13 are provided. A stirring blade 14a is attached to the white stirring member support means 14, and the test object is stirred. The reflection part of the optical sensor 13 is located in the lower part as much as possible so as to prevent end point detection different from the actual detection due to the influence of stirring during stirring of the stirring blade 14a. The analysis cell 11 includes an analyte supply line Ls for supplying an analyte to the analysis cell 11, and one or more titration reagent supply lines Lt n (n is 1) for supplying various titration reagents to the analysis cell 11. 1 or more indicator supply lines LI n (n is an integer of 1 or more) for supplying various indicators to the analysis cell 11, a dilution water supply line Lw for supplying dilution water to the analysis cell 11, and A discharge line Ld for discharging the test object after the measurement is completed from the analysis cell 11 is connected thereto.

演算部(図示せず)は、分析セル11にて測定された各成分の重量より各成分の重量濃度を演算し、重量濃度の演算結果から予め入力しておいた関係式に基づいて系の比重を演算し、得られた系の比重及び各成分の重量濃度測定値から各成分の容量濃度を算出するように構成されている。演算部としては、通常のマイクロプロセッサを使用した演算処理装置、例えば、パソコン、シーケンサ、専用の制御基板等を適宜用いることができる。なお、図2に示す実施形態においては、演算部にて演算した計測値を電気信号として外部へ出力する出力部として外部モニタを具備し、計測値をモニタできるように構成してある。外部モニタに出力する計測値としては、成分重量濃度、系の比重、成分容量濃度の他、処理槽3中の処理液の任意の物理的性状又は化学的性状などを挙げることができる。   The calculation unit (not shown) calculates the weight concentration of each component from the weight of each component measured in the analysis cell 11, and based on the relational expression input in advance from the calculation result of the weight concentration, The specific gravity is calculated, and the volume concentration of each component is calculated from the specific gravity of the obtained system and the weight concentration measurement value of each component. As the arithmetic unit, an arithmetic processing device using a normal microprocessor, for example, a personal computer, a sequencer, a dedicated control board, or the like can be used as appropriate. In the embodiment shown in FIG. 2, an external monitor is provided as an output unit for outputting the measurement value calculated by the calculation unit to the outside as an electric signal, and the measurement value can be monitored. Examples of the measurement value output to the external monitor include the component weight concentration, the specific gravity of the system, and the component volume concentration, as well as any physical property or chemical property of the treatment liquid in the treatment tank 3.

次に、本発明の成分濃度分析方法の手順を説明する。
表4に、硫酸−過酸化水素系エッチング液(H/HSO/Cu)について、本発明の成分濃度分析方法を適用する場合の手順を示す。
Next, the procedure of the component concentration analysis method of the present invention will be described.
Table 4 shows the procedure for applying the component concentration analysis method of the present invention to the sulfuric acid-hydrogen peroxide etching solution (H 2 O 2 / H 2 SO 4 / Cu).

Figure 2008191159
Figure 2008191159

表5に、ドライフィルム剥離液(NaOH/NaCO)について、本発明の成分濃度分析方法を適用する場合の手順を示す。 Table 5 shows the procedure for applying the component concentration analysis method of the present invention to the dry film peeling solution (NaOH / Na 2 CO 3 ).

Figure 2008191159
Figure 2008191159

なお、表5に示す手順においてNaOHの分析工程を省略すれば、ドライフィルム現像液(NaCO)の分析も可能である。また、KOH/KCO系のドライフィルム剥離液、あるいはKCO系ドライフィルム現像液も対応可能である。 Incidentally, if omitted analysis step of NaOH in the procedure shown in Table 5, it is also possible analysis of the dry film developer (Na 2 CO 3). A KOH / K 2 CO 3 -based dry film remover or a K 2 CO 3 -based dry film developer can also be used.

表6に、銅黒化処理液(NaClO/NaOH/NaCO)について、本発明の成分濃度分析方法を適用する場合の手順を示す。 Table 6 shows the procedure for applying the component concentration analysis method of the present invention to the copper blackening solution (Na 2 ClO 2 / NaOH / Na 2 CO 3 ).

Figure 2008191159
Figure 2008191159

なお、表4〜6に示すいずれの成分濃度分析手順においても、分析後処理として過マンガン酸カリウムによる洗浄を行うことにより、分析セル内の有機物などの残留物を除去することができ、後続の分析への影響を排除することができる。   In any of the component concentration analysis procedures shown in Tables 4 to 6, residues such as organic substances in the analysis cell can be removed by washing with potassium permanganate as a post-analysis treatment. The influence on the analysis can be eliminated.

次に、本発明の成分濃度分析装置を組み入れた成分濃度管理装置の一実施形態について説明する。図2は、本発明の成分濃度管理装置の一実施形態を示す概略説明図である。
図2に示す成分濃度管理装置は、図1に示す分析部10を具備する成分濃度分析装置1、処理槽3及び成分供給制御部4を具備する。この時、成分供給制御部4を介さずに、成分濃度分析装置1より直接補給ポンプを制御してもよい。処理槽3には、第1成分供給ラインL1、第2成分供給ラインL2が接続されている。処理槽3から分析セル11に、被検物供給ラインLsが敷設されていて、処理槽3から採取した被検物を分析セル11に供給するようになされている。成分濃度分析装置1は、分析部10にて測定された被検物の重量及び滴定量に基づいて、演算部(図示せず)において求めた系の比重により各成分の重量濃度測定値を容量濃度に変換した成分容量濃度と、処理槽3の成分濃度設定値と、を比較して不足成分の不足容量を算出し、不足成分の不足容量を追加する制御信号を出力し、成分供給制御部を介して、または直接第1成分供給ラインL1及び第2成分供給ラインL2に設けられているポンプの作動を制御することによって、第1成分及び/又は第2成分を不足容量分だけ補給して、処理槽3中の第1成分及び第2成分の容量濃度を設定濃度に管理する。
Next, an embodiment of a component concentration management device incorporating the component concentration analyzer of the present invention will be described. FIG. 2 is a schematic explanatory view showing an embodiment of the component concentration management apparatus of the present invention.
The component concentration management apparatus shown in FIG. 2 includes a component concentration analyzer 1, a processing tank 3, and a component supply control unit 4 that include the analysis unit 10 shown in FIG. At this time, the replenishment pump may be directly controlled from the component concentration analyzer 1 without using the component supply controller 4. A first component supply line L1 and a second component supply line L2 are connected to the processing tank 3. A specimen supply line Ls is laid from the processing tank 3 to the analysis cell 11, and the specimen collected from the processing tank 3 is supplied to the analysis cell 11. The component concentration analyzer 1 is configured to store the weight concentration measurement value of each component based on the specific gravity of the system determined by the calculation unit (not shown) based on the weight of the test object and the titration amount measured by the analysis unit 10. The component volume concentration converted into the concentration and the component concentration setting value of the processing tank 3 are compared to calculate the insufficient capacity of the insufficient component, and a control signal for adding the insufficient capacity of the insufficient component is output, and the component supply control unit Or by directly controlling the operation of the pumps provided in the first component supply line L1 and the second component supply line L2 to replenish the first component and / or the second component by an insufficient volume. The volume concentration of the first component and the second component in the treatment tank 3 is managed to the set concentration.

実施例1
表2に示す8種類の試料について、本方法により比重演算値を求め、比重実測値と比較した。
Example 1
For the eight types of samples shown in Table 2, the calculated specific gravity values were obtained by this method and compared with the measured specific gravity values.

Figure 2008191159
Figure 2008191159

表7より、誤差率はいずれの試料も0%であり、誤差が認められないことがわかる。よって、本発明の方法により比重及び成分濃度が変動する系の比重値を正確に且つ簡易に求めることができることが確認できた。
実施例2
任意の濃度の硫酸−過酸化水素系エッチング液(H/HSO/Cu)試料2種(H:HSO:Cu=39.0g/L:94.9g/L:39.0g/L、系の比重=1.16865及びH:HSO:Cu=30.0g/L:192.7g/L:29.1g/L、系の比重=1.19870)を調製して、本発明の成分濃度分析方法(手順は表4に示す通り)を適用し、各成分の重量濃度を測定し、演算により系の比重及び各成分の容量濃度を求めた。同一試料について比重及び容量濃度を手分析によっても求めた。各5回の分析の平均値を比較し、実測値に対する演算値の誤差率を求めた。結果を下記表8及び表9に示す。
From Table 7, it can be seen that the error rate is 0% for any sample, and no error is observed. Therefore, it was confirmed that the specific gravity value of the system in which the specific gravity and the component concentration fluctuate can be accurately and easily obtained by the method of the present invention.
Example 2
Two samples of sulfuric acid-hydrogen peroxide etching solution (H 2 O 2 / H 2 SO 4 / Cu) of any concentration (H 2 O 2 : H 2 SO 4 : Cu = 39.0 g / L: 94.9 g) / L: 39.0 g / L, specific gravity of the system = 1.16865 and H 2 O 2 : H 2 SO 4 : Cu = 30.0 g / L: 192.7 g / L: specific gravity of the system = 1.19870), applying the component concentration analysis method of the present invention (the procedure is as shown in Table 4), measuring the weight concentration of each component, and calculating the specific gravity of the system and the volume concentration of each component Asked. The specific gravity and volume concentration of the same sample were also determined by manual analysis. The average values of the five analyzes were compared, and the error rate of the calculated value with respect to the actual measurement value was obtained. The results are shown in Table 8 and Table 9 below.

Figure 2008191159
Figure 2008191159

Figure 2008191159
Figure 2008191159

本発明によれば、経時的に比重及び成分濃度が変動する系における簡易で正確な成分濃度分析方法及び装置が提供される。
また、本発明によれば、メンテナンスが不要で、簡単に滴定終点を検出する方法及び装置を組み入れた、経時的に比重及び成分濃度が変動する系の簡易で正確な成分濃度分析方法及び装置が提供される。
The present invention provides a simple and accurate component concentration analysis method and apparatus in a system in which specific gravity and component concentration change over time.
In addition, according to the present invention, there is provided a simple and accurate component concentration analysis method and apparatus for a system in which specific gravity and component concentration fluctuate over time, incorporating a method and apparatus for easily detecting a titration end point without maintenance. Provided.

さらに、本発明によれば、例えば湿式表面処理装置などにおける処理槽中の表面処理液の成分濃度を一定に維持するための成分濃度管理方法及び装置に適用できる、簡易で正確な成分濃度分析方法及び装置が提供される。   Furthermore, according to the present invention, for example, a simple and accurate component concentration analysis method applicable to a component concentration management method and apparatus for maintaining a constant component concentration of a surface treatment liquid in a treatment tank in a wet surface treatment apparatus or the like. And an apparatus are provided.

さらに、本発明によれば、経時的に比重及び成分濃度が変動する系における成分濃度を正確に一定範囲の成分濃度に維持する、成分濃度管理装置が提供される。
本発明の成分濃度分析方法及び装置並びに成分濃度管理装置は、経時的に系の比重及び成分濃度が変動する、例えば湿式表面処理などの処理液の成分濃度の正確で簡易な制御を可能とする。
Furthermore, according to the present invention, there is provided a component concentration management device that maintains the component concentration in a system in which the specific gravity and the component concentration change over time accurately within a certain range.
The component concentration analysis method and apparatus and the component concentration management apparatus of the present invention enable accurate and simple control of the component concentration of a processing solution such as wet surface treatment in which the specific gravity and component concentration of the system fluctuate with time. .

図1は、本発明の成分濃度分析装置を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a component concentration analyzer of the present invention. 図2は、本発明の成分濃度管理装置の一実施形態を示す概略説明図である。FIG. 2 is a schematic explanatory view showing an embodiment of the component concentration management apparatus of the present invention.

符号の説明Explanation of symbols

1:成分濃度分析装置
3:処理槽
4:成分供給制御部
10:分析部
11:分析セル
12:ロードセル
13:光学セル
14:反射部(白色撹拌部材支持手段)
Ls:被検物供給ライン
Ltn:滴定試薬供給ライン
LIn:指示薬供給ライン
Lw:希釈水供給ライン
Ld:排出ライン
1: Component concentration analyzer 3: Processing tank 4: Component supply control unit 10: Analysis unit 11: Analysis cell 12: Load cell 13: Optical cell 14: Reflecting unit (white stirring member supporting means)
Ls: analyte supply line Lt n : titration reagent supply line LI n : indicator supply line Lw: dilution water supply line Ld: discharge line

Claims (7)

比重及び成分濃度が変動する系から被検物を採取し、該被検物の重量を測定し且つ当該被検物の各成分に応じた滴定指示薬を用いて色彩の変化を光の波長ごとに受光して光の波長ごとの受光量に基づいて検出する終点検出を行う滴定分析を行うことで、該被検物の成分重量濃度を測定して、得られた成分重量濃度測定値から系の比重を演算により求めて、該成分重量濃度測定値と該比重の演算値から成分容量濃度を求めることを特徴とする成分濃度分析方法。   Samples are collected from a system with varying specific gravity and component concentration, the weight of the sample is measured, and a color change is measured for each wavelength of light using a titration indicator corresponding to each component of the sample. By performing titration analysis to detect the end point of light received and detected based on the amount of light received for each wavelength of light, the component weight concentration of the test object is measured, and from the obtained component weight concentration measurement value, the system A component concentration analysis method, wherein a specific gravity is obtained by calculation, and a component volume concentration is obtained from the measured value of the component weight concentration and the calculated value of the specific gravity. 前記系の比重の演算は、予め前記系の比重及び成分重量濃度との関係式を作成し、該関係式に前記成分重量濃度測定値を代入することにより行うことを特徴とする請求項1に記載の方法。   The calculation of the specific gravity of the system is performed by preparing a relational expression between the specific gravity of the system and the component weight concentration in advance and substituting the measured value of the component weight concentration into the relational expression. The method described. 前記比重及び成分濃度が変動する系が三成分系である場合の系の比重は下記式:
Figure 2008191159
により求めることを特徴とする請求項2に記載の方法。
The specific gravity of the system in the case where the system in which the specific gravity and the component concentration vary is a ternary system is expressed by the following formula:
Figure 2008191159
The method according to claim 2, wherein:
比重及び成分濃度が変動する系から採取した被検物を受け入れる分析セルと、該分析セル外部に設けられた被検物の各成分の滴定終点の色彩の変化を光の波長ごとに受光して光の波長ごとの受光量に基づいて検出する光学センサと、該分析セルの外部に設けられた該被検物の重量を測定するロードセルと、を具備し、該被検物の成分重量濃度を測定する分析部と、被検物の成分重量濃度測定値から該系の比重及び被検物の成分容量濃度を演算する演算部と、を具備する成分濃度分析装置。   An analysis cell that accepts a sample collected from a system whose specific gravity and component concentration fluctuate, and a color change at the titration end point of each component of the test sample provided outside the analysis cell is received for each wavelength of light. An optical sensor that detects light based on the amount of light received for each wavelength of light, and a load cell that measures the weight of the test object provided outside the analysis cell, and the component weight concentration of the test object is determined. A component concentration analyzer comprising: an analyzer for measuring; and a calculator for calculating the specific gravity of the system and the component volume concentration of the test object from the measured component weight concentration of the test object. 前記分析セル内部に、光学センサの反射部としても作用する白色撹拌部材支持手段が設けられていることを特徴とする請求項4に記載の装置。   The apparatus according to claim 4, wherein a white stirring member supporting means that also functions as a reflection portion of an optical sensor is provided inside the analysis cell. 前記演算部にて演算した計測値を電気信号として外部へ出力する出力部を具備する請求項4記載の装置。   The apparatus according to claim 4, further comprising an output unit that outputs the measurement value calculated by the calculation unit to the outside as an electrical signal. 比重及び成分濃度が変動する系を含む処理槽と、
該処理槽中の系から採取した被検物を受け入れる分析セルと、該分析セル外部に設けられた被検物の各成分の滴定終点の色彩の変化を光の波長ごとに受光して光の波長ごとの受光量に基づいて検出する光学センサと、該分析セルの外部に設けられた該被検物の重量を測定するロードセルと、を具備し、該被検物の成分重量濃度を測定する分析部と、
得られた被検物の成分重量濃度から該系の比重及び被検物の成分容量濃度を演算する演算部と、
成分容量濃度計測値と成分容量濃度設定値との差に応じた成分供給信号を出力する制御部と、
該制御部からの成分供給制御信号を受けて該処理槽に成分を供給する成分供給部と、
を具備する成分濃度管理装置。
A treatment tank containing a system in which the specific gravity and the component concentration fluctuate;
An analysis cell that accepts a specimen collected from the system in the processing tank, and changes in the color of the titration end point of each component of the specimen provided outside the analysis cell for each wavelength of light. An optical sensor that detects based on the amount of received light for each wavelength, and a load cell that measures the weight of the test object provided outside the analysis cell, and measures the component weight concentration of the test object The analysis department;
A calculation unit for calculating the specific gravity of the system and the component volume concentration of the test object from the obtained component weight concentration of the test object,
A control unit that outputs a component supply signal according to a difference between the measured value of the component capacity concentration and the set value of the component capacity concentration;
A component supply unit that receives a component supply control signal from the control unit and supplies the component to the processing tank;
A component concentration management device comprising:
JP2008028466A 2008-02-08 2008-02-08 Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary Pending JP2008191159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028466A JP2008191159A (en) 2008-02-08 2008-02-08 Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028466A JP2008191159A (en) 2008-02-08 2008-02-08 Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003158357A Division JP2004361180A (en) 2003-06-03 2003-06-03 Method and apparatus for analyzing component concentration in system having varying specific gravity and component concentration and component concentration management apparatus

Publications (1)

Publication Number Publication Date
JP2008191159A true JP2008191159A (en) 2008-08-21

Family

ID=39751367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028466A Pending JP2008191159A (en) 2008-02-08 2008-02-08 Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary

Country Status (1)

Country Link
JP (1) JP2008191159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181150A (en) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd Method and instrument for measuring concentration of dissolved substance, and method and device for detecting color tone
CN102103089A (en) * 2011-02-28 2011-06-22 南京财经大学 Titration end point determination device for determining fatty acid value of grain
CN112041675A (en) * 2018-04-09 2020-12-04 埃科莱布美国股份有限公司 Method and multiple analyte titration system for colorimetric endpoint detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641630Y2 (en) * 1982-05-31 1989-01-13
JPH0339491A (en) * 1989-07-07 1991-02-20 Canon Inc Etching device for thin film
JPH04155255A (en) * 1990-10-18 1992-05-28 Nikko Kyodo Co Ltd Determination of olefin and titration solvent used therefor
JP2002343762A (en) * 2001-04-17 2002-11-29 Internatl Business Mach Corp <Ibm> Wet washing apparatus and method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641630Y2 (en) * 1982-05-31 1989-01-13
JPH0339491A (en) * 1989-07-07 1991-02-20 Canon Inc Etching device for thin film
JPH04155255A (en) * 1990-10-18 1992-05-28 Nikko Kyodo Co Ltd Determination of olefin and titration solvent used therefor
JP2002343762A (en) * 2001-04-17 2002-11-29 Internatl Business Mach Corp <Ibm> Wet washing apparatus and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181150A (en) * 2009-02-03 2010-08-19 Kurita Water Ind Ltd Method and instrument for measuring concentration of dissolved substance, and method and device for detecting color tone
CN102103089A (en) * 2011-02-28 2011-06-22 南京财经大学 Titration end point determination device for determining fatty acid value of grain
CN112041675A (en) * 2018-04-09 2020-12-04 埃科莱布美国股份有限公司 Method and multiple analyte titration system for colorimetric endpoint detection
CN112041675B (en) * 2018-04-09 2023-06-09 埃科莱布美国股份有限公司 Methods and multiple analyte titration systems for colorimetric end-point detection

Similar Documents

Publication Publication Date Title
CN107085117B (en) Measuring device and measuring method
TWI454872B (en) An etching solution mixing device and an etching solution concentration measuring device
KR101791490B1 (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
CN105102963A (en) Automatic titrator
JP2010230570A (en) Reagent preparing apparatus and sample analyzer
JP4799116B2 (en) Sample analyzer, sample analysis method, and computer program
JP7272970B2 (en) SPECTRAL POTENTIAL TEMPERATURE MULTI-DIMENSIONAL TITRATION ANALYZER AND ITS USAGE
WO2008016087A1 (en) Electrolyte analyzer and its measured data processing method
JP3578470B2 (en) Mixed acid concentration measuring device
JP2008191159A (en) Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary
CN109580480A (en) Total phosphorus determination device
CN207331070U (en) Copper concentration management system
US9274079B2 (en) Etchant product analysis in alkaline etchant solutions
KR20140011343A (en) Method for measuring total concentration of acidic substances, concentration meter for measuring total concentration of acidic substances, and sulfuric acid electrolysis device equipped with same
JP2020064057A (en) Selective monitoring of multiple silicon compounds
US6238589B1 (en) Methods for monitoring components in the TiW etching bath used in the fabrication of C4s
JP2008076342A (en) Automatic analyzer
JP2004361180A (en) Method and apparatus for analyzing component concentration in system having varying specific gravity and component concentration and component concentration management apparatus
KR20030094327A (en) Pickle liquor acid analyzer
CZ2001551A3 (en) Control method of cleaning baths
US20110133099A1 (en) Silicon concentration measuring instrument
JP2009047638A (en) Automatic analyzer
JP2010243200A (en) Measuring method of hydrogen peroxide concentration in hydrogen peroxide-containing aqueous solution
CN109709261B (en) Method and instrument for measuring degree of hydrolysis of sulfonate-containing polyacrylamide polymer
JP2003004726A (en) Method for measuring concentration of sulfuric acid in plating liquid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A711

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A02