JP2006177800A - Trace chlorine ion concentration analysis method - Google Patents
Trace chlorine ion concentration analysis method Download PDFInfo
- Publication number
- JP2006177800A JP2006177800A JP2004371960A JP2004371960A JP2006177800A JP 2006177800 A JP2006177800 A JP 2006177800A JP 2004371960 A JP2004371960 A JP 2004371960A JP 2004371960 A JP2004371960 A JP 2004371960A JP 2006177800 A JP2006177800 A JP 2006177800A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electrode
- standard solution
- concentration
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 title claims abstract description 61
- 238000004458 analytical method Methods 0.000 title claims abstract description 20
- 239000012086 standard solution Substances 0.000 claims abstract description 58
- 238000004448 titration Methods 0.000 claims abstract description 58
- -1 chlorine ions Chemical class 0.000 claims abstract description 41
- 239000000460 chlorine Substances 0.000 claims abstract description 35
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 34
- 229910052709 silver Inorganic materials 0.000 claims abstract description 26
- 239000004332 silver Substances 0.000 claims abstract description 26
- 239000002253 acid Substances 0.000 claims abstract description 25
- 239000000243 solution Substances 0.000 claims abstract description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000002378 acidificating effect Effects 0.000 claims abstract description 14
- 230000005611 electricity Effects 0.000 claims abstract description 12
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 230000003472 neutralizing effect Effects 0.000 claims description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 6
- 239000001103 potassium chloride Substances 0.000 claims description 4
- 235000011164 potassium chloride Nutrition 0.000 claims description 4
- 230000008034 disappearance Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 abstract description 51
- 239000012488 sample solution Substances 0.000 abstract description 22
- 238000006386 neutralization reaction Methods 0.000 abstract description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 239000007788 liquid Substances 0.000 description 29
- 238000005443 coulometric titration Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 12
- 238000005070 sampling Methods 0.000 description 11
- 235000011121 sodium hydroxide Nutrition 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 7
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 229910001961 silver nitrate Inorganic materials 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 101100148606 Caenorhabditis elegans pst-1 gene Proteins 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 101150108487 pst2 gene Proteins 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- FPFSGDXIBUDDKZ-UHFFFAOYSA-N 3-decyl-2-hydroxycyclopent-2-en-1-one Chemical compound CCCCCCCCCCC1=C(O)C(=O)CC1 FPFSGDXIBUDDKZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- UKHWJBVVWVYFEY-UHFFFAOYSA-M silver;hydroxide Chemical compound [OH-].[Ag+] UKHWJBVVWVYFEY-UHFFFAOYSA-M 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
本発明は、試料溶液中の塩素イオン濃度を分析する方法に関するものであって、さらに詳しくは、高濃度アルカリ性試料溶液中の微量塩素イオンを迅速、正確に分析する方法に関する。 The present invention relates to a method for analyzing a chlorine ion concentration in a sample solution, and more particularly to a method for quickly and accurately analyzing a trace amount of chlorine ions in a highly concentrated alkaline sample solution.
従来、濃度約32重量%の水酸化ナトリウム溶液のような高濃度アルカリ性試料溶液中の塩化ナトリウム濃度を分析するためには、硝酸銀溶液を用いた沈殿滴定法により試料溶液中の塩素イオン濃度を、定量することが一般的であった。 Conventionally, in order to analyze the sodium chloride concentration in a highly concentrated alkaline sample solution such as a sodium hydroxide solution having a concentration of about 32% by weight, the chloride ion concentration in the sample solution is determined by precipitation titration using a silver nitrate solution. It was common to quantify.
沈澱滴定法では、試料を所定量採取し、これに中和用酸を加えて試料溶液を弱酸性にした後、硝酸銀溶液を滴定試薬として用い、該滴定試薬を試料溶液中に滴下し、含有塩素イオンを塩化銀の沈殿物にすることにより消費、消失させる。当量点に達すると含有塩素イオンが消失し、銀イオンが過剰に存在することになることを利用し、この過剰の銀イオンを銀イオン電極で検出して、銀イオン電極の電位変化から塩素イオンと銀イオンの当量点を検出する。この当量点が検出されるまでに滴下された滴定試薬の量から、塩素イオン濃度を求め、試料溶液中の塩化ナトリウム濃度を算出する。 In the precipitation titration method, a predetermined amount of a sample is taken, neutralized acid is added to make the sample solution weakly acidic, then a silver nitrate solution is used as a titration reagent, and the titration reagent is dropped into the sample solution and contained. Chlorine ions are consumed and disappeared by making silver chloride precipitates. Utilizing the fact that when the equivalent point is reached, the contained chloride ions disappear and the silver ions are present in excess, this excess silver ion is detected by the silver ion electrode, and the chloride ion is detected from the potential change of the silver ion electrode. And the equivalent point of silver ions is detected. From the amount of titration reagent dripped until this equivalence point is detected, the chloride ion concentration is obtained, and the sodium chloride concentration in the sample solution is calculated.
沈澱滴定法では、硝酸銀溶液で滴定するためにビュレットやシリンジを用いることが必要であった。また、分析を自動化するためにはシリンジをモーターにより駆動させるため、装置として機械的に精密で大型のものとなる。 In the precipitation titration method, it was necessary to use a burette or syringe for titration with a silver nitrate solution. Further, since the syringe is driven by a motor in order to automate the analysis, the apparatus becomes mechanically precise and large.
また、モーターにより駆動されるシリンジを用いるため、シリンジ接液部の磨耗劣化による液漏れやシリンジ容量変化、シリンジ駆動用モーターの破損や伝達部(歯車等)の異物噛み込みによる作動不良、液温変化に伴う溶存空気による気泡発生、ピストン部の磨耗によるエアー吸引等の理由による滴下液量の変化により、分析誤差を生じたり、分析不能になってしまうことがあった。 In addition, since a syringe driven by a motor is used, liquid leakage and syringe volume change due to wear deterioration of the syringe wetted part, malfunction of the syringe drive motor, malfunction due to foreign matter biting in the transmission part (gear, etc.), liquid temperature Changes in the amount of liquid dropped due to the generation of bubbles due to dissolved air due to the change, air suction due to wear of the piston portion, etc. may cause analysis errors or make analysis impossible.
微量塩素イオン濃度分析方法として特許文献1には、水道水等を試料とし、銀製の陰陽電極を配置した滴定用セル中で、電極間に定電流を流して塩素イオンが消失するまで電解を行い、要した電気量から試料中の塩素イオン濃度を求める塩素濃度の測定方法が記載されている。しかし、高濃度アルカリ性試料中の微量塩素イオンを分析対象とすることについて記載はない。 As a method for analyzing a trace amount of chlorine ions, Patent Document 1 describes that electrolysis is performed until a chlorine ion disappears by passing a constant current between the electrodes in a titration cell in which tap water or the like is used as a sample and silver-made positive and negative electrodes are arranged. Describes a method for measuring the chlorine concentration to obtain the chlorine ion concentration in the sample from the amount of electricity required. However, there is no description about the analysis of trace chlorine ions in high-concentration alkaline samples.
従って本発明の目的は、高濃度アルカリ性試料中の微量塩素イオンについて精度よく分析が行え、故障の少ない装置とすることができる微量塩素イオン濃度分析方法を提供することにある。 Accordingly, an object of the present invention is to provide a trace chlorine ion concentration analysis method that can accurately analyze trace chlorine ions in a high-concentration alkaline sample and can be an apparatus with few failures.
本発明者らは、上記した課題を解決するため、鋭意検討を行ってきた。その結果、高濃度アルカリ性試料中の微量塩素イオン濃度分析を、銀電極を用いた電量滴定法により行うことによって、精度良く分析が行え、故障の少ない装置とすることができることを見出した。 The present inventors have intensively studied to solve the above-described problems. As a result, it was found that by analyzing the concentration of trace chlorine ions in a high-concentration alkaline sample by a coulometric titration method using a silver electrode, the analysis can be performed with high accuracy and the apparatus can be reduced in failure.
即ち、本発明方法は、標準液及び高濃度アルカリ性試料を滴定槽にそれぞれ所定量採取し、中和用酸を添加して弱酸性とした後、銀電極を陽電極、金属電極を陰電極にして定電流を流して含有塩素イオンが消失するまで電解を行い、該電解に要した電気量から標準液のみを電解したときの電気量を差し引いて、試料溶液中の塩素イオン量を算出することを特徴とする高濃度アルカリ性試料中の微量塩素イオン濃度分析方法である。 That is, according to the method of the present invention, a standard solution and a high-concentration alkaline sample are respectively collected in a titration tank, neutralized acid is added to make it weakly acidic, and then the silver electrode is used as a positive electrode and the metal electrode is used as a negative electrode. Electrolyze until the contained chlorine ions disappear by supplying a constant current, and subtract the amount of electricity when only the standard solution is electrolyzed from the amount of electricity required for the electrolysis to calculate the amount of chlorine ions in the sample solution. This is a method for analyzing trace chlorine ion concentration in a high-concentration alkaline sample.
本発明の高濃度アルカリ性試料中の微量塩素イオン濃度分析方法によれば、銀電極を用いた電量滴定とすることにより、シリンジを用いる必要がなくなり、精度良く分析が行え、装置も故障の少ないコンパクトな自動分析装置とすることができる。 According to the method for analyzing a trace amount of chlorine ions in a high-concentration alkaline sample of the present invention, it is not necessary to use a syringe by performing coulometric titration using a silver electrode, the analysis can be performed with high accuracy, and the apparatus is compact with few failures. Automatic analyzer.
本発明の塩素イオン濃度測定方法においては、高濃度アルカリ性試料及び標準液を滴定槽にそれぞれ所定量採取する。 In the chlorine ion concentration measuring method of the present invention, a predetermined amount of a high concentration alkaline sample and a standard solution are collected in a titration tank.
塩素イオン濃度測定の対象とする高濃度アルカリ性試料としては特に限定されないが、本発明の塩素イオン濃度分析方法は、イオン交換膜法で製造されるいわゆる液体苛性ソーダを対象とするのが好適である。イオン交換膜法で製造される液体苛性ソーダは、濃度約32重量%の水酸化ナトリウム溶液であり、高濃度アルカリ性溶液である。該液体苛性ソーダは、25〜40mg/lの塩化ナトリウムを含んでおり、塩素イオン濃度としては、15〜25mg/lである。高濃度アルカリ性試料は分析の際に中和する必要があり、中和後の試料中の塩素イオン濃度が低下する。中和後の試料中の塩素イオン濃度が10mg/l以下の低濃度であると塩素イオン電極により測定される電位と塩素イオン濃度との比例性がなくなり塩素イオン濃度が定量できなくなるため、これを防止するため高濃度アルカリ性試料と共に滴定槽中に標準液を添加する。 Although it is not particularly limited as a high-concentration alkaline sample to be subjected to chlorine ion concentration measurement, it is preferable that the chlorine ion concentration analysis method of the present invention targets so-called liquid caustic soda produced by an ion exchange membrane method. Liquid caustic soda produced by the ion exchange membrane method is a sodium hydroxide solution having a concentration of about 32% by weight, and is a highly concentrated alkaline solution. The liquid caustic soda contains 25 to 40 mg / l sodium chloride, and the chloride ion concentration is 15 to 25 mg / l. The high-concentration alkaline sample needs to be neutralized during the analysis, and the chlorine ion concentration in the sample after neutralization decreases. If the chlorine ion concentration in the sample after neutralization is 10 mg / l or less, the proportionality between the potential measured by the chlorine ion electrode and the chlorine ion concentration is lost and the chlorine ion concentration cannot be determined. In order to prevent this, a standard solution is added to the titration tank together with a highly concentrated alkaline sample.
本発明の塩素イオン測定方法において用いる標準液は、塩素イオン濃度が既知の水溶液である。標準液としては特に限定されないが、塩化ナトリウム水溶液、塩酸水溶液、塩化カリウム水溶液等が使用できる。またその濃度は、滴定槽中の試料の塩素イオン濃度が中和用酸による試料の中和後において、電量滴定の定量下限以上の塩素イオン濃度のものであれば特に限定されない。標準液の濃度は、液体苛性ソーダ等を試料とするときは、多量の酸により中和する必要があり試料が希釈されることや、標準液があまり高濃度であると測定誤差が生じやすいなどを勘案すると、50〜500mg/lの範囲であることが望ましい。 The standard solution used in the chlorine ion measurement method of the present invention is an aqueous solution having a known chlorine ion concentration. Although it does not specifically limit as a standard solution, Sodium chloride aqueous solution, hydrochloric acid aqueous solution, potassium chloride aqueous solution etc. can be used. The concentration of the sample in the titration tank is not particularly limited as long as the chlorine ion concentration of the sample is equal to or higher than the lower limit of determination of coulometric titration after the sample is neutralized with the neutralizing acid. The concentration of the standard solution should be neutralized with a large amount of acid when liquid caustic soda is used as the sample, and the sample may be diluted, or measurement errors may easily occur if the standard solution is too high. Considering this, the range of 50 to 500 mg / l is desirable.
高濃度アルカリ性試料及び標準液の採取量は、特に限定されない。塩素イオン濃度が低い場合、採取量を多くして精度向上を図ることが望ましいが、特に高濃度アルカリ性試料においては、中和に必要な酸の量も多くなってしまう。測定装置を小型化するためにも、採取量を1〜10mlとすることが好ましい。 The collection amount of the high-concentration alkaline sample and the standard solution is not particularly limited. When the chlorine ion concentration is low, it is desirable to improve the accuracy by increasing the collection amount. However, particularly in a high concentration alkaline sample, the amount of acid necessary for neutralization also increases. In order to reduce the size of the measuring apparatus, it is preferable to set the collection amount to 1 to 10 ml.
本発明においては、滴定槽に高濃度アルカリ性試料及び標準液を所定量採取した後に、中和用酸により中和する。銀電極を用いて電量滴定するためには、被滴定液を弱酸性にする必要がある。被滴定液がアルカリ性であると、銀を電解して発生した銀イオンが、銀の水酸化物の沈澱となり塩素イオンと反応しなくなる。被滴定液を弱酸性としておけば電解によって発生した銀イオンは、イオンのまま液中に存在し、塩素イオンと定量的に反応する。また中和用の酸は硝酸、塩酸、酢酸等を用いることができる。用いる酸の量はあまり薄いと中和に要する酸の量が多量になり、滴定時の液量の増加により塩素イオン濃度が低下して滴定不能となる恐れがある。また濃い酸は、取扱いに注意を要する。液体苛性ソーダを対象とするときは、5〜10mol/l程度の硝酸を用いることが望ましい。 In the present invention, a predetermined amount of high-concentration alkaline sample and standard solution are collected in a titration tank, and then neutralized with a neutralizing acid. In order to perform coulometric titration using a silver electrode, it is necessary to make the liquid to be titrated weakly acidic. When the titrant is alkaline, silver ions generated by electrolyzing silver become silver hydroxide precipitates and do not react with chlorine ions. If the titrant is made weakly acidic, silver ions generated by electrolysis are present in the solution as ions and react quantitatively with chlorine ions. As the neutralizing acid, nitric acid, hydrochloric acid, acetic acid and the like can be used. If the amount of acid to be used is too thin, the amount of acid required for neutralization becomes large, and there is a possibility that the concentration of chloride ions decreases due to an increase in the amount of liquid during titration, making titration impossible. Concentrated acids must be handled with care. When targeting liquid caustic soda, it is desirable to use about 5 to 10 mol / l of nitric acid.
本発明においては、採取した試料及び標準液の混合液を弱酸性にした後に、電量滴定を行う。硝酸銀溶液を滴下する代わりに銀電極を陽極、金属電極を陰極にし、両電極間に定電流を流し、銀電極から銀イオンを溶解発生させる。金属電極としては、腐食せず電流を流せるものであれば特に限定されない。一般的には、白金電極が用いられる。 In the present invention, coulometric titration is performed after making the mixed solution of the collected sample and standard solution weakly acidic. Instead of dropping the silver nitrate solution, the silver electrode is used as an anode and the metal electrode is used as a cathode. A constant current is passed between the two electrodes to dissolve and generate silver ions from the silver electrode. The metal electrode is not particularly limited as long as it can flow current without corrosion. Generally, a platinum electrode is used.
発生した銀イオンと被滴定液中の塩素イオンとは反応し、塩化銀となって沈澱する。これに伴い被滴定液中の塩素イオンが減少するので、塩素イオンがなくなるまでに流した電気量を測定し、この電気量から塩素イオン含有量を定量し、塩素イオン濃度を算出する。よって沈澱中和滴定法に必要な滴下装置が不要である。また、試料及び標準液の採取に計量管、6方バルブを用い、これらを共用すると装置をコンパクトにすることができ、故障も減少させることができるので好ましい。 The generated silver ions react with the chlorine ions in the titrant to be precipitated as silver chloride. Along with this, chlorine ions in the titrant are reduced, so the amount of electricity that has flowed until the chlorine ions disappear is measured, the chloride ion content is quantified from this amount of electricity, and the chloride ion concentration is calculated. Therefore, the dripping apparatus required for the precipitation neutralization titration method is unnecessary. In addition, it is preferable to use a measuring tube and a 6-way valve for collecting a sample and a standard solution, and to share these, since the apparatus can be made compact and failure can be reduced.
被滴定液中の塩素イオンと銀イオンとの当量点の検出は、塩素イオン電極により塩素イオン電位を測定すること、又は銀イオン電極により銀イオン電位を測定することにより行う。 Detection of the equivalence point between chlorine ions and silver ions in the titrant is performed by measuring the chlorine ion potential with a chlorine ion electrode or by measuring the silver ion potential with a silver ion electrode.
本発明においては、当量点の電位測定の際に、比較電極としてゲル状の塩化カリウムを内部液とする比較電極を用いると、塩素イオンの比較電極からの液絡量が通常の比較電極や内部液が塩化カリウムと硝酸カリウムよりなる比較電極(ダブルジャンクション型の比較電極)より少ないので、精度良く当量点が検出できる。 In the present invention, when a comparison electrode having gelled potassium chloride as an internal liquid is used as a reference electrode when measuring the potential at the equivalence point, the amount of liquid junction from the reference electrode of chlorine ions is reduced to that of a normal reference electrode or internal electrode. Since the liquid is less than the reference electrode (double junction type reference electrode) made of potassium chloride and potassium nitrate, the equivalence point can be detected with high accuracy.
本発明においては、電量滴定によって高濃度アルカリ性試料及び標準液に含有されている塩素イオン量に対応する電気量が得られる。そこで、標準液のみを上記方法と同様の方法で電量滴定し、標準液の塩素イオンのみを電量滴定するのに必要な電気量を求め、高濃度アルカリ性微量塩素イオン含有試料溶液及び標準液を電量滴定するに要した電気量から差し引いて、高濃度アルカリ性微量塩素含有試料中の塩素イオン含有量を求め、塩素イオン濃度を算出する。 In the present invention, an electric quantity corresponding to the amount of chlorine ions contained in the high-concentration alkaline sample and the standard solution is obtained by coulometric titration. Therefore, coulometric titration of only the standard solution using the same method as above, the amount of electricity necessary for coulometric titration of only the chlorine ions in the standard solution is obtained, and the sample solution and standard solution containing high-concentration alkaline trace chlorine ions are By subtracting from the amount of electricity required for titration, the chloride ion content in the high-concentration alkaline trace chlorine-containing sample is determined, and the chloride ion concentration is calculated.
本発明においては、陽極である銀電極と陰極である金属電極の両極間に流す電流は、パルス状であることが好ましい。定電流をパルス状に流すと、電量滴定に要する電気量はパルス数に比例することとなる。更に、このパルス数は滴定槽中の被滴定液の塩素イオン含有量に比例することとなる。従って、該パルス数から高濃度アルカリ性試料中の塩素イオン濃度を算出することができる。 In the present invention, the current flowing between both electrodes of the silver electrode serving as the anode and the metal electrode serving as the cathode is preferably pulsed. When a constant current is applied in pulses, the amount of electricity required for coulometric titration is proportional to the number of pulses. Furthermore, the number of pulses is proportional to the chlorine ion content of the titrant in the titration tank. Therefore, the chlorine ion concentration in the high-concentration alkaline sample can be calculated from the number of pulses.
算出方法を詳しく説明する。まず、標準液のみの電量滴定であるが、標準液を滴定槽に所定量採取し、酸により弱酸性にした後、銀電極を陽電極、金属電極を陰電極にしてパルス状の定電流を流す。酸添加後には、滴定槽中の液量が所定の量になるように、純水を加えることが望ましい。塩素イオンが消失するまで電解を行い、該電解に要したパルス数Pst1を計測する。標準液の塩素イオン濃度とパルス数Pst1から塩素イオン濃度を算出することが可能であるが、高濃度アルカリ性試料の電量滴定条件に近づけ、測定誤差を少なくするためには、その後、滴定槽を洗浄して今度は標準液を滴定槽に所定量の2倍採取し、再び中和、電解を行い、パルス数Pst2を計測し、下記式(1)により1パルス当りの塩素イオン濃度Kを算出することが好ましい。 The calculation method will be described in detail. First, coulometric titration of only the standard solution, but after taking a predetermined amount of standard solution in a titration tank and making it weakly acidic with acid, a pulsed constant current is applied with the silver electrode as the positive electrode and the metal electrode as the negative electrode. Shed. After the acid addition, it is desirable to add pure water so that the amount of liquid in the titration tank becomes a predetermined amount. Electrolysis is performed until chlorine ions disappear, and the number of pulses Pst1 required for the electrolysis is measured. Although chlorine ion concentration of the standard and pulse number P st1 it is possible to calculate the chloride ion concentration, close to the coulometric titration conditions of the high-concentration alkaline samples, in order to reduce the measurement errors, then the Shizukujoso After washing, the standard solution is sampled twice in the titration tank, neutralized and electrolyzed again, the number of pulses Pst2 is measured, and the chlorine ion concentration K per pulse is calculated by the following equation (1). It is preferable to calculate.
K=A/(Pst2−Pst1) (1)
(ここで、Aは標準液の塩素イオン濃度)
標準液を所定量の2倍採取する方法としては、所定量を採取できるサンプルループにより2回採取すればよい。
K = A / ( Pst2- Pst1 ) (1)
(Where A is the chloride ion concentration of the standard solution)
As a method of collecting the standard solution twice the predetermined amount, it may be collected twice by a sample loop capable of collecting the predetermined amount.
一方、標準液及び高濃度アルカリ性試料を1回ずつ採取した被滴定液を同様に電量滴定し、電解するに要したパルス数Ps+st1を計測すると、これから下記式(2)により高濃度アルカリ性微量塩素イオン含有試料溶液中の塩素イオン濃度Cを算出することができる。 On the other hand, when the titration solution obtained by collecting the standard solution and the high-concentration alkaline sample once is similarly subjected to coulometric titration and the number of pulses P s + st1 required for electrolysis is measured, the high-concentration alkaline trace chlorine is expressed by the following equation (2). The chlorine ion concentration C in the ion-containing sample solution can be calculated.
C=K×(Ps+st1−Pst1) (2)
このようにパルス数から塩素イオン濃度を算出することができるので、校正及び分析を自動で行うことも可能である。
C = K × (P s + st1 −P st1 ) (2)
Since the chloride ion concentration can be calculated from the number of pulses in this manner, calibration and analysis can be automatically performed.
定電流をパルス状に流す方法は特に限定されない。例えば、定電流装置をシーケンサで制御することによりパルス状の定電流とすればよい。 The method of flowing the constant current in a pulse shape is not particularly limited. For example, the constant current device may be a pulsed constant current by controlling it with a sequencer.
上記した本発明の高濃度アルカリ性微量塩素イオン含有試料溶液中の塩素イオン濃度の測定は、以下のような方法により行うことができる。 The above-described measurement of the chlorine ion concentration in the sample solution containing high-concentration alkaline trace chlorine ions of the present invention can be performed by the following method.
図1は本発明に関わる自動分析装置の図である。 FIG. 1 is a diagram of an automatic analyzer according to the present invention.
はじめに、標準液の電量滴定工程を説明する。この工程は、標準液中の塩素イオンをパルス状の定電流により電量滴定し、校正された1パルス当りの塩素イオン量を求めるためのものである。また、電量滴定は標準液を1回採取して行う工程と、2回採取して行う工程の2回行う。 First, the coulometric titration process of the standard solution will be described. This step is for coulometric titration of chlorine ions in the standard solution with a pulsed constant current to determine the calibrated chlorine ion amount per pulse. In addition, the coulometric titration is performed twice: a step of collecting the standard solution once and a step of collecting the standard solution twice.
まず標準液を滴定槽にサンプリングするが、その工程は次のとおりである。標準液(4)を、標準液電磁弁(2)を開にして採取ポンプ(3)を稼動させサンプリング用6方バルブ(5)を通しサンプルループ(6)に置換採取する。標準液が採取されるとサンプリング用6方バルブ(5)を図2に示すように60度回転(一周の六分の一回転)させ、流路を変えて純水電磁弁(7)から純水を標準液のたまったサンプルループ(6)に送り込み、送り込んだ純水によってサンプルループ中の標準液を滴定槽(8)へ洗いこむ。その後6方バルブ(5)は60度回転して図1のもとの流路にもどしておく。 First, the standard solution is sampled in a titration tank, and the process is as follows. The standard solution (4) is sampled by replacing the sample solution (4) into the sample loop (6) through the sampling six-way valve (5) by opening the standard solution solenoid valve (2) and operating the sampling pump (3). When the standard solution is collected, the sampling 6-way valve (5) is rotated 60 degrees as shown in FIG. 2 (one-sixth rotation of one round), and the flow path is changed to remove the pure water from the pure water solenoid valve (7). Water is fed into the sample loop (6) in which the standard solution is accumulated, and the standard solution in the sample loop is washed into the titration tank (8) with the pure water fed in. Thereafter, the 6-way valve (5) is rotated 60 degrees and returned to the original flow path of FIG.
このようにして標準液を滴定槽(8)に採取したら採取液を、弱酸性にする工程に移る。中和用酸(9)を、酸ポンプ(10)により滴定槽に添加する。添加する中和用酸の量は、予め試料が弱酸性となる量を決めておけばよい。次に滴定槽(8)の液量を一定とするため液面計(12)で液量を監視しながら純水電磁弁(7)を開いて純水を滴定槽(8)に注入し、液量を所定量とする。 When the standard solution is collected in the titration tank (8) in this way, the collected solution is moved to a step of making it weakly acidic. Neutralizing acid (9) is added to the titration tank by an acid pump (10). The amount of neutralizing acid to be added may be determined in advance such that the sample becomes weakly acidic. Next, in order to keep the liquid amount in the titration tank (8) constant, the pure water electromagnetic valve (7) is opened while monitoring the liquid amount with the liquid level gauge (12), and pure water is injected into the titration tank (8), Let the amount of liquid be a predetermined amount.
液量を所定量にしたら、滴定の工程に入る。滴定はスターラ(11)を稼動させ滴定槽(8)中の被滴定液を攪拌しながら銀電極(13)と金属電極(14)との間に銀電解用定電流を流して行う。定電流装置(16)は制御器(18)のシーケンサで制御し、パルス状の定電流を流す。このとき塩素イオン電極(20)及び比較電極(21)とイオンメーター(17)により塩素イオン濃度を電位により監視し、発生する銀イオンと分析対象の塩素イオンが当量となる点を検出する。当量点では銀イオンが過剰になり、電位が急激に変化するのでその変化量で当量点を検出し、滴定を終了する。滴定が終了すると排液電磁弁(15)を開いて被滴定液を排液する。このとき、滴定開始から当量点に達するまでのパルス数Pst1を計測する。 When the liquid amount is set to a predetermined amount, the step of titration is started. Titration is performed by operating a stirrer (11) and flowing a constant current for silver electrolysis between the silver electrode (13) and the metal electrode (14) while stirring the liquid to be titrated in the titration tank (8). The constant current device (16) is controlled by the sequencer of the controller (18) and flows a pulsed constant current. At this time, the chlorine ion concentration is monitored by the potential with the chlorine ion electrode (20) and the comparison electrode (21) and the ion meter (17), and the point where the generated silver ion and the chlorine ion to be analyzed are equivalent is detected. At the equivalent point, silver ions become excessive, and the potential changes rapidly. Therefore, the equivalent point is detected based on the amount of change, and the titration is completed. When the titration is completed, the drainage solenoid valve (15) is opened to drain the titrated liquid. At this time, the number of pulses Pst1 from the start of titration until reaching the equivalent point is measured.
以上が、標準液を1回採取して電量滴定する工程であるが、つづいて標準液を2回採取して電量滴定を行い、パルス数Pst2を計測する。その工程は、標準液の採取の工程を2回繰り返して行い、中和用酸を加え、以降は上記工程と同じ工程を行う。 The above is the process of collecting the standard solution once and performing coulometric titration. Subsequently, the standard solution is sampled twice, and coulometric titration is performed, and the number of pulses Pst2 is measured. In this step, the step of collecting the standard solution is repeated twice, a neutralizing acid is added, and the subsequent steps are the same as those described above.
次に、高濃度アルカリ性試料の滴定工程を説明する。 Next, the titration process of a high concentration alkaline sample will be described.
まず、試料を滴定槽にサンプリングするが、その工程は次の通りである。
試料電磁弁(1)を開にして採取ポンプ(3)を稼動させサンプリング用6方バルブ(5)を通しサンプリングループ(6)に置換採取する。試料を採取するとサンプリング用6方バルブ(5)を図2に示すように60度回転(一周の六分の一回転)させ、流路を変えて純水電磁弁(7)から純水を試料のたまったサンプルループ(6)に送り込み、送り込んだ純水によってサンプルループ中の試料を滴定槽(8)へ洗いこむ。その後6方バルブ(5)は60度回転して図1のもとの流路にもどしておく。つづいて、試料をサンプリングした滴定槽へ今度は標準液(4)を上記した同じ工程によってサンプリングする。標準液をサンプリングするときは標準液電磁弁(2)を開にして採取ポンプ(3)を稼動させる。
First, a sample is sampled in a titration tank, and the process is as follows.
The sampling solenoid valve (1) is opened, the sampling pump (3) is operated, the sampling six-way valve (5) is passed through, and the sampling loop (6) is replaced. When the sample is collected, the sampling 6-way valve (5) is rotated 60 degrees as shown in FIG. 2 (one-sixth rotation of one round), the flow path is changed, and pure water is sampled from the pure water solenoid valve (7). The collected sample loop (6) is sent to the sample loop (6), and the sample in the sample loop is washed into the titration tank (8) by the sent pure water. Thereafter, the 6-way valve (5) is rotated 60 degrees and returned to the original flow path of FIG. Subsequently, the standard solution (4) is sampled in the same step as described above into the titration tank in which the sample is sampled. When sampling the standard solution, the standard solution solenoid valve (2) is opened and the sampling pump (3) is operated.
このようにして、試料と標準液を滴定槽(8)に採取したら試料を中和し、弱酸性にする工程に移る。中和用酸(9)を、酸ポンプ(10)により滴定槽に添加する。添加する中和用酸の量は、あらかじめ試料の濃度がわかっていることから、試料が中和され弱酸性となる量を決めておけばよい。 Thus, if a sample and a standard solution are extract | collected to the titration tank (8), it will transfer to the process which neutralizes a sample and makes it weakly acidic. Neutralizing acid (9) is added to the titration tank by an acid pump (10). Since the concentration of the sample for neutralization is known in advance, the amount of neutralizing acid to be added may be determined in advance so that the sample is neutralized and becomes weakly acidic.
試料と標準液を滴定槽に採取し弱酸性としたら、滴定槽(8)の液量を一定とするため液面計(12)で液量を監視しながら純水電磁弁(7)を開いて純水を滴定槽(8)に注入し、液量を所定量とする。 When the sample and standard solution are collected in a titration tank and become weakly acidic, the pure water solenoid valve (7) is opened while monitoring the liquid level with the liquid level gauge (12) to keep the liquid level in the titration tank (8) constant. Then, pure water is poured into the titration tank (8) to make the liquid amount a predetermined amount.
液量を所定量にしたら、滴定の工程に入る。滴定は標準液の滴定と同様にして行う。 When the liquid amount is set to a predetermined amount, the step of titration is started. Titration is performed in the same manner as the titration of the standard solution.
この工程で行われた滴定により計測されたパルス数Ps+st1は、試料中の塩素イオン量と標準液中の塩素イオン量との合算量に対応することとなる。 The number of pulses Ps + st1 measured by titration performed in this step corresponds to the total amount of the chlorine ion amount in the sample and the chlorine ion amount in the standard solution.
上記の各滴定の結果より試料中の塩素イオンを算出する。 Chlorine ions in the sample are calculated from the results of the above titrations.
まず、標準液だけを採取し滴定した値から1パルス当りの塩素イオン濃度Kを求める。算出式は前述の(1)式による。
K=A/(Pst2−Pst1) (1)
(ここで、Aは標準液の塩素イオン濃度)
次に、試料と標準液を採取して滴定した際のパルス数から標準液だけを採取して滴定した際のパルス数を差し引き、先に求めた1パルス当りの塩素イオン量を乗じて試料中の塩素イオンを算出する。
C=K×(Ps+st1−Pst1) (2)
First, the chloride ion concentration K per pulse is obtained from the value obtained by collecting and titrating only the standard solution. The calculation formula is based on the above-described formula (1).
K = A / ( Pst2- Pst1 ) (1)
(Where A is the chloride ion concentration of the standard solution)
Next, subtract the number of pulses when only the standard solution was sampled and titrated from the number of pulses when the sample and standard solution were sampled and titrated, and multiply by the previously determined amount of chloride ions per pulse. The chloride ion of is calculated.
C = K × (P s + st1 −P st1 ) (2)
(実施例)
下記条件により、イオン交換膜で製造された液体苛性ソーダ(濃度約32重量%)溶液中の塩素イオン濃度を分析した。計測されたパルス数を表1に示した。また、塩素イオン濃度の分析結果を表2に示した。
電量滴定条件
高濃度アルカリ性試料溶液:約32重量%液体苛性ソーダ 5ml
標準液:塩化ナトリウム濃度100ppmの塩化ナトリウム水溶液 5ml(1回採取時)、10ml(2回採取時)
中和用酸:8M硝酸水溶液 6.6ml
中和後のpH:5
滴定するときのトータルの液量:50ml
銀電極:10mmΦ×40mm銀棒
金属電極:6mmΦ×50mm白金棒
電流:50mA直流電流を20Hzで供給
塩素イオン電極:HS−205S(東亜電気化学工業製)
比較電極:MR501C(ToKo製)
(Example)
Under the following conditions, the chloride ion concentration in the liquid caustic soda (concentration of about 32% by weight) solution produced by the ion exchange membrane was analyzed. Table 1 shows the measured number of pulses. Table 2 shows the analysis result of the chlorine ion concentration.
Coulometric titration conditions Highly concentrated alkaline sample solution: about 32% by weight liquid caustic soda 5ml
Standard solution: Sodium chloride aqueous solution having a sodium chloride concentration of 100
Neutralizing acid: 6.6 ml of 8M aqueous nitric acid solution
PH after neutralization: 5
Total volume when titrating: 50ml
Silver electrode: 10 mmΦ × 40 mm silver bar Metal electrode: 6 mmΦ × 50 mm platinum bar Current: 50 mA DC current supplied at 20 Hz Chlorine ion electrode: HS-205S (manufactured by Toa Denki Kagaku Kogyo)
Reference electrode: MR501C (manufactured by ToKo)
(参考例)
実施例と同じ試料について沈殿滴定法による手分析も同時に行った。
(Reference example)
The same sample as in the example was also subjected to manual analysis by precipitation titration.
高濃度アルカリ性試料溶液約20gを正確に秤量し、フェノールフタレインを指示薬として13M硝酸水溶液で苛性ソーダを中和した後、更に13M硝酸水溶液を5ml過剰に加えた。液温を25℃まで冷却した後、0.05M硝酸銀水溶液約5mlを滴下し、塩素イオンを塩化銀として完全に沈殿させた。この溶液に、更に10wt%硫酸第2鉄アンモニウム水溶液を指示薬として3ml加え、撹拌下0.05Mチオシアン酸アンモニウム水溶液で銀イオンを滴定した。高濃度アルカリ性試料溶液の重量、0.05M硝酸銀水溶液の滴下量及び0.05Mチオシアン酸アンモニウム水溶液の滴定所要量から、高濃度アルカリ性試料溶液中の塩素イオン濃度を算出した。滴定法による分析結果を表2に示す。 About 20 g of high-concentration alkaline sample solution was accurately weighed, and after neutralizing caustic soda with 13M aqueous nitric acid using phenolphthalein as an indicator, an additional 5 ml of 13M aqueous nitric acid was added. After cooling the liquid temperature to 25 ° C., about 5 ml of 0.05M silver nitrate aqueous solution was added dropwise to completely precipitate chloride ions as silver chloride. To this solution was further added 3 ml of 10 wt% aqueous ferric ammonium sulfate solution as an indicator, and silver ions were titrated with 0.05M ammonium thiocyanate aqueous solution with stirring. The chloride ion concentration in the high concentration alkaline sample solution was calculated from the weight of the high concentration alkaline sample solution, the dropping amount of the 0.05M aqueous silver nitrate solution and the required titration amount of the 0.05M aqueous ammonium thiocyanate solution. The results of analysis by the titration method are shown in Table 2.
本発明の分析方法によれば、手分析による沈殿滴定法と同様精度良く高濃度アルカリ性試料溶液中の塩素イオン濃度を測定できる。また、シーケンサにより、標準液を電量滴定することによる校正作業を含めて、高濃度アルカリ性試料中の微量塩素イオンの分析を自動で行うことができる。 According to the analysis method of the present invention, the chlorine ion concentration in a high-concentration alkaline sample solution can be measured with high accuracy as in the precipitation titration method by manual analysis. In addition, the sequencer can automatically analyze trace chlorine ions in a high-concentration alkaline sample, including calibration work by coulometric titration of a standard solution.
(1)試料電磁弁 (12)液面計
(2)標準液電磁弁 (13)電量滴定用Ag電極
(3)採取ポンプ (14)電量滴定用金属電極
(4)標準液 (15)排液電磁弁
(5)サンプリング用6方バルブ (16)定電流装置
(6)サンプルループ (17)イオンメーター
(7)純水電磁弁 (18)制御器
(8)滴定槽 (19)操作パネル
(9)中和用酸 (20)Cl−イオン電極
(10)酸ポンプ (21)比較電極
(11)スターラ
(1) Sample solenoid valve (12) Level gauge (2) Standard solution solenoid valve (13) Coulometric titration Ag electrode (3) Collection pump (14) Coulometric titration metal electrode (4) Standard solution (15) Drainage Solenoid valve (5) Six-way valve for sampling (16) Constant current device (6) Sample loop (17) Ion meter (7) Pure water solenoid valve (18) Controller (8) Titration tank (19) Operation panel (9 ) Acid for neutralization (20) Cl - ion electrode (10) Acid pump (21) Comparative electrode (11) Stirrer
Claims (3)
K=A/(PSt2−PSt1) (1)
(ここで、Aは標準液の塩素イオン濃度)
C=K×(PS+St1−PSt1) (2) A predetermined amount of standard solution is collected in a titration tank, acid is added to make it weakly acidic, a silver electrode is placed in the solution as a positive electrode, and a metal electrode is placed as a negative electrode. After measuring the number of pulses P St1 required for the electrolysis by consuming and erasing the contained chlorine ions with the generated silver ions, the titration tank is washed and the standard solution is sampled twice as much as the predetermined amount in the titration tank , Weakly acidify , electrolyze, measure the number of pulses P St2 , and calculate the chloride ion concentration K per pulse by the following formula (1) in advance. The chlorine ion concentration C in the high-concentration alkaline sample according to claim 1, wherein the chlorine ion concentration C in the high-concentration alkaline sample is calculated from the number of pulses P S + St1 required for electrolyzing the sample by the following formula (2): Io Concentration analysis method.
K = A / (P St2 -P St1 ) (1)
(Where A is the chloride ion concentration of the standard solution)
C = K × (P S + St1 −P St1 ) (2)
The disappearance of contained chlorine ions is detected by an ion electrode using a reference electrode using gelled potassium chloride as an internal solution as a reference electrode. Trace chlorine ion concentration analysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004371960A JP4617153B2 (en) | 2004-12-22 | 2004-12-22 | Trace chlorine ion concentration analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004371960A JP4617153B2 (en) | 2004-12-22 | 2004-12-22 | Trace chlorine ion concentration analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006177800A true JP2006177800A (en) | 2006-07-06 |
JP4617153B2 JP4617153B2 (en) | 2011-01-19 |
Family
ID=36732045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004371960A Active JP4617153B2 (en) | 2004-12-22 | 2004-12-22 | Trace chlorine ion concentration analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4617153B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030981A (en) * | 2007-07-24 | 2009-02-12 | Tanita Corp | Liquid component measuring device, reference liquid, and liquid component measuring method |
CN102590316A (en) * | 2011-11-07 | 2012-07-18 | 郑州飞机装备有限责任公司 | Method for detecting chloride ion impurities in high concentration chromic anhydride solution |
CN104520703A (en) * | 2012-05-03 | 2015-04-15 | 巴克曼实验室国际公司 | Method and apparatus for measuring and controlling electrolytically-active species concentration in aqueous solutions |
CN109507266A (en) * | 2017-09-14 | 2019-03-22 | 东莞东阳光科研发有限公司 | A kind of detection method of anode foils remained on surface chloride ion |
CN110530955A (en) * | 2019-09-30 | 2019-12-03 | 浙江光年知新仪器有限公司 | Chloride ion content single-spot testing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221155A (en) * | 1982-06-17 | 1983-12-22 | Joko:Kk | Electrolytic cell for measuring chlorine ion concentration |
JPS59171853A (en) * | 1983-03-18 | 1984-09-28 | Joko:Kk | Automatic measurement of minute amount of chlorine ion concentration by coulometric titration method |
JPS62238458A (en) * | 1986-04-09 | 1987-10-19 | Mitsubishi Chem Ind Ltd | Quantitative analysis of halogen |
JPH01313754A (en) * | 1988-06-13 | 1989-12-19 | Asahi Raifu Sci Kk | Method of measuring concentration of chlorine |
JPH0915192A (en) * | 1995-06-27 | 1997-01-17 | Hitachi Ltd | Anion selective response membrane and ion responsive electrode using the same |
JP2000131276A (en) * | 1998-10-28 | 2000-05-12 | Masaaki Amano | Potable type residual chlorine meter |
-
2004
- 2004-12-22 JP JP2004371960A patent/JP4617153B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58221155A (en) * | 1982-06-17 | 1983-12-22 | Joko:Kk | Electrolytic cell for measuring chlorine ion concentration |
JPS59171853A (en) * | 1983-03-18 | 1984-09-28 | Joko:Kk | Automatic measurement of minute amount of chlorine ion concentration by coulometric titration method |
JPS62238458A (en) * | 1986-04-09 | 1987-10-19 | Mitsubishi Chem Ind Ltd | Quantitative analysis of halogen |
JPH01313754A (en) * | 1988-06-13 | 1989-12-19 | Asahi Raifu Sci Kk | Method of measuring concentration of chlorine |
JPH0915192A (en) * | 1995-06-27 | 1997-01-17 | Hitachi Ltd | Anion selective response membrane and ion responsive electrode using the same |
JP2000131276A (en) * | 1998-10-28 | 2000-05-12 | Masaaki Amano | Potable type residual chlorine meter |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030981A (en) * | 2007-07-24 | 2009-02-12 | Tanita Corp | Liquid component measuring device, reference liquid, and liquid component measuring method |
CN102590316A (en) * | 2011-11-07 | 2012-07-18 | 郑州飞机装备有限责任公司 | Method for detecting chloride ion impurities in high concentration chromic anhydride solution |
CN104520703A (en) * | 2012-05-03 | 2015-04-15 | 巴克曼实验室国际公司 | Method and apparatus for measuring and controlling electrolytically-active species concentration in aqueous solutions |
JP2015516073A (en) * | 2012-05-03 | 2015-06-04 | バックマン・ラボラトリーズ・インターナショナル・インコーポレーテッドBuckman Laboratories International Incorporated | Method and apparatus for measuring and controlling the concentration of electroactive species in an aqueous solution |
CN109507266A (en) * | 2017-09-14 | 2019-03-22 | 东莞东阳光科研发有限公司 | A kind of detection method of anode foils remained on surface chloride ion |
CN110530955A (en) * | 2019-09-30 | 2019-12-03 | 浙江光年知新仪器有限公司 | Chloride ion content single-spot testing method |
Also Published As
Publication number | Publication date |
---|---|
JP4617153B2 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5622063B1 (en) | Chemical oxygen consumption (COD) automatic measuring device | |
CN212228867U (en) | Online analysis intelligent management and control system for aluminum oxidation tank liquid | |
JP4617153B2 (en) | Trace chlorine ion concentration analysis method | |
US20160061791A1 (en) | Automatic Ammonium Analyzer | |
CN107064223B (en) | Online measurement and calibration system and method adopting intelligent trace dissolved oxygen analyzer | |
CN206109562U (en) | A automatic regulating apparatus for in -pulp electrolysis pH value | |
KR101433228B1 (en) | Method for analyzing inorganic ion concentration in sample without phosphate ion interference | |
JP6462402B2 (en) | Sodium chloride concentration analysis method, sodium chloride concentration analyzer and sodium hypochlorite analyzer | |
Holland et al. | Controlled-potential coulometric determination of plutonium | |
CN113567431A (en) | Industrial circulating water alkalinity online measuring device and measuring method | |
CN113670998A (en) | Automatic measuring instrument and automatic measuring method for thallium concentration in wastewater | |
CN111896676A (en) | Device and method for automatically measuring ions in water by adopting anti-pollution pH electrode | |
JP3388325B2 (en) | Automatic titration analyzer | |
JP2000221165A (en) | Apparatus for measuring concentration of residual chlorine | |
JP2005283294A (en) | Measurement method for reducing sugar and its instrument | |
Ferreira et al. | Voltammetric determination of chloride ion in automotive fuel ethanol | |
CN213060471U (en) | Accurate control system of pH and calcium ion concentration among fluoride waste water treatment system | |
CN215574914U (en) | Device for automatically measuring ion content in water samples such as stratum water | |
CN114910531A (en) | Chloride ion sensor-based concentration ratio online detection system and detection method | |
CN213398377U (en) | Online monitoring system for chloride ion content in industrial circulating cooling water | |
CN221725953U (en) | Total hardness detection device | |
CN102121918A (en) | Electromigration acid-base titration device for measuring acid and alkali concentration | |
CN210720302U (en) | Automatic titration detection device | |
JP2024075998A (en) | Ion concentration measuring method | |
CN113720960A (en) | Water sample alkalinity measuring device and method based on ORP electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4617153 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |