JPS6223818B2 - - Google Patents

Info

Publication number
JPS6223818B2
JPS6223818B2 JP55175449A JP17544980A JPS6223818B2 JP S6223818 B2 JPS6223818 B2 JP S6223818B2 JP 55175449 A JP55175449 A JP 55175449A JP 17544980 A JP17544980 A JP 17544980A JP S6223818 B2 JPS6223818 B2 JP S6223818B2
Authority
JP
Japan
Prior art keywords
measured
liquid
diaphragm tube
residual chlorine
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175449A
Other languages
Japanese (ja)
Other versions
JPS5798854A (en
Inventor
Takeshi Murayama
Setsuo Muramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP55175449A priority Critical patent/JPS5798854A/en
Publication of JPS5798854A publication Critical patent/JPS5798854A/en
Publication of JPS6223818B2 publication Critical patent/JPS6223818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、上下水道、工業用水および河川等に
おける残留塩素の濃度を測定する残留塩素測定方
法および測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual chlorine measuring method and a measuring device for measuring the concentration of residual chlorine in water and sewage systems, industrial water, rivers, etc.

水処理の1つとして、塩素処理は極めて重要な
役割を果しており、上水道における殺菌のための
塩素処理をはじめ、プール、下水放流水、清涼飲
料水用滅菌水、浴場、クリーニングから発電所、
工場、船舶等の冷却水に対する藻類、貝類の進入
防止やスライム防止等を目的とするものまで多く
の分野で広範囲に行なわれている。このような塩
素処理において、使用する塩素量の適正化を図る
一般的な方法として、処理後の残留塩素濃度を測
定して注入塩素量を調節する方法がある。而し
て、残留塩素測定法として従来から知られている
主な方法にジエチルパラフエニレンジアミン(以
下「DPD」と略す)法とオルトトリジン法があ
るが、前者はDPDが塩素によつて酸化されて赤
色を呈することから該赤色濃度を比色測定するこ
とにより残留塩素濃度を測定する方法であり、後
者はオルトトリジンが塩素の存在によつて黄色ホ
ロキノンを生成するので、該黄色濃度を比色測定
することにより残留塩素濃度を測定する方法であ
る。
As a type of water treatment, chlorination plays an extremely important role, including chlorination for disinfection in water supplies, swimming pools, sewage discharge water, sterilized water for soft drinks, baths, cleaning, power plants, etc.
It is widely used in many fields to prevent algae and shellfish from entering the cooling water of factories, ships, etc., and to prevent slime. In such chlorine treatment, a common method for optimizing the amount of chlorine used is to measure the residual chlorine concentration after treatment and adjust the amount of chlorine injected. The main methods conventionally known for measuring residual chlorine are the diethyl paraphenylene diamine (hereinafter abbreviated as "DPD") method and the orthotolidine method, but the former method is based on the fact that DPD is oxidized by chlorine. This method measures the residual chlorine concentration by colorimetrically measuring the red color concentration, since orthotolidine produces yellow holoquinone in the presence of chlorine. This method measures the residual chlorine concentration by

然し乍ら、上記従来例においては、発色した赤
色濃度若しくは黄色濃度を比色測定する比色法を
用いて残留塩素の定量を行なうため、被測定液を
くみあげて専用容器に入れ、試薬を添加して後反
応する時間を待ち、発色した液をカバーガラス等
の標準色と比較するといつた煩雑な作業と長い時
間とを必要としていた。
However, in the above conventional example, in order to quantify residual chlorine using a colorimetric method that measures the developed red or yellow concentration colorimetrically, the liquid to be measured is pumped up and placed in a special container, and a reagent is added. Waiting for post-reaction time and comparing the developed solution with the standard color of a cover glass, etc., requires complicated work and a long time.

本発明は、かかる欠点に鑑みてなされたもので
あり、その目的は、煩雑な作業を要することなく
簡単な作業で迅速に被測定液中の残留塩素濃度を
測定できる残留塩素測定方法および測定装置を提
供するにある。
The present invention has been made in view of these drawbacks, and its purpose is to provide a residual chlorine measuring method and a measuring device that can quickly measure the residual chlorine concentration in a liquid to be measured with simple work without requiring complicated work. is to provide.

本発明の特徴は、被測定液中の残留塩素濃度を
測定する方法および装置において、電解セルを貫
通するように設けられた隔膜チユーブの外側に陽
極を配設すると共に該チユーブの内側に陰極を配
設し、前記隔膜チユーブの中へ被測定液を導いて
静止させ、該被測定液へ前記隔膜チユーブを透過
させてKIを供給し前記被測定液に含まれる残留
塩素をI2に置換し、該I2に定電位電気分解反応を
生じさせ、その後、前記陰極と陽極の間に流れる
電気量を測定することにより、前記被測定液中の
残留塩素を測定することにある。
A feature of the present invention is that, in a method and apparatus for measuring the residual chlorine concentration in a liquid to be measured, an anode is disposed outside a diaphragm tube provided to penetrate an electrolytic cell, and a cathode is disposed inside the tube. The liquid to be measured is guided into the diaphragm tube and kept stationary, and KI is supplied to the liquid to be measured through the diaphragm tube to replace residual chlorine contained in the liquid to be measured with I2 . , the residual chlorine in the liquid to be measured is measured by causing a constant potential electrolysis reaction in the I 2 and then measuring the amount of electricity flowing between the cathode and the anode.

以下、本発明について、図を用いて詳細に説明
する。第1図は、本発明の実施例を示す構成説明
図である。同図において、吸入器1はピストン1
1とシリンダ12から構成されており、シリンダ
12の底部には所定の長さを有するイオン交換膜
等からある隔膜チユーブ13が接続されている。
また、電解セル2はガラス等である筒状部材2
1、該筒状部材21の両端開口部を閉ぐとともに
上記隔膜チユーブ13が中心部を貫通するように
設けられシリコーンゴム等でなる栓22,22′
とで構成されており、栓22,22′、筒状部材
21、および隔膜チユーブ13の一部とで形成さ
れる空間部にはKIとCH3COOHの溶液からなる
電解液23が入れられるとともに該電解液23に
浸漬されるようにしてPt若しくはAuからなる筒
状、網状、若しくはラセン状の陽極24が設けら
れている。更に、栓22,22′の中心部を貫通
する隔膜チユーブ13の中にはPt線若しくはAu
線からなる陰極25が設けられており、該陰極2
5は定電圧電源4、電流計5、およびスイツチ6
を介して上記陽極24と導線などで接続されてい
る。更にまた、容器8には被測定液7が入れられ
ており、上記隔膜チユーブ13の先端部から被測
定液7が吸引されるようになつている。また、上
記栓22,22′、筒状部材21、および隔膜チ
ユーブ13の一部とで形成される空間部には、フ
タル酸水素カリウムの結晶31、KIの結晶3
2、および活性炭33からなる混合物3が上記電
解液23とともに入れられている。
Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention. In the same figure, the inhaler 1 has a piston 1
1 and a cylinder 12, and a diaphragm tube 13 made of an ion exchange membrane or the like having a predetermined length is connected to the bottom of the cylinder 12.
Further, the electrolytic cell 2 includes a cylindrical member 2 made of glass or the like.
1. Plugs 22, 22' made of silicone rubber or the like, which close the openings at both ends of the cylindrical member 21 and are provided so that the diaphragm tube 13 passes through the center.
The space formed by the plugs 22, 22', the cylindrical member 21, and a part of the diaphragm tube 13 is filled with an electrolytic solution 23 consisting of a solution of KI and CH 3 COOH. A cylindrical, net-shaped, or helical-shaped anode 24 made of Pt or Au is provided so as to be immersed in the electrolytic solution 23 . Furthermore, a Pt wire or Au
A cathode 25 made of wire is provided, and the cathode 2
5 is a constant voltage power supply 4, an ammeter 5, and a switch 6
The anode 24 is connected to the anode 24 via a conductive wire or the like. Furthermore, a liquid to be measured 7 is placed in the container 8, and the liquid to be measured 7 is sucked from the tip of the diaphragm tube 13. Further, in the space formed by the plugs 22, 22', the cylindrical member 21, and a part of the diaphragm tube 13, potassium hydrogen phthalate crystals 31 and KI crystals 3 are provided.
A mixture 3 consisting of activated carbon 2 and activated carbon 33 is placed together with the electrolytic solution 23.

第2図は、上記電解セル2の周辺部の拡大断面
図である。第2図において、第1図と同一記号は
同一意味をもたせて使用し、ここでの説明は省略
する。
FIG. 2 is an enlarged sectional view of the peripheral portion of the electrolytic cell 2. As shown in FIG. In FIG. 2, the same symbols as in FIG. 1 are used with the same meanings, and their explanations will be omitted here.

上記構成からなる本発明の実施例における動作
について以下説明する。第1図において、ピスト
ン11が操作されて、被測定液7が吸引され隔膜
チユーブ13に導入されるとともに該被測定液7
が隔膜チユーブ13の中で静止状態に保たれる。
一方、電解セル2においては、フタル酸カリウム
の結晶31、KIの結晶32が存在するため、電
解液23はPH=4のKI飽和溶液となつている。
このため、隔膜チユーブ13内の被測定液と電解
セル2内の電解液23との間に、KIに関する大
きな濃度差が生じ、該濃度の勾配が推進力となつ
て、電解液23中のKIが隔膜透過して隔膜チユ
ーブ13内の被測定液へ移動する。而して、隔膜
チユーブ13内の被測定液に含まれる残留塩素
は、電解液23から至つたKIと直ちに反応してI2
を析出する。また、電解セル2において、電解液
23中で発生したI2は、活性炭33の存在によ
り、下式(1)のような反応を受けてI-へ還元され
る。
The operation of the embodiment of the present invention having the above configuration will be described below. In FIG. 1, the piston 11 is operated, and the liquid to be measured 7 is sucked and introduced into the diaphragm tube 13.
is kept stationary within the diaphragm tube 13.
On the other hand, in the electrolytic cell 2, since potassium phthalate crystals 31 and KI crystals 32 are present, the electrolytic solution 23 is a KI-saturated solution with pH=4.
Therefore, a large concentration difference in KI occurs between the liquid to be measured in the diaphragm tube 13 and the electrolyte 23 in the electrolytic cell 2, and this concentration gradient acts as a driving force, causing the KI in the electrolyte 23 to passes through the diaphragm and moves to the liquid to be measured in the diaphragm tube 13. Therefore, the residual chlorine contained in the liquid to be measured in the diaphragm tube 13 immediately reacts with KI coming from the electrolytic solution 23 and becomes I 2
is precipitated. Further, in the electrolytic cell 2, I 2 generated in the electrolytic solution 23 undergoes a reaction as shown in the following formula (1) due to the presence of the activated carbon 33, and is reduced to I - .

2I2+2H2O+C→4I-+4H++CO2 ……(1) 第3図は、電流計4で検出される電解電流とス
イツチ5が閉になつてからの経過時間との関係を
示す特性曲線図である。第3図において、電界電
流(I)は、時間(T)の経過にともなつて減少し、
前記陰極25の近辺に存在するI2がなくなつたと
きに零となる。
2I 2 +2H 2 O+C → 4I - +4H + +CO 2 ...(1) Figure 3 is a characteristic curve showing the relationship between the electrolytic current detected by ammeter 4 and the elapsed time after switch 5 was closed. It is a diagram. In Figure 3, the electric field current (I) decreases with the passage of time (T),
It becomes zero when I 2 existing near the cathode 25 disappears.

また、第4図は、電流計4で検出される電解電
流値を積分した値である電気量Cと、スイツチ5
が閉になつてからの経過時間との関係を示す特性
曲線図である。第4図において、電気量(C)は、被
測定液中の残留塩素濃度と比例関係あり、通常
は、2分経過時のほぼ安定した電気量の値から被
測定液中の残留塩素濃度が測定される。すなわ
ち、被測定液中の残留塩素と電解液23から到達
したKIとの反応で生じたI2がI-に変化するのに要
する電気量を測定することにより、フアラデーの
法則を利用して被測定液中の残留塩素が測定され
るのである。
FIG. 4 also shows the amount of electricity C, which is the value obtained by integrating the electrolytic current value detected by the ammeter 4, and
FIG. 3 is a characteristic curve diagram showing the relationship with the elapsed time after the opening is closed. In Figure 4, the quantity of electricity (C) has a proportional relationship with the residual chlorine concentration in the liquid to be measured, and normally the residual chlorine concentration in the liquid to be measured is determined from the almost stable value of the quantity of electricity after 2 minutes. be measured. That is, by measuring the amount of electricity required for I 2 generated by the reaction between the residual chlorine in the liquid to be measured and KI arriving from the electrolytic solution 23 to change to I - , the amount of electricity can be calculated using Faraday's law. Residual chlorine in the measurement solution is measured.

以上、詳しく説明したような本発明の実施例に
よれば、電解セル2の内部へ挿入するように設け
られた隔膜チユーブ13の中において、被測定液
へKIが隔膜透過して添加されるような構成とな
つているために、前記容器8中の被測定液7へ
KI等の試薬を添加する必要はなく、残留塩素の
測定が容易かつ迅速にできるという利点を有して
いる。また、前記隔膜チユーブ13内に存在する
I2を、クーロメトリーによつてI-に変化させると
きの電気量を測定しているため、前記従来例に比
して著しく高い精度で被測定液中の残留塩素量を
測定できるという利点を有している。更に、本発
明の実施例において、残留塩素のI2置換が100%
行なわれ、且つ隔膜チユーブ13や電極24,2
5の大きさおよび反応に寄与する被測定液の容量
が一定に保たれると、標準液を用いて測定装置を
校正する必要もなくなるという利点も有してい
る。
According to the embodiment of the present invention as described above in detail, in the diaphragm tube 13 provided to be inserted into the electrolytic cell 2, KI is added to the liquid to be measured through the diaphragm. Because of this structure, the liquid to be measured 7 in the container 8
It has the advantage that it is not necessary to add reagents such as KI, and residual chlorine can be measured easily and quickly. Also, present in the diaphragm tube 13
Because it measures the amount of electricity when changing I 2 to I - by coulometry, it has the advantage of being able to measure the amount of residual chlorine in the liquid under test with significantly higher accuracy than the conventional example. are doing. Furthermore, in the embodiments of the present invention, the I 2 substitution of residual chlorine is 100%.
diaphragm tube 13 and electrodes 24, 2.
If the size of 5 and the volume of the liquid to be measured that contributes to the reaction are kept constant, there is also the advantage that there is no need to calibrate the measuring device using a standard liquid.

第5図は、本発明の他の実施例を示す構成説明
図であり、図中、9は定流量ポンプ、10は被測
定液流入口、10′は被測定液流出口である。
尚、第5図において、第1図と同一記号は同一意
味をもたせて使用し、ここでの説明は省略する。
FIG. 5 is a configuration explanatory diagram showing another embodiment of the present invention. In the figure, 9 is a constant flow pump, 10 is an inlet for a liquid to be measured, and 10' is an outlet for a liquid to be measured.
Note that in FIG. 5, the same symbols as in FIG. 1 are used with the same meanings, and the explanation here will be omitted.

第5図において、被測定液は定流量ポンプ9に
よつて被測定液流入口10から所定の流量で導入
され、隔膜チユーブ13の中を流れて被測定液流
出口10′から外部へ流出される。また、前記隔
膜チユーブ13の中において、被測定液中の残留
塩素は、濃度勾配が推進力となつて電解液23か
ら到達したKIと反応してI2を析出する。更に、電
解セル2において、電解液23中で発生したI2
は、活性炭33の存在により、前記(1)式のような
反応を受けてI-へ還元される。
In FIG. 5, the liquid to be measured is introduced at a predetermined flow rate from the liquid to be measured inlet 10 by the constant flow pump 9, flows through the diaphragm tube 13, and flows out from the liquid to be measured outlet 10'. Ru. Further, in the diaphragm tube 13, residual chlorine in the liquid to be measured reacts with KI arriving from the electrolytic solution 23 due to the concentration gradient acting as a driving force, and precipitates I 2 . Furthermore, in the electrolysis cell 2, I 2 generated in the electrolyte 23
Due to the presence of the activated carbon 33, is reduced to I - through the reaction shown in formula (1) above.

上記構成からなる本発明の他の実施例によれ
ば、被測定液が隔膜チユーブ13内に一定流量で
流されるとともにスイツチ6が閉じて陽極24と
陰極25の間に所定の電流が供給されることによ
り、被測定液中の残留塩素を連続的に測定するこ
とができるという利点がある。また、プール等の
水に含まれる残留塩素を測定する場合も、本発明
に係る装置を用いることにより、短時間で容易に
測定値を直読できるいわゆる「DIP&READ」形
の測定装置とすることも可能である。
According to another embodiment of the present invention having the above configuration, the liquid to be measured is caused to flow into the diaphragm tube 13 at a constant flow rate, and the switch 6 is closed to supply a predetermined current between the anode 24 and the cathode 25. This has the advantage that residual chlorine in the liquid to be measured can be measured continuously. Furthermore, when measuring residual chlorine contained in water in swimming pools, etc., by using the device according to the present invention, it is possible to use a so-called "DIP &READ" type measuring device that can easily read measured values directly in a short time. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す構成説明図、
第2図は、電解セル周辺部の拡大断面図、第3図
は、電解電流と経過時間との関係を示す特性曲線
図、第4図は、電気量と経過時間との関係を示す
特性曲線図、第5図は、本発明の他の実施例を示
す構成説明図である。 1……吸入器、11……ピストン、12……シ
リンダ、13……隔膜チユーブ、2……電解セ
ル、21……筒状部材、22,22′……栓、2
3……電解液、24……陽極、25……陰極、3
……混合物、31,32……結晶、33……活性
炭、4……定電圧電源、5……電流計、6……ス
イツチ、7……被測定液、8……容器、9……定
流量ポンプ、10……被測定液流入口、10′…
…被測定液流出口。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention;
Figure 2 is an enlarged sectional view of the surrounding area of the electrolytic cell, Figure 3 is a characteristic curve diagram showing the relationship between electrolysis current and elapsed time, and Figure 4 is a characteristic curve diagram showing the relationship between the amount of electricity and elapsed time. 5 are configuration explanatory diagrams showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Inhaler, 11... Piston, 12... Cylinder, 13... Diaphragm tube, 2... Electrolytic cell, 21... Cylindrical member, 22, 22'... Plug, 2
3... Electrolyte, 24... Anode, 25... Cathode, 3
...Mixture, 31, 32... Crystal, 33... Activated carbon, 4... Constant voltage power supply, 5... Ammeter, 6... Switch, 7... Liquid to be measured, 8... Container, 9... Constant Flow rate pump, 10...Measurement liquid inlet, 10'...
...Measured liquid outlet.

Claims (1)

【特許請求の範囲】 1 電解セルを貫通するように設けられた隔膜チ
ユーブの外側に陽極を配設すると共に該チユーブ
の内側に陰極を配設し、前記隔膜チユーブの中へ
被測定液を導いて静止させ、該被測定液へ前記隔
膜チユーブを透過させてKIを供給して前記被測
定液に含まれる残留塩素をI2に置換し、該I2に定
電位電気分解反応を生じさせ、その後、前記陰極
と陽極の間に流れる電気量を測定することによ
り、前記被測定液中の残留塩素を測定することを
特徴とする残留塩素の測定方法。 2 被測定液が導びかれて静止させられる一定長
さの隔膜チユーブと、筒状部材および該筒状部材
の両端開口部を塞ぐと共に前記隔膜チユーブが中
心部を貫通するように設けられた2個の栓とで構
成され内部に電解液、活性炭、KIの結晶、およ
びフタル酸水素カリウムの結晶が封入された電解
セルと、前記隔膜チユーブの外側に配設された陽
極と、前記隔膜チユーブの内側に配設された陰極
とを具備し、前記陰極と陽極の間に流れる電気量
を測定して前記被測定液中の残留塩素を測定する
残留塩素の測定装置。 3 前記隔膜チユーブへの被測定液導入は、前記
隔膜チユーブ、該隔膜チユーブに接続されたシリ
ンダ、およびピストンからなる吸入器で吸引して
導入する実用新案登録請求範囲第2項記載の測定
装置。 4 前記隔膜チユーブへの被測定液導入は、前記
隔膜チユーブに接続された定流量ポンプで送液し
て導入する実用新案登録請求範囲第2項記載の測
定装置。
[Claims] 1. An anode is disposed outside a diaphragm tube provided to penetrate the electrolytic cell, and a cathode is disposed inside the tube, and a liquid to be measured is introduced into the diaphragm tube. to stand still, supply KI through the diaphragm tube to the liquid to be measured, replace residual chlorine contained in the liquid to be measured with I2 , and cause the I2 to undergo a potentiostatic electrolysis reaction; A method for measuring residual chlorine, characterized in that residual chlorine in the liquid to be measured is then measured by measuring the amount of electricity flowing between the cathode and the anode. 2. A diaphragm tube of a certain length through which the liquid to be measured is guided and kept stationary; a cylindrical member; and 2, the diaphragm tube is provided so as to close the openings at both ends of the cylindrical member, and the diaphragm tube penetrates through the center. an electrolytic cell consisting of a plurality of stoppers and in which an electrolyte, activated carbon, crystals of KI, and crystals of potassium hydrogen phthalate are sealed; an anode disposed outside the diaphragm tube; A residual chlorine measuring device, comprising a cathode disposed inside, and measuring residual chlorine in the liquid to be measured by measuring the amount of electricity flowing between the cathode and the anode. 3. The measuring device according to claim 2, wherein the liquid to be measured is introduced into the diaphragm tube by suction with an inhaler comprising the diaphragm tube, a cylinder connected to the diaphragm tube, and a piston. 4. The measuring device according to claim 2, wherein the liquid to be measured is introduced into the diaphragm tube by feeding the liquid with a constant flow pump connected to the diaphragm tube.
JP55175449A 1980-12-12 1980-12-12 Measuring method and device residual chlorine Granted JPS5798854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55175449A JPS5798854A (en) 1980-12-12 1980-12-12 Measuring method and device residual chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55175449A JPS5798854A (en) 1980-12-12 1980-12-12 Measuring method and device residual chlorine

Publications (2)

Publication Number Publication Date
JPS5798854A JPS5798854A (en) 1982-06-19
JPS6223818B2 true JPS6223818B2 (en) 1987-05-25

Family

ID=15996265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55175449A Granted JPS5798854A (en) 1980-12-12 1980-12-12 Measuring method and device residual chlorine

Country Status (1)

Country Link
JP (1) JPS5798854A (en)

Also Published As

Publication number Publication date
JPS5798854A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US7985377B2 (en) Apparatus for monitoring chlorine concentration in water
US4400242A (en) Electrochemical method of determining oxygen, halothane and nitrous oxide
JP2002503330A (en) Micro fuel cell oxygen gas sensor
US4581121A (en) Free chlorine gas analyzer
JP2018124130A (en) Device and method for measuring residual chlorine
KR101077919B1 (en) Card-type mult tester
Jin et al. A miniaturized FIA system for the determination of residual chlorine in environmental water samples
US5334295A (en) Micro fuel-cell oxygen gas sensor
US2585059A (en) Electrical cell apparatus for detecting chemical characteristics of liquids
Monk et al. Microchemical methods in radiochemical analysis: Determination of chemical yields by micro-coulometry
US4441979A (en) Nutating probe for gas analysis
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JPS6223818B2 (en)
KR20170098349A (en) Electrochemical TRO sensor
JPH03191854A (en) Apparatus and method for restricting ef- fect of insoluble oxygen content of eletrolytic solution to minimum in low range oxygen analyzer
US3523872A (en) Gas analysis
JPS6317180B2 (en)
KR20140140971A (en) Total residual oxidant concentration measure module
JPS6246825B2 (en)
US5393392A (en) Polarographic PPB oxygen gas sensor
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
KR100759531B1 (en) Residual chlorine analyzer of ventilation form
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
RU2139530C1 (en) Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water
JPS61258158A (en) Electrochemical cell