JPH079084Y2 - Residual chlorine measuring device - Google Patents

Residual chlorine measuring device

Info

Publication number
JPH079084Y2
JPH079084Y2 JP7412590U JP7412590U JPH079084Y2 JP H079084 Y2 JPH079084 Y2 JP H079084Y2 JP 7412590 U JP7412590 U JP 7412590U JP 7412590 U JP7412590 U JP 7412590U JP H079084 Y2 JPH079084 Y2 JP H079084Y2
Authority
JP
Japan
Prior art keywords
residual chlorine
sample water
water
ozone
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7412590U
Other languages
Japanese (ja)
Other versions
JPH0469763U (en
Inventor
真一 赤沢
紘一 大野
禧治 大島
克己 木村
行雄 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP7412590U priority Critical patent/JPH079084Y2/en
Publication of JPH0469763U publication Critical patent/JPH0469763U/ja
Application granted granted Critical
Publication of JPH079084Y2 publication Critical patent/JPH079084Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ポーラログラフ法によるI2置換式の残留塩素
計を用いて試料水中の残留塩素濃度を測定する残留塩素
測定装置に関し、さらに詳述すると、下水や海水の放流
水中の残留塩素の測定に特に好適に使用される装置に関
する。
[Detailed Description of the Invention] [Industrial field of application] The present invention further relates to a residual chlorine measuring device for measuring the residual chlorine concentration in sample water using a polarographic I 2 substitution type residual chlorine meter. Then, it relates to an apparatus particularly preferably used for measuring residual chlorine in sewage and seawater discharged water.

〔従来の技術〕[Conventional technology]

下水の放流水は、通常塩素殺菌を行なってから放流され
ているが、近年環境保護の観点から、下水の放流水中の
残留塩素濃度を極めて低濃度に管理することが要請され
ている。
The sewage discharge water is usually discharged after chlorine sterilization, but in recent years, from the viewpoint of environmental protection, it has been required to control the residual chlorine concentration in the sewage discharge water to an extremely low concentration.

この場合、下水放流水中の残留塩素濃度は、白金検知極
と白金対極からなる電極系に試薬としてヨウ化カリウム
を用いたポーラログラフ方式の残留塩素計が現在使用さ
れている。この残留塩素計の測定原理は次の通りであ
る。即ち、遊離塩素及び結合塩素を含む試料水にヨウ化
カリウム(KI)を加えると、KIは水溶液中でカリウムイ
オン(K+)とヨウ素イオン(I-)に電離し、下記(1)
〜(4)式のように両方の塩素と等量のヨウ素イオン
(I2)を遊離する。
In this case, for the residual chlorine concentration in the sewage discharge water, a polarographic residual chlorine meter using potassium iodide as a reagent in an electrode system consisting of a platinum detection electrode and a platinum counter electrode is currently used. The measurement principle of this residual chlorine meter is as follows. That is, the addition potassium iodide (KI) to sample water containing free chlorine and combined chlorine, KI is potassium ion (K +) and iodide ion in aqueous solution (I -) ionized in the following (1)
As shown in the formula (4), the same amount of iodine ion (I 2 ) as both chlorine is released.

遊離塩素Cl2+2I-→I2+2Cl- …(1) 結合塩素(クロラミン) NH2Cl+2I-+2H+→I2+NH4Cl …(2) NHCl2+4I-+3H+→2I2+NH4Cl+Cl- …(3) NCl3+6I-+4H+→3I2+NH4Cl+2Cl …(4) 上記反応後の試料水中で微小白金電極を回転させ、これ
を検知極として用い、比較的面積の大きな白金を静止対
極として両極間にに外部から直通電圧を加えると、滴下
水銀電極と類似した電圧−電流曲線(ポーラログラフ)
が得られるものである。
Free chlorine Cl 2 + 2I - → I 2 + 2Cl - ... (1) combined chlorine (chloramines) NH 2 Cl + 2I - + 2H + → I 2 + NH 4 Cl ... (2) NHCl 2 + 4I - + 3H + → 2I 2 + NH 4 Cl + Cl - ... (3) NCl 3 + 6I + 4H + → 3I 2 + NH 4 Cl + 2Cl… (4) Rotate the minute platinum electrode in the sample water after the above reaction, and use it as the detection electrode, and use platinum with a relatively large area as the stationary counter electrode. When a direct voltage is applied between both electrodes from the outside, a voltage-current curve similar to that of the dropping mercury electrode (polarographic)
Is obtained.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述した残留塩素計は、試料水中の残留塩素をヨウ素に
置換し、検知極でヨウ素の還元、対極でヨウ素の生成を
行ない、流れる電流から間接的に残留塩素濃度を求める
ものであるため、対極はヨウ素電極となっている。
The residual chlorine meter described above replaces the residual chlorine in the sample water with iodine, reduces the iodine at the detection electrode, produces iodine at the counter electrode, and indirectly determines the residual chlorine concentration from the flowing current. Is an iodine electrode.

しかし、このI2置換式の残留塩素計は、測定存在するこ
とが原理的に必要であり、残留塩素が殆ど存在しない試
料水に長時間さらされると、対極表面のヨウ素が洗い流
されて対極がヨウ素電極として作用しなくなり、単極電
位がずれるという問題がある。即ち、残留塩素を含む試
料水を測定する場合、通常下記式(5) 2I-→I2+2- …(5) で示される反応が対極で起きており、従って対極はI2
極として作用しているものであるが、上記(5)式の反
応は試料水中に予めI2がある程度存在していないと進行
せず、従って試料水である下水の放流水中にI2に置換さ
れる残留塩素が殆ど存在しない状態が長時間続くと、対
極のI2が流出して安定なとして作用しなくなるものであ
る。そして、このような対極がI2電極として作用しなく
なると、第2図に示すような電圧電流曲線のずれが生
じ、下水放流水の管理上重要なゼロ点付近の低濃度領域
でゼロ点のドリフトが起こり、低濃度の残留塩素を正確
に測定できなくなる。即ち、第2図においてaは5mg/lC
l2の特性、bは2.5mg/lCl2の特性、cは5mg/lCl2を測定
した後の0mg/lCl2の特性、dは0mg/lCl2を長時間測定し
た後の0mg/lCl2の特性であり、この図からわかるように
印加電圧を−0.4Vに設定しておけば流れる電流からCl2
濃度を求めることができるが、dの状態ではゼロ点の誤
差が大きくなる。
However, in principle, this I 2 substitution type residual chlorine meter needs to be present for measurement, and if it is exposed to sample water in which residual chlorine is almost absent for a long time, the iodine on the surface of the counter electrode is washed away and the counter electrode is removed. There is a problem that it does not work as an iodine electrode and the unipolar potential shifts. That is, when measuring the sample water containing residual chlorine, usually following formula (5) 2I - → I 2 +2 - ... and place the reaction at the counter electrode shown in (5), thus the counter electrode may act as I 2 electrode However, the reaction of the above formula (5) does not proceed unless I 2 is present to some extent in the sample water, and therefore residual chlorine that is replaced with I 2 in the discharged water of the sewage which is the sample water. If a state where is almost absent continues for a long time, the counter electrode I 2 flows out and becomes unstable and does not work. When such a counter electrode does not function as an I 2 electrode, a voltage-current curve shift as shown in Fig. 2 occurs, and a zero point is generated in the low concentration region near the zero point, which is important for the management of sewage discharge water. Drift will occur and low concentration of residual chlorine cannot be measured accurately. That is, in FIG. 2, a is 5 mg / lC
Characteristics of l 2, b is 2.5 mg / LCL 2 properties, c is 5 mg / LCL 2 Characteristics of 0mg / LCL 2 after measuring, d is 0mg / LCL 2 to 0mg after measuring long / LCL 2 As can be seen from this figure, if the applied voltage is set to −0.4V, Cl 2 will change from the flowing current.
Although the density can be obtained, the error at the zero point becomes large in the state of d.

また、下水の放流水中の残留塩素を残留塩素計で測定す
る場合、放流水に含まれる糸状菌、藻類、プランクトン
などが電極系、試料水ライン、ポンプ等に付着して繁殖
し、測定不能になったり、保守工数が増大したりすると
いう問題もある。
In addition, when residual chlorine in sewage discharge water is measured with a residual chlorine meter, filamentous fungi, algae, plankton, etc. contained in the discharge water adhere to the electrode system, sample water line, pump, etc. There is also a problem that the number of maintenance works increases.

本考案は、上記事情に鑑みなされたもので、残留塩素が
殆ど存在しない試料水の測定を行なった後でも試料水中
の残留塩素、特に低濃度の残留塩素を正確に測定するこ
とができると共に、電極系に試料水中の菌類や藻類が付
着して繁殖するのを良好に防止することができる残留塩
素測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to accurately measure residual chlorine in sample water, particularly low-concentration residual chlorine even after performing measurement of sample water in which residual chlorine is almost absent. An object of the present invention is to provide a residual chlorine measuring apparatus capable of favorably preventing the fungi and algae in the sample water from adhering to and proliferating on the electrode system.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、上記目的を達成するため、試料水に試薬とし
てヨウ化カリウムを加え、このとき試料水中の残留塩素
とヨウ素イオンとの反応によって遊離するヨウ素を一定
電圧が印加された検知極と対極を用いて検出することに
より試料水中の残留塩素濃度を連続的に測定する残留塩
素計と、この残留塩素計の検知極及び対極の近傍のヨウ
化カリウムが加えられた試料水に定期的にオゾンを供給
するオゾン供給機構とを具備することを特徴とする残留
塩素測定装置を提供する。
In order to achieve the above-mentioned object, the present invention adds potassium iodide as a reagent to sample water, and at this time, iodine released by the reaction between residual chlorine and iodine ions in the sample water is released as a detection electrode and a counter electrode to which a constant voltage is applied. The residual chlorine meter that continuously measures the residual chlorine concentration in the sample water by using the residual chlorine meter and the sample water to which potassium iodide near the detection electrode and counter electrode of this residual chlorine meter is added An ozone supply mechanism for supplying the residual chlorine is provided.

〔作用〕[Action]

本考案の装置においては、試料水中の残留塩素濃度を残
留塩素計で測定すると共に(上記(1)〜(4)式参
照)、この残留塩素計の電極近傍の試料水に定期的にオ
ゾンを供給する。
In the device of the present invention, the residual chlorine concentration in the sample water is measured by the residual chlorine meter (see the above formulas (1) to (4)), and ozone is periodically added to the sample water near the electrode of the residual chlorine meter. Supply.

この場合、オゾンはCl2と同様にヨウ化カリウム(KI)
が添加された試料水中のヨウ素イオン(I-)と反応しヨ
ウ素(I2)を遊離する(上記(5)式参照)。従って、
本考案においては、対極が残留塩素の殆ど無い試料水に
長時間さらされた場合でも定期的に対極にヨウ素が補給
され、対極が常時安定にヨウ素電極として作用する。
In this case, ozone is potassium iodide (KI) as is Cl 2.
Reacts with iodine ions (I ) in the added sample water to release iodine (I 2 ) (see the above formula (5)). Therefore,
In the present invention, even when the counter electrode is exposed to the sample water containing almost no residual chlorine for a long period of time, the counter electrode is periodically replenished with iodine, and the counter electrode always stably acts as the iodine electrode.

また、検知極及び対極に定期的にオゾンが供給されるの
で、菌類や藻類等はオゾンの殺菌作用によって死滅し、
これら菌類や藻類が電極に付着して繁殖することが防止
される。
In addition, since ozone is regularly supplied to the detection electrode and the counter electrode, fungi and algae are killed by the sterilizing action of ozone,
These fungi and algae are prevented from adhering to the electrode and propagating.

なお、対極へのヨウ素の補給及び菌類、藻類の殺菌は次
亜塩素酸ソーダの供給によっても行なうことができる。
しかし、オゾンは空気が供給源であるため簡便に供給で
きるが、次亜塩素酸は試薬(溶液)として供給しなけれ
ばならず、このため装置の機構が複雑になる上、オゾン
はすみやかに分解するので安全性が高いが、次亜塩素酸
ソーダは分解しにくいため、安全性に問題がある。しか
も、残留塩素計はもともと環境上の観点から塩素の排出
をチェックするための装置であるので、塩素を流出させ
るような手段は好ましくない。従って、本考案において
はオゾンを使用するものである。
In addition, the supply of iodine to the counter electrode and the sterilization of fungi and algae can also be performed by supplying sodium hypochlorite.
However, ozone can be easily supplied because air is the supply source, but hypochlorous acid must be supplied as a reagent (solution), which complicates the mechanism of the device and promptly decomposes ozone. Therefore, the safety is high, but sodium hypochlorite is difficult to decompose, and thus there is a safety problem. Moreover, since the residual chlorine meter is originally a device for checking the emission of chlorine from an environmental point of view, means for causing chlorine to flow out is not preferable. Therefore, ozone is used in the present invention.

次に、実施例を示し、本考案を具体的に説明するが、本
考案は下記実施例に限定されるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

第1図は本考案の一実施例に係る残留塩素測定装置を示
すもので、図中1は試料水導入管、2はバルブ、3はオ
ーバーフロー槽、4はオーバーフロー管、5は試料水流
通管、6は送液ポンプ、7〜17は残留塩素計を構成する
もので、7は電極セル、8は白金からなる回転検知極、
9は検知極回転モータ、10は白金からなる対極、11は加
電圧回路、12は電流計、13は排水管、14は試薬槽、15は
試薬(ヨウ化カリウム)、16は試薬導入管、17は液送ポ
ンプ、18はオゾン発生器、19はオゾン導入管、20は電磁
バルブ、21は洗浄水導入管、22は電磁バルブ、23は第1
洗浄水流通管、24は第2洗浄水流通管をそれぞれ示す。
FIG. 1 shows a residual chlorine measuring apparatus according to an embodiment of the present invention, in which 1 is a sample water introduction pipe, 2 is a valve, 3 is an overflow tank, 4 is an overflow pipe, 5 is a sample water flow pipe. , 6 is a liquid feed pump, 7 to 17 are components of a residual chlorine meter, 7 is an electrode cell, 8 is a rotation detection electrode made of platinum,
9 is a detection pole rotation motor, 10 is a counter electrode made of platinum, 11 is a voltage application circuit, 12 is an ammeter, 13 is a drain pipe, 14 is a reagent tank, 15 is a reagent (potassium iodide), 16 is a reagent introduction pipe, 17 is a liquid feed pump, 18 is an ozone generator, 19 is an ozone introduction pipe, 20 is an electromagnetic valve, 21 is a wash water introduction pipe, 22 is an electromagnetic valve, and 23 is a first
The washing water flow pipe and 24 are the second washing water flow pipes, respectively.

本装置によって試料水中の残留塩素濃度を測定する場
合、ポンプ6の作動によって試料水流通管5を通して50
ml/min程度の流量で試料水を電極セル7に流すと共に、
ポンプ17の作動によって実施例試料水中に試薬15を2ml/
min程度の流量で導入し、前記(1)〜(4)式の測定
原理に従って検知極8及び対極10で試料水中の残留塩素
濃度を測定する。
When measuring the residual chlorine concentration in the sample water with this device, the pump 6 is operated to pass through the sample water flow pipe 5.
While flowing sample water into the electrode cell 7 at a flow rate of about ml / min,
By operating the pump 17, 2 ml of the reagent 15 in the sample water of the embodiment
It is introduced at a flow rate of about min, and the residual chlorine concentration in the sample water is measured by the detection electrode 8 and the counter electrode 10 according to the measurement principles of the formulas (1) to (4).

また、本装置においては、所定時間毎にオゾン発生器18
でオゾンを発生させ、このオゾンをバルブ20の操作によ
って試料水流通管5内を流れる試料水に導入する。これ
により、オゾンの殺菌作用によって試料水流通管5の内
壁、ポンプ6の内部、電極セル7の内壁、検知極8及び
対極10の表面などに付着した菌類、藻類等が死滅すると
共に、オゾンと試料水中のヨウ素イオン(I-)との反応
によってヨウ素(I2)が遊離し、このI2が対極10に供給
される。なお、試料水へのオゾンの供給周期は、試料水
の汚れの程度によって異なるが、4〜12時間毎に行なう
ことが好ましい。
In addition, in this device, the ozone generator 18
Ozone is generated in the sample water, and this ozone is introduced into the sample water flowing in the sample water flow pipe 5 by operating the valve 20. As a result, fungi, algae, etc. attached to the inner wall of the sample water flow pipe 5, the inside of the pump 6, the inner wall of the electrode cell 7, the surfaces of the detection electrode 8 and the counter electrode 10, and the like are killed by the sterilizing action of ozone, and ozone is removed. water sample iodine ions (I -) reaction of iodine (I 2) is released by the, the I 2 is supplied to the counter electrode 10. The ozone supply cycle to the sample water varies depending on the degree of contamination of the sample water, but is preferably every 4 to 12 hours.

更に、本装置においては、上記オゾンの導入後に洗浄水
による装置の洗浄を行なう。即ち、ポンプ6及びバルブ
22の作動によって洗浄水導入管21に3l/min程度の流量で
洗浄水を導入する。すると、この洗浄水は第1洗浄水流
通管23と第2洗浄水流通管24とに分流し、第1洗浄水流
通管23を通った洗浄水は水ジェット状態となって試料水
流通管5の上流側及び下流側に分流し(試料水流通管5
の内径は3mm程度であるため、この流通管5に大流量の
洗浄水を導入すると水ジェット状態となって両方向に分
流する)、この水ジェット状態の洗浄水によって試料水
導入管1、オーバーフロー槽3、試料水流通管5、ポン
プ6、セル7、検知極8、対極10などが水ジェット洗浄
され、オゾンの作用で死滅した菌類や藻類も洗い流され
て排出される。一方、第2洗浄水流通管24を通った洗浄
水も水ジェット状態でセル7内に噴き出され、この洗浄
水によってセル7の内壁や検知極8、対極10の表面が直
接水ジェット洗浄され、これらの箇所に付着した汚れが
確実に除去される。また、上記洗浄水による洗浄によっ
てオゾン導入で生じたI2の余剰分が排出される。
Furthermore, in this apparatus, the apparatus is washed with washing water after the introduction of ozone. That is, the pump 6 and the valve
By the operation of 22, the cleaning water is introduced into the cleaning water introducing pipe 21 at a flow rate of about 3 l / min. Then, this wash water is divided into the first wash water flow pipe 23 and the second wash water flow pipe 24, and the wash water that has passed through the first wash water flow pipe 23 becomes a water jet state. Of the sample water flow pipe 5
Since the inner diameter of the water is about 3 mm, when a large flow of washing water is introduced into this flow pipe 5, it becomes a water jet state and splits in both directions.) The washing water in this water jet state causes the sample water introducing pipe 1 and the overflow tank. 3, the sample water flow pipe 5, the pump 6, the cell 7, the detection electrode 8, the counter electrode 10, etc. are washed with a water jet, and the fungi and algae killed by the action of ozone are also washed out and discharged. On the other hand, the wash water that has passed through the second wash water flow pipe 24 is also jetted into the cell 7 in a water jet state, and the inner wall of the cell 7 and the surfaces of the detection electrode 8 and the counter electrode 10 are directly jet-washed with this wash water. The stains attached to these places are surely removed. In addition, the excess of I 2 generated by the introduction of ozone is discharged by the cleaning with the cleaning water.

なお、オゾンの導入及び洗浄水による洗浄が終了した後
は、前記と同様に試料水中の残留塩素濃度の測定を行な
うものである。
After the introduction of ozone and the cleaning with cleaning water are completed, the residual chlorine concentration in the sample water is measured in the same manner as described above.

従って、本装置によれば、定期的に対極10にI2が供給さ
れるので、残留塩素が存在しない試料水に対極10が長時
間さらされた場合でも対極10がヨウ素電極として安定に
作用し、第2図dで示したようなゼロ点のドリフトが生
じることがないため、試料水中の残留塩素濃度、特にゼ
ロ点付近の低濃度の残留塩素を常時正確に測定すること
ができる。また、オゾンの殺菌作用によって配管系、電
極系に付着した菌類や藻類が死滅すると共に、洗浄水に
よる洗浄によってオゾンの作用で死滅した菌類、藻類等
やオゾンの作用で発生したI2の余剰分が洗い流されてた
排出されるため、装置を常時安定な状態に保持すること
ができる。それ故、本例の装置によれば、残留塩素濃度
が極めて低く、かつ菌類や藻類が多く含まれる下水の放
流水中中の残留塩素濃度を、長時間にわたって応答性良
く安定に、しかも殆ど保守を要することなく自動測定す
ることができるものである。
Therefore, according to this device, since I 2 is regularly supplied to the counter electrode 10, the counter electrode 10 stably acts as an iodine electrode even when the counter electrode 10 is exposed to the sample water in which residual chlorine does not exist for a long time. Since the zero point drift as shown in FIG. 2D does not occur, the residual chlorine concentration in the sample water, especially the low concentration residual chlorine near the zero point, can always be accurately measured. In addition, the bactericidal action of ozone kills the fungi and algae adhering to the pipe system and electrode system, and the fungi killed by the action of ozone by washing with wash water, the surplus of I 2 generated by the action of ozone, etc. Since the water is washed out and discharged, the device can be kept in a stable state at all times. Therefore, according to the device of this example, the residual chlorine concentration is extremely low, and the residual chlorine concentration in the discharged water of the sewage containing a lot of fungi and algae is responsive and stable over a long period of time, and almost no maintenance is required. It can be automatically measured without requiring.

なお、本考案装置の配管系は上記実施例に限られず、他
の適宜な流路に構成することができる。また、オゾンの
供給手段やその他の構成についても本考案の要旨を逸脱
しないで範囲で種々変更して差支えない。
The piping system of the device of the present invention is not limited to the above-mentioned embodiment, and other suitable flow paths can be formed. Also, the ozone supply means and other configurations may be variously modified without departing from the scope of the present invention.

〔考案の効果〕[Effect of device]

以上説明したように、本考案の残留塩素測定装置は、対
極にI2が定期的に供給され、従って試料中に残留塩素が
殆ど存在しない状態が長時間続いた場合でもゼロ点のド
リフトが起こることがなく、電極性能が安定に保持さ
れ、このため試料水中の残留塩素、特に低濃度の残留塩
素を常に正確に測定することができる。また、試料水中
に菌類や藻類が含まれている場合でもこれらが電極系に
付着して繁殖することを良好に防止することができ、装
置を常に安定な状態に保持することができる。従って、
本考案装置は、下水や海水の放流水のように残留塩素濃
度が来編めて低く、しかも菌類や藻類を含む試料水中の
残留塩素濃度を連続測定するのに特に好適に使用される
ものである。
As described above, in the residual chlorine measuring apparatus of the present invention, I 2 is regularly supplied to the counter electrode, so that the zero-point drift occurs even when the state in which the residual chlorine is almost absent in the sample continues for a long time. In this way, the electrode performance is stably maintained, and therefore residual chlorine in the sample water, especially low concentration residual chlorine, can always be accurately measured. Further, even when fungi or algae are contained in the sample water, it is possible to favorably prevent the fungi or algae from adhering to the electrode system and proliferating, and it is possible to keep the apparatus in a stable state at all times. Therefore,
The device of the present invention has a residual chlorine concentration that is inherently low like sewage or seawater discharge water, and is particularly suitably used for continuously measuring the residual chlorine concentration in sample water containing fungi and algae. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例に係る残留塩素測定装置を示
す概略図、第2図はゼロ点のドリフトを示すグラフであ
る。 5…試料水流通管、8…検知極 10…対極、15…試薬 18…オゾン発生器
FIG. 1 is a schematic diagram showing a residual chlorine measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a graph showing a zero point drift. 5 ... Sample water flow pipe, 8 ... Detection electrode 10 ... Counter electrode, 15 ... Reagent 18 ... Ozone generator

───────────────────────────────────────────────────── フロントページの続き (72)考案者 木村 克己 東京都新宿区上落合1丁目2番10号 落合 公舎204 (72)考案者 本山 行雄 東京都板橋区新河岸3丁目2番5号 新河 岸公舎B―202 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsumi Kimura 1-2-10 Kamiochiai, Shinjuku-ku, Tokyo Ochiai Public Building 204 (72) Yukio Motoyama 3-2-5 Shinkawagishi, Itabashi-ku, Tokyo Shin-Kagishi Public Building B-202

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】試料水に試薬としてヨウ化カリウムを加
え、このとき試料水中の残留塩素とヨウ素イオンとの反
応によって遊離するヨウ素を一定電圧が印加された検知
極と対極を用いて検出することにより試料水中の残留塩
素濃度を連続的に測定する残留塩素計と、この残留塩素
計の検知極及び対極の近傍のヨウ化カリウムが加えられ
た試料水に定期的にオゾンを供給するオゾン供給機構と
を具備することを特徴とする残留塩素測定装置。
1. A method of adding potassium iodide as a reagent to sample water and detecting iodine liberated by the reaction between residual chlorine and iodine ions in the sample water at this time using a detection electrode and a counter electrode to which a constant voltage is applied. A residual chlorine meter that continuously measures the residual chlorine concentration in the sample water with an ozone meter, and an ozone supply mechanism that periodically supplies ozone to the sample water containing potassium iodide near the detection and counter electrodes of the residual chlorine meter. An apparatus for measuring residual chlorine, comprising:
JP7412590U 1990-07-12 1990-07-12 Residual chlorine measuring device Expired - Lifetime JPH079084Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7412590U JPH079084Y2 (en) 1990-07-12 1990-07-12 Residual chlorine measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7412590U JPH079084Y2 (en) 1990-07-12 1990-07-12 Residual chlorine measuring device

Publications (2)

Publication Number Publication Date
JPH0469763U JPH0469763U (en) 1992-06-19
JPH079084Y2 true JPH079084Y2 (en) 1995-03-06

Family

ID=31806184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7412590U Expired - Lifetime JPH079084Y2 (en) 1990-07-12 1990-07-12 Residual chlorine measuring device

Country Status (1)

Country Link
JP (1) JPH079084Y2 (en)

Also Published As

Publication number Publication date
JPH0469763U (en) 1992-06-19

Similar Documents

Publication Publication Date Title
US9005416B2 (en) pH sensor
US7985377B2 (en) Apparatus for monitoring chlorine concentration in water
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
US20160061791A1 (en) Automatic Ammonium Analyzer
JP2017053746A (en) Residual chlorine measurement device and residual chlorine measurement method
US11215579B2 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
JPH079084Y2 (en) Residual chlorine measuring device
EP2844993A1 (en) Method and apparatus for measuring and controllng electrolytically-active species concentration in aqueous solutions
KR20190080568A (en) Apparatus for measuring residual chlorine
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
EP1739421A1 (en) Electrochemical analyser for the selective measurement of chlorites in water
US5693204A (en) Passive pH adjustment for analytical instruments
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JP2000009675A (en) Water quality detector
JP2585972Y2 (en) Residual chlorine meter with automatic calibration function
Hu Chronoamperometric determination of free chlorine by using a wax‐impregnated carbon electrode
JP7195910B2 (en) Free residual chlorine concentration calculation method, free residual chlorine concentration calculation system, and space cleaning system
JP2004271234A (en) Controlled potential electrolytic acidic gas detector
JP2017015669A (en) Residual chlorine measurement method and residual chlorine measurement device
JP4603782B2 (en) Residual chlorine measuring device
Dormond-herrera et al. Voltammetric Membrane Chlorine Dioxide Electrode
JP2000009676A (en) Water quality detector
US6617168B1 (en) Evaluation method and evaluation system of free hypohalous acid concentration