JPS6243856B2 - - Google Patents
Info
- Publication number
- JPS6243856B2 JPS6243856B2 JP55132259A JP13225980A JPS6243856B2 JP S6243856 B2 JPS6243856 B2 JP S6243856B2 JP 55132259 A JP55132259 A JP 55132259A JP 13225980 A JP13225980 A JP 13225980A JP S6243856 B2 JPS6243856 B2 JP S6243856B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- stretching
- heat treatment
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 17
- 230000009477 glass transition Effects 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920006267 polyester film Polymers 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 9
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000005487 naphthalate group Chemical group 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は逐次二軸延伸と多段熱処理とによるポ
リエステルフイルムの製造方法に関する。更に詳
細にはポリエチレンテレフタレート、ポリエチレ
ン2―6ナフタレート等の熱可塑性ポリエステル
からなる二軸延伸フイルムの幅方向の物性が均一
となる改良された製造方法に関する。ポリエステ
ル二軸延伸フイルムは種々の工業用途に供せられ
ているが、なかでも写真、製図、磁気デイスク等
の用途では縦横両方向の物性、殊に湿度膨張率、
温度膨張率、熱収縮率がバランスしていることが
望まれる。また製品フイルムのいかなる部分にお
いても均質であることが望まれる。
しかし、通常の逐次二軸延伸方法、すなわち縦
延伸に続づいてテンター法横延伸を施す方法にお
いて、製品フイルムの幅方向の物性を均一にする
ことは極めて困難であつた。この理由はテンター
内においてフイルムの両側端は把持されており、
横延伸に伴う縦方向の収縮応力はクリツプによつ
て拘束されているものの、フイルム中央部は比較
的拘束力が弱い。この結果として、上記収縮力に
よつて中央部が移動し、横延伸以前にフイルム面
上に描いた横方向の直線は、フイルム進行方向に
向つて凹形に曲るようになる。この現象をボーイ
ングと呼んでいるが、このボーイングがフイルム
の幅方向の物性差(不均一性:特に湿度膨張率、
温度膨張率の不均一性)を生ずる原因となつてい
る。フイルム中央部の縦横方向の諸物性をバラン
スさせた場合、フイルム側端部ではボーイング線
に対して更に縦方向に傾斜した配向主軸ができ、
この主軸方向の湿度膨張率、温度膨張率は小さく
なり、主軸と直角方向の各々の値は大きくなる。
このような幅方向の物性差を解消するためいく
つかの方法が提案されている。しかしいずれも満
足できるものではない。例えば特公昭37−1588号
では横延伸―縦延伸の方法を開示しているが本質
的な対策とはなつていない。特開昭50−73978号
では横延伸工程と熱処理工程の間にニツプロール
を用いる方法が提案されているが、フイルムに表
面傷が発生する傾向があので、表面傷がフイルム
用途を制約している。また特開昭51−80372号と
特開昭54−137076号とはボーイング減少技術に係
るものであるが、解決策としての同時二軸延伸は
汎用的ではなく、しかも逐次二軸延伸には適用で
きない。
本発明者等は鋭意研究の結果、ボーイングの発
生過程を解明し、このボーイングを抑制する手段
を見い出して本発明に到達した。
すなわち本発明は、縦方向に一軸延伸された熱
可塑性ポリエステルフイルムを該ポリエステルの
ガラス転移温度以上で横方向に延伸した後熱処理
するに際し、(a)横延伸直後のフイルム温度をガラ
ス転移温度以下に冷却し、次いで(b)第一の熱処理
区間の温度T1を200℃≧T1≧240℃とし、(c)第二
の熱処理区間の温度T2をT1≧T2>T3(但し、T3
は第三熱処理区間の温度)に保持しながら第二の
熱処理区間で1%〜20%トーアウト(テンターク
リツプレールの末広がり)し、(d)第三の熱処理区
間の温度T3を100℃≦T3≦200℃に保持すること
を特徴とするポリエステルフイルムの製造方法で
ある。
本発明に用いるポリエステルは、ポリエチレン
テレフタレート、ポリエチレン2―6ナフタレー
ト等を主成分とするが、数%以下の無機質を添加
したもの、30%末満の他成分重合体の混用したも
の又は他成分重合体による共重合体も含む。縦横
の延伸倍率.延伸倍率比については制約はない
が、縦方向と横方向との物性のバランスがとれる
範囲(縦横の延伸倍率比が1に近い範囲)が好ま
しく選び得る。熱処理区間については上記の3区
間について各条件が特定されねばならない。4区
間以上の熱処理区間を有するテンターであつて
も、本発明の順序に従つて熱処理温度と幅方向の
再伸長が施される限り、本発明の範囲を逸脱する
ものではない。すなわち横延伸後一旦使用樹脂の
ガラス転移温度以下に雰囲気温度を下げた区間を
好ましくは0.2秒以上かかつて通過する工程と、
その後200℃以上に保つた雰囲気中を好ましくは
0.2秒以上かかつて通過する工程と、その後1%
〜20%の範囲で再び横方向に伸長する工程と、そ
の後の温度をそれまでの最高温度を越えないよう
にする工程を含むこと等が肝要であり、それらの
工程の間に、別に規制した条件を挿入しても前記
幅方向物性差を減ずる効果(均質化効果)を損わ
ない限り、本発明の範囲に含まれる。本発明の工
程の後に更にトーイン(テンターレール幅の先を
狭くすること;弛緩処理)あるいはクリツプから
離した後縦方向にフイルムを弛緩処理することが
必要に応じて可能である。
本発明にいう横延伸後のガラス転移温度以下へ
の冷却は横延伸段階におけるボーイングを防止す
る。横延伸において生ずる縦方向の収縮応力によ
つて発生するボーイングを阻止するためには延伸
後のフイルム温度を低くし、移動度、変形性を小
さくしておくのが効果的である。次にクリツプで
フイルムを把持したまま熱処理するとき凍結され
ていた縦方向の収縮応力の作用でボーイングが発
生し易すいが、本発明の如く、トーアウト区間の
前段階の温度を高くすることによつてその部分の
フイルムが移動しやすく、トーアウトで付加され
る縦方向の収縮応力によつてボーイングは逆に小
さくなる方向に作用する。このトーアウト処理に
より横方向の熱収縮率は幾分大きくなる傾向を有
するが、必要に応じて後のその熱処理区間でトー
イン(再伸長)を加える等の手段を講ずることが
できる。
次に実施例によつて更に説明する。
実施例 1
ポリエチレンテレフタレートを溶融押出し急冷
ドラム上にフイルム状に成形した後、周速度の異
なるロール群によつて縦方向に3.6倍延伸し、90
℃の温度で横方向に3.5倍延伸して二軸延伸フイ
ルムとし、まず冷風を吹きつけて横延伸直後のフ
イルム表面温度を一旦48℃とし、次に230℃
(T1)の雰囲気下で熱処理し、更に218℃(T2)の
雰囲気中に導き10%横方向に再延伸処理したのち
100℃(T3)の雰囲気中で熱処理してのちクリツ
プからはずして75μの二軸延伸フイルムを得た。
なお熱処理前の二軸延伸フイルムは厚さが81μで
あつた。
比較例 1
実施例1において第二段熱処理区間(T2=218
℃)で再伸張処理(トーアウト)を施さず横延伸
倍率を3.8倍として延伸したのち、温度条件は実
施例1と同様にして75μの二軸延伸フイルムを得
た。
比較例 2
実施例1において横延伸後の冷却を実施せず、
フイルム温度は実測値135℃とした以外はすべて
実施例1と同様の条件で75μの二軸延伸フイルム
を得た。
比較例 3
実施例1において、T1=110℃、T2=230℃及
びT3=100℃とした以外はすべて実施例1と同じ
条件で75μの二軸延伸フイルムを得た。
これらの物性を比較すると下表の通りであつ
た。
The present invention relates to a method for producing a polyester film by sequential biaxial stretching and multistage heat treatment. More specifically, the present invention relates to an improved method for producing a biaxially stretched film made of a thermoplastic polyester such as polyethylene terephthalate or polyethylene 2-6 naphthalate, with uniform physical properties in the width direction. Polyester biaxially stretched films are used for a variety of industrial purposes, and among them, for use in photography, drafting, magnetic disks, etc., physical properties in both the vertical and horizontal directions, especially humidity expansion coefficient,
It is desirable that the coefficient of thermal expansion and the coefficient of thermal contraction are balanced. Further, it is desired that the product film be uniform in all parts. However, it has been extremely difficult to make the physical properties of the product film uniform in the width direction using the usual sequential biaxial stretching method, that is, longitudinal stretching followed by tenter transverse stretching. The reason for this is that both ends of the film are gripped inside the tenter,
Although the shrinkage stress in the longitudinal direction due to horizontal stretching is restrained by the clip, the restraining force is relatively weak at the center of the film. As a result, the center portion moves due to the shrinkage force, and the horizontal straight line drawn on the film surface before the horizontal stretching becomes concavely curved in the film traveling direction. This phenomenon is called bowing, and this bowing is caused by differences in the physical properties of the film in the width direction (heterogeneity: especially humidity expansion coefficient,
This is the cause of non-uniformity in thermal expansion coefficient. When the physical properties in the longitudinal and lateral directions at the center of the film are balanced, the main axis of orientation is formed at the edge of the film, which is further inclined in the longitudinal direction with respect to the bowing line.
The humidity expansion coefficient and temperature expansion coefficient in the direction of the main axis become smaller, and the values in the directions perpendicular to the main axis become larger. Several methods have been proposed to eliminate such differences in physical properties in the width direction. However, none of them are satisfactory. For example, Japanese Patent Publication No. 37-1588 discloses a method of transverse stretching and longitudinal stretching, but this is not an essential countermeasure. JP-A No. 50-73978 proposes a method of using nip roll between the transverse stretching process and the heat treatment process, but this tends to cause surface scratches on the film, and the surface scratches limit the film's use. . Furthermore, JP-A No. 51-80372 and JP-A No. 54-137076 are related to bowing reduction technology, but simultaneous biaxial stretching as a solution is not universally applicable, and moreover, it is not applicable to sequential biaxial stretching. Can not. As a result of intensive research, the inventors of the present invention elucidated the process by which bowing occurs, found a means to suppress this bowing, and arrived at the present invention. That is, the present invention provides a method for heat-treating a thermoplastic polyester film that has been uniaxially stretched in the longitudinal direction after stretching it in the transverse direction at a temperature higher than the glass transition temperature of the polyester. Then, (b) the temperature T 1 of the first heat treatment section is set to 200℃≧T 1 ≧240℃, and (c) the temperature T 2 of the second heat treatment section is set such that T 1 ≧T 2 >T 3 (however, , T 3
(d) toe out 1% to 20% (the end of the tenter crimp rail widens) in the second heat treatment zone while maintaining the temperature T3 in the third heat treatment zone to 100℃≦T. 3. A method for producing a polyester film characterized by maintaining the temperature at ≦200°C. The polyester used in the present invention has polyethylene terephthalate, polyethylene 2-6 naphthalate, etc. as its main component, but it also contains a few percent or less of an inorganic material, a mixture of less than 30% of other polymers, or a polymer with other components. It also includes copolymers formed by coalescence. Stretching ratio in length and width. Although there are no restrictions on the stretching ratio, a range in which the physical properties in the longitudinal and lateral directions can be balanced (a range in which the longitudinal and lateral stretching ratio is close to 1) can be preferably selected. Regarding the heat treatment section, each condition must be specified for the above three sections. Even if the tenter has four or more heat treatment sections, it does not depart from the scope of the present invention as long as the heat treatment temperature and the re-stretching in the width direction are performed in accordance with the order of the present invention. That is, after lateral stretching, the film passes through a section where the ambient temperature is lowered to below the glass transition temperature of the resin used, preferably for at least 0.2 seconds;
After that, preferably in an atmosphere kept at 200℃ or higher.
Processes that pass for more than 0.2 seconds and then 1%
It is important to include the step of horizontally stretching again in the range of ~20% and the step of keeping the subsequent temperature from exceeding the maximum temperature up to that point, and between these steps, separately regulated Even if the conditions are inserted, they are included in the scope of the present invention as long as they do not impair the effect of reducing the difference in physical properties in the width direction (homogenization effect). After the process of the present invention, it is possible, if necessary, to further toe-in (narrowing the tip of the tenter rail width; loosening treatment) or to loosen the film in the longitudinal direction after it is released from the clip. Cooling to below the glass transition temperature after lateral stretching according to the present invention prevents bowing in the lateral stretching stage. In order to prevent bowing caused by shrinkage stress in the longitudinal direction during lateral stretching, it is effective to lower the temperature of the film after stretching and to keep its mobility and deformability low. Next, when the film is heat-treated while being held in the clip, bowing is likely to occur due to the action of the frozen longitudinal shrinkage stress. As a result, the film in that area is likely to move, and the longitudinal shrinkage stress applied during toe-out causes the bowing to become smaller. This toe-out treatment tends to increase the lateral heat shrinkage rate somewhat, but if necessary, measures such as adding toe-in (re-stretching) in the subsequent heat treatment section can be taken. Next, the invention will be further explained with reference to examples. Example 1 Polyethylene terephthalate was melt-extruded and formed into a film on a quenching drum, and then stretched 3.6 times in the longitudinal direction by a group of rolls with different circumferential speeds.
A biaxially stretched film is made by stretching the film 3.5 times in the transverse direction at a temperature of 3.5°C, and first blows cold air to bring the surface temperature of the film immediately after the horizontal stretching to 48°C, then to 230°C.
After heat treatment in an atmosphere of (T 1 ) and further stretching in the transverse direction by 10% in an atmosphere of 218℃ (T 2 ),
After heat treatment in an atmosphere of 100°C (T 3 ), the film was removed from the clip to obtain a 75μ biaxially stretched film.
The thickness of the biaxially stretched film before heat treatment was 81μ. Comparative Example 1 In Example 1, the second stage heat treatment section (T 2 = 218
After stretching at a transverse stretching ratio of 3.8 times without re-stretching (toe-out) at 100° C.), a 75 μm biaxially stretched film was obtained under the same temperature conditions as in Example 1. Comparative Example 2 In Example 1, cooling after lateral stretching was not performed,
A biaxially stretched film of 75μ was obtained under the same conditions as in Example 1, except that the film temperature was the measured value of 135°C. Comparative Example 3 A biaxially stretched film of 75 μm was obtained under the same conditions as in Example 1 except that T 1 =110°C, T 2 =230°C, and T 3 =100°C. A comparison of these physical properties is shown in the table below.
【表】
この結果から本発明の方法は著しい効果を示す
ことが明かとなつた。[Table] From the results, it became clear that the method of the present invention showed remarkable effects.
Claims (1)
ルフイルムを該ポリエステルのガラス転移温度以
上で横方向に延伸した後熱処理するに際し、まず
横延伸直後のフイルムをガラス転移温度以下に冷
却し、次に第一熱処理区間で200〜240℃の温度範
囲内の温度T1で該フイルムを熱処理し、更に第
二熱処理区間で該フイルムを1〜20%横方向に伸
長させながらT1≧T2>T3を満足する温度T2にお
いて熱処理し、しかる後第三熱処理区間で該フイ
ルムを100℃以上200℃未満の温度T3に保持する
ことを特徴とするポリエステルフイルムの製造方
法。1. When a thermoplastic polyester film that has been uniaxially stretched in the longitudinal direction is stretched in the transverse direction at a temperature higher than the glass transition temperature of the polyester and then heat-treated, the film immediately after the transverse stretching is first cooled to a temperature lower than the glass transition temperature, and then the first film is In the heat treatment section, the film is heat treated at a temperature T 1 within the temperature range of 200 to 240°C, and in the second heat treatment section, the film is stretched by 1 to 20% in the lateral direction while T 1 ≧T 2 > T 3 . 1. A method for producing a polyester film, which comprises heat-treating the film at a satisfactory temperature T 2 and then maintaining the film at a temperature T 3 of 100° C. or more and less than 200° C. in a third heat treatment section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13225980A JPS5757629A (en) | 1980-09-25 | 1980-09-25 | Manufacture of polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13225980A JPS5757629A (en) | 1980-09-25 | 1980-09-25 | Manufacture of polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5757629A JPS5757629A (en) | 1982-04-06 |
JPS6243856B2 true JPS6243856B2 (en) | 1987-09-17 |
Family
ID=15077086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13225980A Granted JPS5757629A (en) | 1980-09-25 | 1980-09-25 | Manufacture of polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5757629A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172694A (en) * | 2000-12-05 | 2002-06-18 | Toray Ind Inc | Biaxially oriented polyester film and manufacturing method therefor |
JP2002361737A (en) * | 2001-06-12 | 2002-12-18 | Toray Ind Inc | Polyester film and method for producing the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59139131A (en) * | 1983-01-12 | 1984-08-09 | Diafoil Co Ltd | Polyester film for magnetic disk |
JP2600406B2 (en) * | 1989-12-22 | 1997-04-16 | 東洋紡績株式会社 | Polyamide resin film and method for producing the same |
JPH0637079B2 (en) * | 1989-10-16 | 1994-05-18 | 東洋紡績株式会社 | Method for producing thermoplastic resin film |
JP2841755B2 (en) * | 1990-06-29 | 1998-12-24 | 東洋紡績株式会社 | Polyamide film and method for producing the same |
EP0960718A4 (en) | 1997-12-11 | 2002-01-09 | Teijin Ltd | Biaxially oriented polyester film |
JP5021453B2 (en) * | 2007-12-28 | 2012-09-05 | 三菱樹脂株式会社 | Method for producing uniaxially oriented polyester film |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5141068A (en) * | 1974-08-05 | 1976-04-06 | Du Pont | HORIESUTERUFUIRUMUNO KAIRYONETSUKOTEIHO |
JPS5529809A (en) * | 1978-08-23 | 1980-03-03 | Hitachi Ltd | Liquid crystal display device |
-
1980
- 1980-09-25 JP JP13225980A patent/JPS5757629A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5141068A (en) * | 1974-08-05 | 1976-04-06 | Du Pont | HORIESUTERUFUIRUMUNO KAIRYONETSUKOTEIHO |
JPS5529809A (en) * | 1978-08-23 | 1980-03-03 | Hitachi Ltd | Liquid crystal display device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172694A (en) * | 2000-12-05 | 2002-06-18 | Toray Ind Inc | Biaxially oriented polyester film and manufacturing method therefor |
JP4710125B2 (en) * | 2000-12-05 | 2011-06-29 | 東レ株式会社 | Biaxially oriented polyester film and method for producing the same |
JP2002361737A (en) * | 2001-06-12 | 2002-12-18 | Toray Ind Inc | Polyester film and method for producing the same |
JP4724955B2 (en) * | 2001-06-12 | 2011-07-13 | 東レ株式会社 | Method for producing polyester film and polyester film |
Also Published As
Publication number | Publication date |
---|---|
JPS5757629A (en) | 1982-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07106597B2 (en) | Method for manufacturing high modulus film | |
JPS6243856B2 (en) | ||
JPH0125695B2 (en) | ||
JPS631174B2 (en) | ||
JPS5936851B2 (en) | Manufacturing method of polyester film | |
JPS6243857B2 (en) | ||
JPH0552253B2 (en) | ||
JP3852671B2 (en) | Method for producing biaxially stretched polyester film | |
JPH0125694B2 (en) | ||
JPH0117857B2 (en) | ||
JP3569989B2 (en) | Method for producing biaxially oriented polyamide film | |
JP3020723B2 (en) | Method for producing biaxially stretched polyester film | |
JPH0125696B2 (en) | ||
JPH1016047A (en) | Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture | |
JP3367129B2 (en) | Method for producing polyester film | |
JPS60187530A (en) | Preparation of heat resistant polyether ketone film or sheet | |
JPH0542592A (en) | Manufacture of polyvinylidene fluoride resin oriented film | |
JP2001328159A (en) | Method for producing biaxially oriented film | |
JPH01188322A (en) | Stretching molding method of polyester film | |
JPH0773877B2 (en) | Method for producing biaxially oriented polyester film | |
JPH03193328A (en) | Thermoplastic resin stretched film and its manufacture | |
KR100235565B1 (en) | Method for producing sequentially biaxially oriented plastic film | |
JPH09216279A (en) | Manufacture of biaxially oriented polyamide film | |
KR19990049686A (en) | Manufacturing method of biaxially oriented polyester film | |
JP2002120282A (en) | Method for producing biaxially oriented saponified ethylene-vinyl acetate copolymer film |