JPH03193328A - Thermoplastic resin stretched film and its manufacture - Google Patents

Thermoplastic resin stretched film and its manufacture

Info

Publication number
JPH03193328A
JPH03193328A JP1333777A JP33377789A JPH03193328A JP H03193328 A JPH03193328 A JP H03193328A JP 1333777 A JP1333777 A JP 1333777A JP 33377789 A JP33377789 A JP 33377789A JP H03193328 A JPH03193328 A JP H03193328A
Authority
JP
Japan
Prior art keywords
film
temperature
glass transition
less
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1333777A
Other languages
Japanese (ja)
Other versions
JP2600406B2 (en
Inventor
Toshiro Yamada
山田 敏郎
Chisato Nonomura
千里 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1333777A priority Critical patent/JP2600406B2/en
Priority to KR1019900012576A priority patent/KR960013068B1/en
Priority to DE1990633968 priority patent/DE69033968T2/en
Priority to EP19960119253 priority patent/EP0764678B1/en
Priority to DE1990632307 priority patent/DE69032307T2/en
Priority to EP19900119558 priority patent/EP0423630B1/en
Publication of JPH03193328A publication Critical patent/JPH03193328A/en
Priority to US08/135,852 priority patent/US5411695A/en
Priority to US08/376,250 priority patent/US5574119A/en
Application granted granted Critical
Publication of JP2600406B2 publication Critical patent/JP2600406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the above film so that the film possesses uniform physical properties but bowing is little, by a method wherein heat shrinkable stress of a widthwise direction and a heat shrinkable factor of a widthwise direction of a thermoplastic resin stretched film which is oriented at least unidirectionally are specified. CONSTITUTION:A ratio sigma2/sigma1 of heat shrinkable stress sigma1 of a lateral (widthwise) direction of a film at a temperature higher by 70 deg.C than the glass transition temperature of the thermoplastic resin stretched film oriented at least in a lateral direction to heat shrinkable stress sigma2 of a lateral (widthwise) direction of the film at a temperature lower by 80 deg.C than the melting point should be 1.0 or less, preferably 0.9 or less. Then a heat shrinkable factor of a widthwise direction of the film is made into 5% or less at a temperature higher by 40 deg.C than the glass transition temperature. In addition, since the bigger a value of a ratio L/W of a length L of a cooling process for cooling of the film at the glass transition temperature or less between a lateral stretching and thermal fixation treatment to a film width W becomes, the more a reduction effect of a bowing phenomenon is improved, the ratio L/W is selected so as to become at least 1.0, preferably at least 2.0.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は幅方向に均一な物理的、化学的性質を有する低
ボーイングの熱可塑性樹脂延伸フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stretched thermoplastic resin film with low bowing and having uniform physical and chemical properties in the width direction.

(従来の技術) 熱可塑性樹脂延伸フィルムは、包装及び工業用途、その
他の用途に供せられており、フィルムのどの部分でも同
じ物性値であることが望ましい。
(Prior Art) Thermoplastic resin stretched films are used for packaging, industrial use, and other uses, and it is desirable that all parts of the film have the same physical property values.

しかるに、通常の横延伸方法において、フィルムの中央
部分とフィルムの側端部分とでは、分子配向状態が同一
でない。この理由は、テンター内においてフィルムの両
端はクリップに把持されていて、延伸工程によって生じ
る縦方向(フィルムの進行方向)の延伸応力や、熱固定
り程によって発生する収縮応力は、把持手段であるクリ
ップによって拘束されているのに対し、フィルムの中央
部は把持手段の影響が低く拘束力が弱くなり、上記の応
力の影響によってクリップで把持されている端部に対し
てフィルムの中央部分では遅れが生じることが分かって
いる。そして、横・延伸と熱固定とを連続に同一・のテ
ンターで行う場合において、テンターに入る前のフィル
ムの而−1=に幅方向に沿って(フィルムの進行方向と
直角に)直線を描いておくと、この直線はテンター内で
変形してフィルムの進行方向に対して延伸工程の始めの
領域で凸型に変形し、延伸工程の終わり直前の領域で直
線に戻り、延伸工程終了後には凹型に変形する。
However, in a normal transverse stretching method, the molecular orientation state is not the same between the center portion of the film and the side end portions of the film. The reason for this is that both ends of the film are gripped by clips in the tenter, and the stretching stress in the longitudinal direction (direction of travel of the film) generated by the stretching process and the shrinkage stress generated by the heat setting process are absorbed by the gripping means. While the film is restrained by the clips, the gripping means has less influence on the center of the film and the restraining force is weaker, and due to the above-mentioned stress, there is a delay in the center of the film compared to the ends gripped by the clips. is known to occur. When transverse stretching and heat setting are performed continuously in the same tenter, a straight line is drawn along the width direction (perpendicular to the direction of film travel) on the film before it enters the tenter. This straight line deforms inside the tenter and becomes convex at the beginning of the stretching process with respect to the film's traveling direction, returns to a straight line just before the end of the stretching process, and after the stretching process ends, it becomes convex. Deforms into a concave shape.

更に熱固定工程の領域の途中で凹型の変形は最大となり
、そのまま曲線はほとんど変化しないでその後のテンタ
ーを通過し、テンターを出たフィルムには凹型の変形が
残る。
Furthermore, the concave deformation reaches its maximum in the middle of the heat-setting region, and the curve passes through the subsequent tenter with almost no change, leaving the concave deformation in the film that exits the tenter.

この現象がボーイング現象と称されているものであるが
、ボーイング現象がフィルムの幅方向の物性値を不均一
にする原因となっている。
This phenomenon is called the bowing phenomenon, and the bowing phenomenon causes the physical property values of the film to become non-uniform in the width direction.

ボーイング現象によってフィルムの幅方向で配向主軸の
角度が異なる傾向が生じてくる。この結果、例えば縦方
向の熱収縮率、熱膨張率、湿膨潤張率、屈折率等の物性
値がフィルムの幅方向で異なってくる。
Due to the bowing phenomenon, the angle of the main axis of orientation tends to vary in the width direction of the film. As a result, physical property values such as longitudinal thermal contraction coefficient, thermal expansion coefficient, wet swelling coefficient, and refractive index differ in the width direction of the film.

このボーイング現象によって、包装用途の一例として、
印刷ラミネート加二■−1製袋工程等において印刷ピッ
チずれ、斑の発生、カーリング、蛇行などのトラブルの
原因になっている。又、工業用途の1例として、フロッ
ピーディスク等のベースフィルムでは面内異方性のため
磁気記録特性の低ドなどのトラブルの原因になっている
Due to this bowing phenomenon, as an example of packaging applications,
Printed laminate KA2-1 This causes problems such as printing pitch deviation, unevenness, curling, meandering, etc. in the bag making process. Furthermore, as an example of industrial use, base films for floppy disks and the like cause problems such as poor magnetic recording characteristics due to in-plane anisotropy.

更に詳しく述べると、横延伸工程と熱固定工程との間に
冷却工程を設ける従来技術としては、特公昭35−11
774号公報には横延伸工程と熱固定工程との間に20
〜150℃の緩和工程を介在させ、実質冷却工程を設け
た製造法が提案されている。しかし、この冷却工程の長
さについては全く記載されていないばかりか、ボーイン
グ現象の減少の効果も全く不明である。更に、ボーイン
グ現象を減少ないし解消する技術として、特開昭50−
73978号公報には横延伸工程と熱固定工程との間に
ニップロール群を設置するフィルムの製造法が提案され
ている。しかし、この技術ではニップロールを設置する
中間帯の温度がガラス転移温度以上で、ニップ点でのフ
ィルムの剛性が低いため改善策としては効果が少ない。
To explain in more detail, as a conventional technique in which a cooling process is provided between the transverse stretching process and the heat setting process, there is a
Publication No. 774 states that 20% of
A manufacturing method has been proposed in which a relaxation step at ~150° C. is interposed and a substantial cooling step is provided. However, the length of this cooling process is not described at all, and the effect of reducing the bowing phenomenon is also completely unknown. Furthermore, as a technology to reduce or eliminate the bowing phenomenon,
Japanese Patent No. 73978 proposes a film manufacturing method in which a group of nip rolls is installed between the transverse stretching process and the heat setting process. However, with this technique, the temperature of the intermediate zone where the nip rolls are installed is higher than the glass transition temperature, and the rigidity of the film at the nip point is low, so it is not very effective as an improvement measure.

又、特公昭63−24459号公報には横延伸終了後の
フィルムを両端部を把持しながら中央部付近の狭い範囲
のみをニップロールによって強制的な前進をもたらす工
程が提案されている。しかし、この技術ではニップロー
ルをテンター内の高温領域に設置する必要があり、ロー
ル及びその周辺装置を冷却する必要があり、またフィル
ムが高温であるためフィルム表面にロールによる傷が発
生する恐れがあり、実用面で制約される。又、特公昭6
2−43858号公報には横延伸直後のフィルムをガラ
ス転移点温度以下に冷却した後、多段に熱固定を行い、
熱固定と同時に横方向に伸張する技術が提案されている
Further, Japanese Patent Publication No. 63-24459 proposes a process in which a film after lateral stretching is held at both ends and forcibly moved forward only in a narrow area near the center using nip rolls. However, with this technology, it is necessary to install the nip roll in a high-temperature area within the tenter, and the roll and its peripheral equipment must be cooled. Also, since the film is at a high temperature, there is a risk of scratches caused by the roll on the film surface. , there are practical constraints. Also, special public service in Showa 6
No. 2-43858 discloses that after cooling the film immediately after transverse stretching to below the glass transition temperature, heat setting is performed in multiple stages.
Techniques have been proposed that involve heat fixation and simultaneous lateral stretching.

しかし、この技術では冷却工程でのボーイング減少が少
ないためか、又は熱固定工程でボーイングが再発生しや
すいためか、冷却]二程に加えて多段に熱固定する工程
と再延伸との複雑な工程となっている。そのためテンタ
ー内の雰囲気温度やフィルム温度を長時間に渡り安定し
て制御することが困難ではないかと懸念される。又、本
提案も特公昭35−11774号公報と同様に冷却工程
の長さなどは記載されていない。
However, with this technology, the bowing reduction in the cooling process is small, or the bowing is likely to occur again in the heat setting process. It is a process. Therefore, there is a concern that it may be difficult to stably control the ambient temperature and film temperature within the tenter over a long period of time. Further, like Japanese Patent Publication No. 35-11774, this proposal also does not describe the length of the cooling process.

又、特開平1−165423号公報には横延伸後のフィ
ルムを横延伸温度以下に冷却した後、多段に昇温させな
がら横方向に再度伸張する技術が提案されている。しか
し、この技術では特公昭82−43856号公報の場合
と同様に冷却工程でのボーイング減少が少ないためか、
又は熱固定工程でボーイングが再発生しやすいためか、
冷却工程に加えて多段に熱固定する工程と再延伸との複
雑な工程となってるい。そのためテンター内の雰囲気温
度やフィルム温度を長時間の渡り安定して制御すること
が困難ではないかと懸念される。
Furthermore, Japanese Patent Application Laid-Open No. 1-165423 proposes a technique in which a film after being laterally stretched is cooled to a temperature below the laterally stretching temperature, and then stretched again in the laterally direction while increasing the temperature in multiple stages. However, with this technology, as in the case of Japanese Patent Publication No. 82-43856, the reduction in bowing during the cooling process is small.
Or maybe it is because bowing tends to occur again during the heat setting process.
It is a complex process that includes a cooling process, multi-stage heat setting process, and re-stretching. Therefore, there is a concern that it may be difficult to stably control the ambient temperature and film temperature within the tenter over a long period of time.

なお、本提案では冷却「程の長さがフィルム幅の2分の
1以上が好ましいとの記載があるが、この根拠が定かで
はなく、この程度の冷却工程の長さや温度ではボーイン
グ減少の効果が少ないことが危惧されL記のような複雑
な工程を採用せざるを得なかったものと推測される。又
、特公平1−25694号公報、特公平1−25698
号公報にはフィルムの走行方向を逆転させて横延伸、熱
固定をする技術が提案されている。しかし、この技術で
はフィルムの走行方向を逆転させるのにフィルムを一旦
巻き取る必要があり、オフラインでの製造方法であるた
め生産性の而で制約を受けるなどの問題点がある、この
様にボーイング現象を低減させる試みはこれまで行われ
てきているが、これらは全て製造方法や装置に関するも
ので、フィルムの特性に注目した発明はこれまで行われ
ていない。例えば、特開昭58−215318号公報や
特開昭6l−832E3号公報に見られるように、ボー
イングの大きさとは関係なくフィルム幅の中央部での配
向主軸のずれはほとんど無く、ボーイングの程度を知る
にはフィルム全幅の試料が7殼であり、フィルムの任意
の場所での試料によりボーイングの大小を判別すること
は不可能であった。
Furthermore, although this proposal states that it is preferable for the length of the cooling process to be at least one-half of the film width, the basis for this is not clear, and the cooling process length and temperature at this level do not have the effect of reducing bowing. It is presumed that the company had to adopt a complicated process such as that described in L because of concerns that the amount of water would be low.
The publication proposes a technique for transverse stretching and heat setting by reversing the running direction of the film. However, with this technology, it is necessary to wind the film once to reverse the running direction of the film, and since it is an offline manufacturing method, there are problems such as productivity limitations. Attempts have been made to reduce this phenomenon, but these have all concerned manufacturing methods and equipment, and no inventions have focused on the properties of the film. For example, as seen in JP-A-58-215318 and JP-A-61-832E3, there is almost no deviation of the orientation principal axis at the center of the film width, regardless of the size of the bowing, and the extent of the bowing is In order to know this, seven samples of the entire width of the film were required, and it was impossible to determine the size of the bowing from a sample at any location on the film.

(発明が解決しようとする課題) 本発明は、工業的に多量に製造されている熱可塑性を原
料としたフィルムであって、幅方向に物性差の少ない熱
可塑性樹脂延伸フィルムと、その1−業的に有利な製造
方法を提供することにある。
(Problems to be Solved by the Invention) The present invention relates to a stretched thermoplastic resin film that is industrially produced in large quantities and is made from thermoplastic as a raw material, and which has little difference in physical properties in the width direction. The objective is to provide an industrially advantageous manufacturing method.

(課題を解決するための手段) かかる問題点に対し、本発明者らは研究に研究゛を重ね
た結果、少な(とも一方向に配向させた熱可塑性樹脂延
伸フィルムにおいて、融点より80℃低い温度での幅方
向の熱収縮応力(σ2)がガラス転移温度より70℃高
い温度での幅方向の熱収縮応力(σ、)の100%以下
であり、ガラス転移温度より40℃高い温度での幅方向
の熱収縮率が5%以下であるフィルムがボーイングの少
ない均一な物性を有していることを見いだし本発明に至
った。
(Means for Solving the Problems) In order to solve this problem, the present inventors have repeatedly conducted research and have found that a thermoplastic resin stretched film oriented in one direction has a The heat shrinkage stress (σ2) in the width direction at temperature is 100% or less of the heat shrinkage stress (σ, ) in the width direction at a temperature 70°C higher than the glass transition temperature, and the stress at a temperature 40°C higher than the glass transition temperature The inventors have discovered that a film with a heat shrinkage rate of 5% or less in the width direction has uniform physical properties with less bowing, leading to the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に適用される熱可塑性樹脂としては、ポリエチレ
ンテレフタレート、ポリエチレン2,6−ナフタレート
、ポリエチレンイソフタレート、ポリエチレンテレフタ
レートなどのポリエステル樹脂、ナイロン−6、ナイロ
ン6.6などのポリアミド系樹脂、ポリプロピレン、ポ
リエチレンなどのポリオレフィン系樹脂、ポリフェニレ
ンサルファイド、ポリエーテルスルフォン、ポリスルフ
ォン、ポリエーテルエーテルケトン、ポリエーテルケト
ンケトン、ポリエチレントリメリテッドイミド、その他
多くの単体、共重合体、混合体、複合体等が挙げられる
Thermoplastic resins applicable to the present invention include polyester resins such as polyethylene terephthalate, polyethylene 2,6-naphthalate, polyethylene isophthalate, and polyethylene terephthalate, polyamide resins such as nylon-6 and nylon 6.6, polypropylene, and polyethylene. Examples include polyolefin resins such as polyphenylene sulfide, polyethersulfone, polysulfone, polyetheretherketone, polyetherketoneketone, polyethylene trimellited imide, and many other simple substances, copolymers, mixtures, and composites. .

本発明の少なくとも横方向に配向した熱可塑性樹脂延伸
フィルムとは、少なくとも横方向に2.5倍以上の延伸
倍率で延伸し、フィルムに分子配向を与えたフィルムを
いう。具体的には、長手方向にあらかじめ配向させた縦
延伸フィルムを横方向に延伸した二輪配向フィルムでも
良いし、実質的に無配向なフィルムを横方向に配向させ
た横−・軸延伸フィルムでも良いし、更にこの横−軸延
伸フイルムを縦方向に延伸した二輪配向フィルムでも良
い。尚、配向フィルムは、少なくとも横方向に延伸した
後、延伸温度以上から該熱可塑性樹脂の融点より20℃
低い温度との間の温度で熱処理を施してあっても良い。
The thermoplastic resin stretched film oriented at least in the transverse direction of the present invention refers to a film that is stretched at least in the transverse direction at a stretching ratio of 2.5 times or more to impart molecular orientation to the film. Specifically, it may be a two-wheel oriented film in which a longitudinally stretched film that has been oriented in the longitudinal direction in advance is stretched in the transverse direction, or it may be a transversely or axially stretched film in which a substantially non-oriented film is oriented in the transverse direction. However, a two-wheel oriented film obtained by further stretching this transversely-axially stretched film in the longitudinal direction may also be used. In addition, after stretching the oriented film at least in the transverse direction, the temperature is 20° C. above the stretching temperature and above the melting point of the thermoplastic resin.
Heat treatment may be performed at a temperature between a low temperature and a low temperature.

本発明の熱収縮応力(σ1.σ2)は真空理工株式%式
%) を用いて測定された値であり、フィルムの幅方向の熱収
縮率(H8TD)はフィルムのガラス転移点温度より4
0℃高い温度で30分間保持した時のフィルムの幅方向
の収縮率の値である。
The heat shrinkage stress (σ1.σ2) of the present invention is a value measured using the Vacuum Riko Co., Ltd. formula (%), and the heat shrinkage rate (H8TD) in the width direction of the film is 4
This is the value of the shrinkage rate in the width direction of the film when held at a temperature 0° C. higher for 30 minutes.

又、理由は定かではないが、ガラス転移点温度より70
℃高い温度でのフィルムの横(幅)方向の熱収縮応力σ
1に対する融点より80℃低い温度でのフィルムの横(
幅)方向の熱収縮応力σ2の比σ2/σ1が1.0以下
好ましくは0.9以下のフィルムは、ボーイング歪は少
なく幅方向に均一な物性を有するが、1.0より高くな
るとボ−イング歪が大きくなるので、このσ2/σ、の
値は少な(とも1.0以下でなければならない。
Also, although the reason is not clear, it is 70% lower than the glass transition temperature.
Thermal shrinkage stress σ in the transverse (width) direction of the film at high temperatures in °C
Lateral of the film at a temperature 80 °C below the melting point for 1 (
A film in which the ratio σ2/σ1 of the thermal shrinkage stress σ2 in the width direction is 1.0 or less, preferably 0.9 or less, has low bowing distortion and uniform physical properties in the width direction; Since the ing distortion increases, the value of σ2/σ must be small (both must be 1.0 or less).

本発明方法による時は、熱可塑性樹脂フィルムを横延伸
、熱固定処理する際に、熱固定前のフィルムを一旦ガラ
ス転移温度以下に冷却し横延伸工程よって発生するボー
イング現象を減少させようとするものであり、この冷却
温度は低い程ボーイング現象の減少の効果が向−トする
When using the method of the present invention, when transversely stretching and heat-setting a thermoplastic resin film, the film before heat-setting is once cooled to below the glass transition temperature in order to reduce the bowing phenomenon that occurs during the transverse stretching process. The lower the cooling temperature, the more effective the reduction of the bowing phenomenon will be.

又、冷却工程の長さしとフィルム幅Wとの比L/Wの値
が大きい程ボーイング現象の減少の効果が向上し、L/
W≧2.0となるように冷却工程の長さしを選択するこ
とが好ましい。
In addition, the larger the value of the ratio L/W between the length of the cooling process and the film width W, the more the effect of reducing the bowing phenomenon improves, and the L/W becomes larger.
It is preferable to select the length of the cooling process so that W≧2.0.

ここで、冷却工程の長さしは、実質的に冷却工程の前工
程の温度以下になる箇所から、該冷却工程の温度より実
質的に高い次工程の温度に到達する直前の最も長い箇所
までの長さを意味し、フィルム幅Wはテンター出口での
テンターのクリップ間距離を意味するものとする。尚、
冷却工程の長さしとフィルム幅Wとは同じ単位で表すも
のとし、通常メートル(m )を使用するものとする。
Here, the length of the cooling process is from the point where the temperature is substantially below the temperature of the previous process of the cooling process to the longest point immediately before reaching the temperature of the next process that is substantially higher than the temperature of the cooling process. The film width W means the distance between clips of the tenter at the outlet of the tenter. still,
The length of the cooling process and the film width W shall be expressed in the same unit, usually meters (m 2 ).

本発明には、横延伸、冷却、熱固定]二枚が連接してい
る場合や、上記工程間に再横廷伸、再縦延伸、横方向の
緩和、縦方向の緩和、定長幅等の少なくとも一つの他の
−r程が存在する場合も当然含まれる。
The present invention includes cases where two sheets are connected (transverse stretching, cooling, heat setting), re-horizontal stretching, re-longitudinal stretching, relaxation in the horizontal direction, relaxation in the longitudinal direction, fixed length width, etc. Of course, the case where at least one other -r factor exists is also included.

又、横延伸を行うテンターと熱固定を行うテンターとを
切り離す場合には、大気中でフィルムを走行させるため
フィルムは冷却されるので、冷却工程の長さしとフィル
ム幅Wとの比が本特許請求の囲を実質的に溝足しさえす
れば横延伸と熱固定を別のテンターで行うことも本発明
に含まれる。
In addition, when separating the tenter that performs horizontal stretching and the tenter that performs heat setting, the film is cooled because it is run in the atmosphere, so the ratio of the length of the cooling process to the film width W is correct. The present invention also includes performing lateral stretching and heat setting using separate tenters, as long as the scope of the patent claims is substantially expanded.

(実施例) 次に、本発明を実施例にもとづいて更に詳細に説明する
が、本発明はその要旨を超えない限り、以ドの例に限定
されるものではない 実施例1 ポリエチレンテレフタレート樹脂を溶融してTダイより
押出し、チルロール上でフィルム状に成形した後、ロー
ル延伸機によって縦方向に3.6倍延伸し、その後テン
ターによって横方向に3.7倍延伸し、熱固定した二軸
配向ポリエチレンテレフタレートフィルムとした。テン
ター内においては、フィルムを90℃で予熱し、次いで
100℃で延伸し、その後フィルムをL/W=1.0の
長さの55℃の冷却工程で一旦冷却し、次にフィルムを
220℃で熱処理し、更に200℃で熱処理した後、1
00℃までフィルムを冷却した。その後、クリップから
外して通常のようにしてフィルムを巻き取った。
(Example) Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the following examples unless it exceeds the gist of the invention.Example 1 Polyethylene terephthalate resin After melting and extruding through a T-die and forming into a film on a chill roll, it was stretched 3.6 times in the longitudinal direction with a roll stretching machine, then 3.7 times in the transverse direction with a tenter, and heat-set biaxially. It was made into an oriented polyethylene terephthalate film. In the tenter, the film is preheated at 90°C, then stretched at 100°C, then the film is cooled once at 55°C with a length of L/W = 1.0, and then the film is stretched at 220°C. After heat treatment at 200℃ and further heat treatment at 200℃,
The film was cooled to 00°C. I then removed it from the clip and wound the film as usual.

実施例2 実施例1において、冷却工程の長さしとフィルム幅Wと
の比(L/W)を3.0とする以外は実施例1と同様に
して、二軸配向ポリエチレンテレフタレートフィルムを
得た。
Example 2 A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Example 1 except that the ratio of the length of the cooling process to the film width W (L/W) was 3.0. Ta.

実施例3 ポリエチレンテレフタレート樹脂を溶融してTダイより
押出し、チルロール上でフィルム状に成形した後、テン
ターによって100℃で横方向に3.7倍延伸し、その
後ロール延伸機によって縦方向に3.6倍延伸し、その
後四度テンタ一番こよってフィルムを220℃で熱処理
し、更に200℃で熱処理した後、100℃までフィル
ムを冷却して二軸配向ポリエチレンテレフタレートフィ
ルムを得た。その後、クリップから外して通常のように
してフィルムを巻き取った。尚、横延伸工程と熱固定工
程との間には、65℃以下の冷却工程の長さしとフィル
ム幅Wとの比(L/W)が実質的に5.0以上の長さL
の冷却]1程が存在していた。
Example 3 Polyethylene terephthalate resin was melted and extruded through a T-die, formed into a film on a chill roll, stretched 3.7 times in the transverse direction at 100°C with a tenter, and then stretched 3.7 times in the machine direction with a roll stretching machine. After stretching 6 times, the film was tentered four times, heat-treated at 220°C, further heat-treated at 200°C, and then cooled to 100°C to obtain a biaxially oriented polyethylene terephthalate film. I then removed it from the clip and wound the film as usual. In addition, between the transverse stretching process and the heat setting process, the ratio (L/W) of the length of the cooling process at 65°C or less and the film width W is substantially 5.0 or more.
1).

比較例1 実施例1において、冷却工程を設けない(L/W=0)
以外は全て実施例1と同様にして二軸配向ポリエチレン
テレフタレートフィルムを得た。
Comparative Example 1 In Example 1, no cooling step is provided (L/W=0)
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Example 1 except for this.

比較例2 実施例1において、冷却工程の長さしとフィルム幅Wと
の比(L/W)を0.5とする以外は実施例と同様にし
て、二輪配向ポリエチレンテレフタレートフィルムを得
た。
Comparative Example 2 A two-wheel oriented polyethylene terephthalate film was obtained in the same manner as in Example 1, except that the ratio (L/W) between the length and film width W in the cooling step was 0.5.

実施例4 ナイロン−6樹脂を溶融してTダイより押出し、チルロ
ールLでフィルム状に成形した後、ロール延伸機によっ
て縦方向に3.25倍延伸し、その後テンターによって
横方向に3.5倍延伸し、熱固定した二軸配向ナイロン
−6フイルムとした。
Example 4 Nylon-6 resin was melted and extruded through a T-die, formed into a film with a chill roll L, stretched 3.25 times in the longitudinal direction with a roll stretching machine, and then 3.5 times in the transverse direction with a tenter. A biaxially oriented nylon-6 film was drawn and heat set.

テンター内においては、フィルムを60℃で予熱シ、次
イで85℃で延伸し、その後フィルムラL/W=3.0
の長さの40℃の冷却工程で−・1冷却し、次にフィル
ムを235℃で熱処理し、史に210℃で熱処理した後
、100℃までフィルムを冷却した。その後、クリップ
から外して通常のようにしてフィルムを巻き取った。
In the tenter, the film was preheated at 60°C, then stretched at 85°C, and then the film was stretched to L/W=3.0.
The film was then heat treated at 235°C, and after a further heat treatment at 210°C, the film was cooled to 100°C. I then removed it from the clip and wound the film as usual.

比較例3 実施例4において、冷却工程を設けない(L/W=0)
以外は全て実施例4と同様にして二軸配向ナイロン−6
フイルムヲ得た。
Comparative Example 3 In Example 4, no cooling step is provided (L/W=0)
Biaxially oriented nylon-6 was prepared in the same manner as in Example 4 except for
I got the film.

実施例と比較例のフィルムの各熱収縮応力の比(σ2/
σI)、ガラス転移点温度より40”Cでの幅方向の熱
収縮率(H8tn)及びボーイング歪(B)を表に示す
。なお、ボーイング歪はテンターに入る前のフィルムの
表面に直線を描き、最終的に得られたフィルム上で第1
図に示すような弓形の変形ffi (b)とフィルム幅
との比を6分率(100b/W)で表したものである。
The ratio of each heat shrinkage stress of the films of Examples and Comparative Examples (σ2/
σI), the heat shrinkage rate in the width direction (H8tn) and bowing strain (B) at 40"C below the glass transition point temperature are shown in the table. The bowing strain is calculated by drawing a straight line on the surface of the film before entering the tenter. , the first on the final obtained film
The ratio between the bow-shaped deformation ffi (b) and the film width as shown in the figure is expressed as a 6th ratio (100b/W).

また、各熱収縮応力の比(σ2/σI)及びガラス転移
点温度より40℃での幅方向の熱収縮率(HS TO)
は各フィルムの中央部分でのそれらの値を示している。
In addition, the ratio of each heat shrinkage stress (σ2/σI) and the heat shrinkage rate in the width direction at 40°C from the glass transition point temperature (HS TO)
shows those values in the central part of each film.

以下余白 比較例1.2では(σ2/σ、)の値が1より大きく、
この場合著しいボーイング現象が発生し生産面で支障が
あったりして、本発明の特許請求範囲外では問題がある
が、本発明で得られる熱可塑性樹脂延伸フィルムはボー
イングの少ない幅方向に均一な物性を有することがわか
る。
In the following margin comparison example 1.2, the value of (σ2/σ,) is larger than 1,
In this case, a significant bowing phenomenon occurs and production is hindered, which is a problem outside the scope of the claims of the present invention, but the thermoplastic resin stretched film obtained by the present invention has a uniform shape in the width direction with less bowing. It can be seen that it has physical properties.

(発明の効果) 本発明によれば幅方向に均一な物理的、化学的性質を有
する熱可塑性樹脂フィルムが得られ、そのフィルムは包
装用、工業用、及びその他の用途に極めて有用である事
がわかる。
(Effects of the Invention) According to the present invention, a thermoplastic resin film having uniform physical and chemical properties in the width direction can be obtained, and the film is extremely useful for packaging, industrial use, and other uses. I understand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はボーイング歪の算出方式を示したものである。 Figure 1 shows the calculation method for Boeing distortion.

Claims (2)

【特許請求の範囲】[Claims] (1)フィルムの横方向の熱収縮応力が(1)式を満足
し、且つガラス転移点温度より40℃高い温度での横方
向の熱収縮率が5%以下の少なくとも一方向に配向した
熱可塑性樹脂延伸フィルム。 (σ_2/σ_1)≦1.0・・・(1) なお(1)式において、σ_1はガラス転移点温度より
70℃高い温度でのフィルムの横方向の熱収縮応力を、
σ_2は融点より80℃低い温度でのフィルムの横方向
の熱収縮応力を意味する。
(1) The heat shrinkage stress in the transverse direction of the film satisfies formula (1), and the heat shrinkage rate in the transverse direction at a temperature 40°C higher than the glass transition temperature is 5% or less, and the heat is oriented in at least one direction. Plastic resin stretched film. (σ_2/σ_1)≦1.0...(1) In equation (1), σ_1 is the lateral heat shrinkage stress of the film at a temperature 70°C higher than the glass transition temperature,
σ_2 means the transverse thermal shrinkage stress of the film at a temperature 80° C. below the melting point.
(2)フィルムの横方向の熱収縮応力が(1)式を満足
し、且つガラス転移点温度より40℃高い温度での横方
向の熱収縮率が5%以下の少なくとも横方向に配向した
熱可塑性樹脂延伸フィルムを製造するに際し、横延伸工
程と熱固定工程との間に(2)式を満足する長さの冷却
工程を設けて、ガラス転移点温度以下に冷却することを
特徴とする熱可塑性樹脂延伸フィルムの製造方法。 (L/W)≧1.0・・・(2) なお(2)式において、Lは冷却工程の長さを、Wはフ
ィルム幅を意味する。
(2) The heat shrinkage stress in the transverse direction of the film satisfies formula (1), and the heat shrinkage rate in the transverse direction at a temperature 40°C higher than the glass transition point temperature is at least 5% or less. When producing a stretched plastic resin film, a cooling process of a length satisfying the formula (2) is provided between the transverse stretching process and the heat setting process to cool the film to below the glass transition temperature. A method for producing a stretched plastic resin film. (L/W)≧1.0 (2) In equation (2), L means the length of the cooling process, and W means the film width.
JP1333777A 1989-10-16 1989-12-22 Polyamide resin film and method for producing the same Expired - Fee Related JP2600406B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1333777A JP2600406B2 (en) 1989-12-22 1989-12-22 Polyamide resin film and method for producing the same
KR1019900012576A KR960013068B1 (en) 1989-10-16 1990-08-16 Thermoplastic resin film & a method for producing the same
EP19960119253 EP0764678B1 (en) 1989-10-16 1990-10-12 Biaxially oriented polyamide film
DE1990632307 DE69032307T2 (en) 1989-10-16 1990-10-12 Thermoplastic plastic film and process for its manufacture
DE1990633968 DE69033968T2 (en) 1989-10-16 1990-10-12 Biaxially oriented polyamide film
EP19900119558 EP0423630B1 (en) 1989-10-16 1990-10-12 A thermoplastic resin film and a method for producing the same
US08/135,852 US5411695A (en) 1989-10-16 1993-10-13 Thermoplastic resin film and a method for producing the same
US08/376,250 US5574119A (en) 1989-10-16 1995-01-23 Thermoplastic resin film and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333777A JP2600406B2 (en) 1989-12-22 1989-12-22 Polyamide resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03193328A true JPH03193328A (en) 1991-08-23
JP2600406B2 JP2600406B2 (en) 1997-04-16

Family

ID=18269842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333777A Expired - Fee Related JP2600406B2 (en) 1989-10-16 1989-12-22 Polyamide resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2600406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006724A1 (en) * 2004-07-14 2006-01-19 Fujifilm Corporation Thermoplastic film and method of manufacturing the same
JP2006051804A (en) * 2004-07-14 2006-02-23 Fuji Photo Film Co Ltd Thermoplastic film and its manufacturing method
CN115625837A (en) * 2022-10-12 2023-01-20 南通百纳数码新材料有限公司 Discharging processor for calendering PVC film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699418B2 (en) 2001-02-23 2004-03-02 Kuraray Co., Ltd. Method for producing biaxially stretched film made of ethylene-vinyl alcohol copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757629A (en) * 1980-09-25 1982-04-06 Teijin Ltd Manufacture of polyester film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757629A (en) * 1980-09-25 1982-04-06 Teijin Ltd Manufacture of polyester film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006724A1 (en) * 2004-07-14 2006-01-19 Fujifilm Corporation Thermoplastic film and method of manufacturing the same
JP2006051804A (en) * 2004-07-14 2006-02-23 Fuji Photo Film Co Ltd Thermoplastic film and its manufacturing method
JP4626757B2 (en) * 2004-07-14 2011-02-09 富士フイルム株式会社 Thermoplastic film and method for producing the same
CN115625837A (en) * 2022-10-12 2023-01-20 南通百纳数码新材料有限公司 Discharging processor for calendering PVC film

Also Published As

Publication number Publication date
JP2600406B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US3502766A (en) Process for the improvement of polyamide films
KR960013068B1 (en) Thermoplastic resin film & a method for producing the same
JP3765681B2 (en) Production method of polyester film
JP2623939B2 (en) Biaxially oriented polyamide film and method for producing the same
JPH03193328A (en) Thermoplastic resin stretched film and its manufacture
JP2841755B2 (en) Polyamide film and method for producing the same
JP2936688B2 (en) Method for producing thermoplastic resin film
JPH0125695B2 (en)
JP2917443B2 (en) Thermoplastic stretched film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JP2841816B2 (en) Method for producing thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JP2920973B2 (en) Method for reducing bowing of stretched thermoplastic resin film
JPH1016047A (en) Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH03216326A (en) Manufacture of thermoplastic resin film
JP4097823B2 (en) Method for producing biaxially stretched polyamide film
JPH03207632A (en) Manufacture of low bowing thermoplastic resin stretched film
JPH0637079B2 (en) Method for producing thermoplastic resin film
JPH03158225A (en) Manufacture of thermoplastic resin film
JP4068249B2 (en) Method for producing biaxially stretched polyamide film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JPH10296853A (en) Manufacture of biaxially oriented polyamide film
JP2936699B2 (en) Method for producing polyamide film
JP3503708B2 (en) Method for producing polyamide film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees