JPH1016047A - Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture - Google Patents

Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture

Info

Publication number
JPH1016047A
JPH1016047A JP17530296A JP17530296A JPH1016047A JP H1016047 A JPH1016047 A JP H1016047A JP 17530296 A JP17530296 A JP 17530296A JP 17530296 A JP17530296 A JP 17530296A JP H1016047 A JPH1016047 A JP H1016047A
Authority
JP
Japan
Prior art keywords
film
hot water
water shrinkage
stretching
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17530296A
Other languages
Japanese (ja)
Other versions
JP3676883B2 (en
Inventor
Kenichi Yamagishi
健一 山岸
Shunichi Kawakita
俊一 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP17530296A priority Critical patent/JP3676883B2/en
Publication of JPH1016047A publication Critical patent/JPH1016047A/en
Application granted granted Critical
Publication of JP3676883B2 publication Critical patent/JP3676883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen an oblique difference in a hydrothermal shrinkage percentage which is a problem in the case when a polyamide film is manufactured sequentially by a biaxial stretching method. SOLUTION: On the occasion of manufacturing a biaxially stretched polyamide film sequentially by stretching longitudinally an unstretched film being amorphous and non-oriented substantially and then by stretching it laterally by a tenter type laterally stretching machine, stretching is conducted under the conditions of 2.7<=(multiplying rate of longitudinal stretching)<=3.0, 3.4<=(multiplying rate of lateral stretching)<=4.0 and (ratio between multiplying rates of longitudinal and lateral stretching)>=1.3, heat treatment is then conducted and relaxation treatment is conducted thereafter under the condition of 1.0<=(relaxation rate)<=4.0(%). The opposite ends of a stretched film thus obtained being released from clips of the tenter type laterally stretching machine, the film is relaxed in the lateral direction by reheat treatment under the conditions of 160<=(temperature of reheat treatment)<=200( deg.C) and 1.0<=(time of reheat treatment)<=4.0(s) by using floatation type heat treatment equipment and then it is cooled immediately and wound up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリアミドフィル
ムの製造方法、およびその方法で得られた二軸配向ポリ
アミドフィルムに関するものである。さらに詳しくは、
未延伸ポリアミドフィルムをまず縦延伸し、ついでテン
ター方式により横延伸して逐次二軸延伸することによる
ポリアミドフィルムの製造方法、およびその方法で得ら
れた二軸配向ポリアミドフィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyamide film and a biaxially oriented polyamide film obtained by the method. For more information,
The present invention relates to a method for producing a polyamide film by first stretching an unstretched polyamide film longitudinally, then transversely stretching it by a tenter method, and successively biaxially stretching it, and a biaxially oriented polyamide film obtained by the method.

【0002】[0002]

【従来の技術】二軸配向ポリアミドフィルムは、機械的
特性、光学的特性、熱的特性、バリアー性をはじめとし
て、耐摩耗性、耐衝撃性、耐ピンホール性などに優れて
いることから、食品その他の包装材料用フィルムとして
広く利用されており、特にレトルト食品用袋(熱水処理
用袋)としての利用は多い。このようなレトルト食品用
袋は、通常、基材フィルムとして二軸配向ポリアミドフ
ィルムを用い、このフィルムにヒートシール性を有する
各種シーラント(ポリエチレン、ポリプロピレンなど)
をラミネートした後、折り畳んで3辺を熱融着した、い
わゆる3方シール袋の形態を取っている。実使用では、
この袋に食品等を充填した後、高温ボイル処理を施すた
め、熱寸法安定性が要求される。
2. Description of the Related Art A biaxially oriented polyamide film is excellent in abrasion resistance, impact resistance, pinhole resistance, etc., including mechanical properties, optical properties, thermal properties, and barrier properties. It is widely used as a film for food and other packaging materials, and is particularly often used as a bag for retort food (bag for hot water treatment). Such a bag for retort food usually uses a biaxially oriented polyamide film as a base film, and various heat-sealing sealants (polyethylene, polypropylene, etc.) are used for the film.
Is laminated and then heat-sealed on three sides to form a so-called three-sided seal bag. In actual use,
After the bag is filled with food or the like, high-temperature boil processing is performed, so that thermal dimensional stability is required.

【0003】しかしながら、基材フィルム(二軸配向ポ
リアミドフィルム)の縦方向に対して45度の方向と1
35度の方向との熱水収縮率の差(以下、「熱水収縮率
斜め差」と表記する)が大きいと、袋の捻りやカールと
いった現象が発生し、商品の外観を損ねるという問題が
あった。また、このような現象は、縦方向に延伸した
後、横方向へ延伸する、いわゆる逐次二軸延伸法では顕
著に現れ、端にいくほどその影響が大きくなるために、
この逐次二軸延伸法で製造されたポリアミドフィルムは
前記のような用途には用いることができなくなってしま
うのが常識であった。
[0003] However, the angle of 45 ° with respect to the longitudinal direction of the base film (biaxially oriented polyamide film) is 1 °.
If the difference in the hot water shrinkage from the direction of 35 degrees (hereinafter referred to as “diagonal difference in hot water shrinkage”) is large, a phenomenon such as twisting or curling of the bag occurs and the appearance of the product is impaired. there were. In addition, such a phenomenon is noticeable in the so-called sequential biaxial stretching method in which the film is stretched in the longitudinal direction and then stretched in the transverse direction, and the influence increases as it goes to the end,
It was common knowledge that the polyamide film produced by this sequential biaxial stretching method could not be used for the above-mentioned applications.

【0004】かかる問題に対し、ステンターからでた熱
可塑性樹脂フィルムの熱寸法安定性を改良する方法とし
て、弧状型浮上式熱処理を用いた方法が提案されてお
り、すでに公知である。例えば、特開平4−29293
4号公報には、フィルムを縦方向と横方向に2軸延伸し
た直後に、弧状縦断面を有する熱風吹き出し手段の弧状
面に沿って弧を描くように浮上走行させ、この浮上走行
中に、フィルムの縦方向と横方向に関して実質的に同時
に熱処理を行う方法が開示されている。
In order to solve such a problem, as a method for improving the thermal dimensional stability of a thermoplastic resin film from a stenter, a method using an arc-shaped floating heat treatment has been proposed and is already known. For example, JP-A-4-29293
No. 4, in the film, immediately after biaxially stretching the film in the longitudinal direction and the transverse direction, the film is caused to levitate so as to draw an arc along the arcuate surface of the hot air blowing means having an arcuate vertical cross section. A method for performing heat treatment substantially simultaneously in the longitudinal and transverse directions of the film is disclosed.

【0005】しかしながら、この方法では、後段の熱処
理手段により熱寸法安定性は改良されるものの、いかな
る条件で得た延伸フィルムにも適用できるものではな
い。本発明者らの実験によれば、フィルムの縦方向にか
かる張力を制御することが装置の特性上難しいために、
縦方向の弛緩処理が不十分になるのに対して、幅方向
(横方向)は事実上フリーであるために十分に弛緩処理
がなされ、このため各方向の弛緩効果が不均一となっ
て、最終的に得られるフィルムの熱水収縮率斜め差の改
善に対しては効果が十分でないことがわかった。
[0005] However, in this method, although the thermal dimensional stability is improved by the subsequent heat treatment, it cannot be applied to a stretched film obtained under any conditions. According to the experiments of the present inventors, it is difficult to control the tension applied in the longitudinal direction of the film due to the characteristics of the device,
While the relaxation process in the vertical direction is insufficient, the relaxation process is sufficiently performed in the width direction (horizontal direction) because it is virtually free, so that the relaxation effect in each direction becomes uneven, It was found that the effect was not sufficient for the improvement of the oblique difference in the hot water shrinkage of the finally obtained film.

【0006】さらに、特開平4−292937号公報に
は、フィルムを縦方向と横方向に二軸延伸した直後に、
弧状縦断面を有する吹き出しスチームにより弧状面に沿
って弧を描くように浮上走行させ、この浮上走行中にフ
ィルム縦方向と横方向に関して実質的に同時に再熱処理
を行う方法が開示されている。
Further, JP-A-4-292937 discloses that immediately after a film is biaxially stretched in a machine direction and a transverse direction,
There is disclosed a method in which a buoyant steam having an arcuate vertical cross section is used to levitate and travel along an arcuate surface along an arcuate surface, and during the levitating travel, the reheat treatment is performed substantially simultaneously in the longitudinal and lateral directions of the film.

【0007】しかしながら、この方法では、水分による
寸法変化を生じやすいポリアミドフィルムに適用した場
合には処理中にしわを生じさせやすく、ロールフォーメ
ーションの悪化を誘発し、商品価値をなくしてしまうと
いう問題点がある。
However, this method has a problem that when it is applied to a polyamide film which is liable to undergo dimensional change due to moisture, wrinkles are apt to occur during processing, roll formation is deteriorated, and commercial value is lost. There is.

【0008】[0008]

【発明が解決しようとする課題】本発明は、ポリアミド
フィルムを逐次二軸延伸法で製造する場合に問題であっ
た熱水収縮率斜め差を、製造条件の工夫によって小さく
することを目的とする。さらに詳しくは、熱寸法安定性
に優れ、かつ、熱水収縮率斜め差が小さく、実用強度を
兼ね備えた二軸配向ポリアミドフィルムを得ることを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the diagonal difference in shrinkage of hot water, which has been a problem when a polyamide film is produced by a successive biaxial stretching method, by devising production conditions. . More specifically, it is an object of the present invention to obtain a biaxially oriented polyamide film having excellent thermal dimensional stability, a small difference in shrinkage ratio of hot water, and practical strength.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記事情
に鑑み、逐次延伸法における熱水収縮率斜め差を極小化
することのできる二軸配向ポリアミドフィルムの製造方
法と、熱寸法安定性に優れかつ熱水収縮率斜め差の小さ
いポリアミドフィルムとの開発について鋭意検討した。
その結果、延伸条件、熱処理条件を適切に選択して、特
定の熱水収縮率を有するフィルムとし、さらに連続して
行う再熱処理の条件を適切に選択すれば、熱寸法安定性
のみならず熱水収縮率斜め差をも改善させることがで
き、ひいては製品品質の向上に対して極めて有効である
ことを見い出し、本発明を完成した。
SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors have developed a method for producing a biaxially oriented polyamide film capable of minimizing an oblique difference in hot water shrinkage in a sequential stretching method, and a method for producing a thermally dimensional stable film. We studied diligently on the development of a polyamide film having excellent heat resistance and a small difference in oblique hot water shrinkage.
As a result, if the stretching conditions and the heat treatment conditions are appropriately selected to form a film having a specific hot water shrinkage ratio, and if the conditions for the continuous reheat treatment are appropriately selected, not only the thermal dimensional stability but also the heat The present inventors have found that the difference in water shrinkage ratio can be improved, and that it is extremely effective in improving the product quality, and thus completed the present invention.

【0010】すなわち、本発明のポリアミドフィルムの
製造方法の要旨は、実質的に無定形、無配向の未延伸フ
ィルムを縦延伸し、ついで、テンター式横延伸機で横延
伸して逐次二軸延伸ポリアミドフィルムを製造するに際
し、下記式(1)〜(3)の条件で延伸を行い、つぎに
熱処理を行い、その後に下記式(4)の条件で弛緩処理
を行い、この延伸フィルムの両端を前記テンター式横延
伸機のクリップから解放して浮上式熱処理装置により下
記式(5)(6)の条件で再熱処理して横方向に弛緩さ
せ、つぎに直ちに冷却して巻き取ることにある。
That is, the gist of the process for producing a polyamide film of the present invention is that a substantially amorphous, non-oriented, unstretched film is longitudinally stretched, and then transversely stretched by a tenter type transverse stretching machine to successively biaxially stretch. In producing a polyamide film, stretching is performed under the conditions of the following formulas (1) to (3), heat treatment is performed, and then relaxation treatment is performed under the condition of the following formula (4). Release from the clip of the tenter-type transverse stretching machine, re-heat treatment by the floating heat treatment device under the conditions of the following formulas (5) and (6) to relax in the horizontal direction, and then immediately cool and wind.

【0011】 縦延伸倍率:X 2. 7≦X≦3. 0 (1) 横延伸倍率:Y 3. 4≦Y≦4. 0 (2) 縦横延伸倍率比 Y≧1. 3X (3) 弛緩率:Z 1. 0≦Z≦4. 0(%) (4) 再熱処理温度:T 160≦T≦200(℃) (5) 再熱処理時間:θt 1. 0≦θt ≦4. 0(s) (6) また本発明の方法は、弛緩処理を行った後かつ再熱処理
を行う前の段階において、フィルムの縦方向の熱水収縮
率が2.0%以下、この縦方向と直角な方向の熱水収縮
率が2.9%以下、(縦方向の熱水収縮率)<(縦方向
と直角な方向の熱水収縮率)、かつフィルムの縦方向に
対して45度の方向と135度の方向との熱水収縮率の
差が1.8%を越えるものである。
Longitudinal stretching ratio: X 2.7 ≦ X ≦ 3.0 (1) Lateral stretching ratio: Y 3.4 ≦ Y ≦ 4.0 (2) Ratio of longitudinal to transverse stretching ratio Y ≧ 1.3X (3) Relaxation Rate: Z 1.0 ≦ Z ≦ 4.0 (%) (4) Reheat treatment temperature: T 160 ≦ T ≦ 200 (° C.) (5) Reheat treatment time: θt 1.0 ≦ θt ≦ 4.0 (s) (6) In the method of the present invention, in the stage after the relaxation treatment and before the re-heat treatment, the film has a hot water shrinkage of 2.0% or less in a longitudinal direction and a direction perpendicular to the longitudinal direction. Hot water shrinkage ratio of 2.9% or less, (longitudinal hot water shrinkage ratio) <(hot water shrinkage ratio in a direction perpendicular to the vertical direction) The difference in the hot water shrinkage from the direction of the degree exceeds 1.8%.

【0012】また本発明は、上記製造方法で得たポリア
ミドフィルムであって、フィルムの縦方向の熱水収縮率
が2. 0%以下、この縦方向と直角な方向の熱水収縮率
が1. 0%以下、フィルムの縦方向に対して45度の方
向と135度の方向との熱水収縮率の差が1.8%以
下、かつフィルムの縦方向とその直角方向との破断強度
がともに25kgf/mm2 以上であることを特徴とする二軸
配向ポリアミドフィルムを要旨とする。
The present invention also relates to a polyamide film obtained by the above method, wherein the hot water shrinkage in the longitudinal direction of the film is 2.0% or less, and the hot water shrinkage in a direction perpendicular to the longitudinal direction is 1%. 0% or less, the difference in hot water shrinkage between the 45 ° direction and the 135 ° direction with respect to the longitudinal direction of the film is 1.8% or less, and the breaking strength between the longitudinal direction of the film and its perpendicular direction is The gist of the present invention is a biaxially oriented polyamide film, both of which are not less than 25 kgf / mm 2 .

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明におけるポリアミドは、配向結晶性を有するポリ
アミドが主であるが、特に限定されるものではなく、そ
の分子内にアミド結合を有する線状高分子化合物であれ
ばよい。すなわち、前記したポリε−カプラミドをはじ
めとして、ポリヘキサメチレンアジパミド(ナイロン6
6)、ポリヘキサメチレンセバカミド(ナイロン61
0)、ポリウンデカミド(ナイロン11)、ポリラウラ
ミド(ナイロン12)、ポリメタキシリレンアジパミド
(MXD6)およびそれらの共重合物が含まれ、コスト
パフォーマンスに優れるナイロン6が特に好ましく用い
られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The polyamide in the present invention is mainly a polyamide having oriented crystallinity, but is not particularly limited, and may be any linear polymer compound having an amide bond in the molecule. That is, in addition to the above-mentioned poly ε-capramide, polyhexamethylene adipamide (nylon 6
6), polyhexamethylene sebacamide (nylon 61
0), polyundecamide (nylon 11), polylauramide (nylon 12), polymethaxylylene adipamide (MXD6), and copolymers thereof, and nylon 6 which is excellent in cost performance is particularly preferably used.

【0014】これらのポリアミドには、必要に応じて、
フィルムの性能に悪影響を与えない範囲で、滑剤、帯電
防止剤、ブロッキング防止剤、無機微粒子等各種添加剤
を添加することができる。
[0014] These polyamides, if necessary,
Various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles can be added as long as the performance of the film is not adversely affected.

【0015】本発明において、実質的に無定形、無配向
のポリアミドフィルム(未延伸フィルム)を得るには、
例えばポリアミドを押出機で加熱溶融してTダイからフ
ィルム状に押出し、これをエアーナイフキャスト法、静
電印加キャスト法等公知のキャスティング法で回転する
冷却ドラム上で冷却固化して急冷製膜する。この未延伸
フィルムが配向していると、後工程で延伸性が低下する
ことがある。
In the present invention, to obtain a substantially amorphous, non-oriented polyamide film (unstretched film),
For example, a polyamide is heated and melted by an extruder, extruded into a film from a T-die, and cooled and solidified on a cooling drum rotating by a known casting method such as an air knife casting method or an electrostatic application casting method to rapidly form a film. . When the unstretched film is oriented, stretchability may be reduced in a subsequent step.

【0016】つぎに、この未延伸フィルムは、周速の異
なる加熱ローラ群からなるローラ式縦延伸機で、フィル
ム延伸のための予熱が施された後、この未延伸フィルム
のガラス転移点以上の温度で、加熱された延伸ロール
と、フィルム冷却のための冷却ロールとの間で縦延伸さ
れる。このとき本発明では、縦延伸倍率を下記の式
(1)に示す条件にする必要がある。
Next, the unstretched film is preheated for film stretching by a roller-type longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds, and then the unstretched film has a glass transition point or higher. At a temperature, the film is stretched longitudinally between a heated stretching roll and a cooling roll for cooling the film. At this time, in the present invention, it is necessary to set the longitudinal stretching ratio to the condition shown in the following formula (1).

【0017】 縦延伸倍率:X 2. 7≦X≦3. 0 (1) 縦延伸倍率をかかる範囲にするのは以下の理由による。
すなわち2. 7倍より低いと、熱水収縮率は小さくなる
が、実用強度を付与できないため、本発明の目的を達成
できない。また3. 0倍より高いと、高強度を付与でき
るものの、縦方向の熱水収縮率が2. 0%より大きくな
って、これまた本発明の目的を達成することができな
い。また後続の横延伸性を低下させ、連続生産性を悪化
させる。前記に掲げた範囲内の時のみ、強度、延伸性を
損なうことなく、目的とする熱水収縮率が得られる。
Longitudinal stretching ratio: X 2.7 ≦ X ≦ 3.0 (1) The reason for setting the longitudinal stretching ratio in this range is as follows.
That is, if it is lower than 2.7 times, the hot water shrinkage rate becomes small, but the practical strength cannot be imparted, so that the object of the present invention cannot be achieved. If it is higher than 3.0 times, although high strength can be imparted, the hot water shrinkage in the vertical direction becomes larger than 2.0%, and the object of the present invention cannot be achieved. Further, the subsequent lateral stretchability is reduced, and the continuous productivity is deteriorated. Only when it is within the above range, the desired hot water shrinkage ratio can be obtained without impairing the strength and stretchability.

【0018】このようにして得られた縦延伸ポリアミド
フィルムは、テンター式横延伸機に導かれ、クリップに
把持されてフィルム延伸のための予熱が施される。そし
て、その後、70〜100℃の範囲内の適宜の温度で横
延伸するが、本発明においては、倍率条件が下記式
(2)(3)を同時に満たしていることを必要とする。
The longitudinally stretched polyamide film thus obtained is guided to a tenter type transverse stretching machine, gripped by clips, and preheated for stretching the film. Then, after that, the film is laterally stretched at an appropriate temperature in the range of 70 to 100 ° C., but in the present invention, it is necessary that the magnification conditions simultaneously satisfy the following expressions (2) and (3).

【0019】 横延伸倍率X: 3. 4≦Y≦4. 0 (2) 縦横延伸倍率比 Y≧1. 3X (3) まず、横延伸倍率を上記式(3)の範囲とするのは、
3. 4倍より低いと、テンターを出た後に上記条件の熱
水収縮率を満たすフィルムを得難く、また後段の再熱処
理によっても熱水収縮率斜め差を改善できないため、好
ましくない。反対に4. 0倍より高いと延伸性が低下
し、破断が生じやすくなるため好ましくない。好ましく
は3. 6〜4. 0倍であり、さらに各方向の物性バラン
ス(強度、伸度など)、延伸性、ならびに端部の未延伸
部残存率低下の観点から、3. 7倍近辺が好適である。
Lateral stretch ratio X: 3.4 ≦ Y ≦ 4.0 (2) Longitudinal stretch ratio ratio Y ≧ 1.3X (3) First, the transverse stretch ratio is set in the range of the above formula (3).
If it is lower than 3.4 times, it is difficult to obtain a film satisfying the above-mentioned hot water shrinkage ratio after leaving the tenter, and the oblique difference in the hot water shrinkage ratio cannot be improved even by re-heating at a later stage, which is not preferable. Conversely, if the ratio is higher than 4.0 times, the stretchability is lowered, and the film is easily broken, which is not preferable. It is preferably 3.6 to 4.0 times, and from the viewpoint of the balance of physical properties (strength, elongation, etc.) in each direction, stretchability, and reduction of the unstretched portion residual ratio at the end, the ratio is about 3.7 times. It is suitable.

【0020】本発明では、横延伸倍率を上記式(2)の
範囲内とし、かつ、縦横延伸倍率比(縦延伸倍率に対す
る横延伸倍率の比率)が上記式(3)の条件を満たすよ
うにしておくことが不可欠であるが、これは、テンター
を出た後のフィルムの熱水収縮率を、縦方向の熱水収縮
率(SMD)と横方向の熱水収縮率(STD)との大小関係
をSMD<STDにならしめるためであり、以下の理由によ
る。すなわち一般には、特にフィルムの中央から端に向
かうにつれて、配向や熱収縮率分布が幅方向に傾いた形
状を取るが、この現象は横延伸倍率を高くすると顕著と
なりやすい。このためにテンターからでたフィルムの熱
水収縮率斜め差は大きいものとなる。しかしながら、後
述するように本発明では、後段の再熱処理工程により主
として横方向に再弛緩せしめることにより、最終的な縦
方向と横方向との熱水収縮率をバランス化させて熱水収
縮率斜め差を極小化させる。Y<1. 3Xの場合は、S
MD≧STDとなって、後段の際熱処理工程で横方向の熱水
収縮率が小さくなりすぎるために、逆に熱水収縮率斜め
差が大きくなる。
In the present invention, the transverse stretching ratio is set within the range of the above formula (2), and the ratio of the longitudinal to transverse stretching ratio (ratio of the transverse stretching ratio to the longitudinal stretching ratio) satisfies the condition of the above formula (3). It is indispensable to keep this, but this is because the hot water shrinkage of the film after leaving the tenter is larger or smaller than the vertical hot water shrinkage (SMD) and the horizontal hot water shrinkage (STD). This is to make the relationship SMD <STD for the following reasons. That is, in general, the orientation and the heat shrinkage distribution take a shape inclined in the width direction particularly from the center to the edge of the film, but this phenomenon tends to be remarkable when the transverse stretching ratio is increased. For this reason, the difference in the hot water shrinkage ratio of the film coming out of the tenter becomes large. However, in the present invention, as will be described later, by re-relaxing mainly in the horizontal direction in the subsequent reheat treatment step, the final hot water shrinkage ratio in the vertical direction and the horizontal direction is balanced, and the Minimize the difference. If Y <1.3X, S
MD ≧ STD, and the hot water shrinkage in the lateral direction becomes too small in the heat treatment step at the subsequent stage, so that the difference in the hot water shrinkage obliquely increases.

【0021】続いて、同テンター内において200℃〜
215℃、好ましくは210℃近辺の温度で熱処理を施
す。そして、さらに引き続いて190℃〜210℃の温
度で弛緩熱処理を施すが、本発明では下記式(4)の条
件で幅方向に弛緩する必要がある。
Subsequently, in the tenter, a temperature of 200 ° C.
The heat treatment is performed at a temperature of 215 ° C, preferably around 210 ° C. Subsequently, relaxation heat treatment is performed at a temperature of 190 ° C. to 210 ° C. In the present invention, it is necessary to relax in the width direction under the condition of the following formula (4).

【0022】 弛緩率:Z 1. 0≦Z≦4. 0(%) (4) これは、縦方向の熱水収縮率( SMD) とその直角方向の
熱水収縮率( STD) の関係を上述のようにSMD<STDに
せしめるためであり、弛緩率が1. 0%より低いと、熱
水収縮率はSMD<STDなる関係になるものの、STDが上
述の2. 9%より大きくなり、後段の際熱処理工程で高
温を設定しなければならず、フィルムの平面性が損なわ
れるため好ましくない。逆に、弛緩率が4. 0%より高
い場合は、SMD≧STDとなって、上記の場合と同様に後
段の再熱処理工程でも熱水収縮率斜め差を極小化できな
い。つまり、上記式(4)の範囲に弛緩率を設定したと
きのみ、STD≦2. 9かつSMD<STDなる関係にならし
めることが可能となる。なお、この弛緩率は、式(4)
の範囲内であれば、特に延伸倍率によって限定されるこ
とはないが、寸法安定性を向上させるには高延伸倍率の
場合は高めに設定することが好ましい。
Relaxation ratio: Z 1.0 ≦ Z ≦ 4.0 (%) (4) This is the relationship between the hot water shrinkage (SMD) in the longitudinal direction and the hot water shrinkage (STD) in the perpendicular direction. As described above, this is because SMD <STD. When the relaxation rate is lower than 1.0%, the hot water shrinkage rate is in the relationship of SMD <STD, but the STD is higher than the above-mentioned 2.9%, In the latter stage, a high temperature must be set in the heat treatment step, which is not preferable because the flatness of the film is impaired. Conversely, when the relaxation rate is higher than 4.0%, SMD ≧ STD, and similarly to the above case, the oblique difference in the hot water shrinkage rate cannot be minimized even in the subsequent reheat treatment step. That is, only when the relaxation rate is set in the range of the above equation (4), it is possible to make the relations of STD ≦ 2.9 and SMD <STD. Note that this relaxation rate is calculated by the equation (4).
Is not particularly limited by the draw ratio within the range, but it is preferable to set a high draw ratio in the case of a high draw ratio in order to improve dimensional stability.

【0023】このように本発明では、延伸倍率および弛
緩率を上述の各式の範囲とすることによって、上記のよ
うに、弛緩処理を行った後かつ再熱処理を行う前の段階
において、SMD<STDかつSTD≦2. 9%となることが
必要である。さらに本発明では、この段階において、S
MD≦2.0%かつ熱水収縮率斜め差が1.8%を越える
ことが必要である。SMDが2.0%よりも大きくなる
と、再熱処理によってもSMDはほとんど変化せず、この
再熱処理によって45度の方向の熱水収縮率と135度
の方向の熱水収縮率とのうちの小さい方の熱水収縮率が
さらに小さくなることによって、熱収分布の形状が斜め
方向にくびれた形状となり、このため熱水収縮率が良化
しないという問題が生じる。またこの段階で熱水収縮率
斜め差が1.8%以下であると、前記と同様の理由で、
後段の再熱処理によって45度の方向の熱水収縮率と1
35度の方向の熱水収縮率とのうちの小さい方の熱水収
縮率が極端に小さくなって、斜め差が良化しないという
問題が生じる。
As described above, in the present invention, by setting the stretching ratio and the relaxation rate within the ranges of the above-described formulas, as described above, at the stage after the relaxation treatment and before the re-heat treatment, the SMD < It is necessary that STD and STD ≦ 2.9%. Further, in the present invention, at this stage, S
It is necessary that MD ≦ 2.0% and the difference in shrinkage ratio of hot water exceeds 1.8%. When the SMD is larger than 2.0%, the SMD hardly changes even by the re-heat treatment, and the re-heat treatment causes the smaller of the hot water shrinkage in the direction of 45 degrees and the hot water shrinkage in the direction of 135 degrees. When the hot water shrinkage ratio becomes further smaller, the shape of the heat yield distribution becomes a shape constricted in an oblique direction, which causes a problem that the hot water shrinkage ratio is not improved. If the difference in the hot water shrinkage ratio at this stage is 1.8% or less, for the same reason as described above,
The hot water shrinkage in the 45 ° direction and 1
There is a problem that the smaller one of the hot water shrinkage rates in the direction of 35 degrees becomes extremely small, and the oblique difference is not improved.

【0024】このようにして得られた延伸フィルムは、
いったんクリップから解放して、端部の未延伸残部をト
リミングする。そして、その後、連続で浮上式熱処理装
置を通過させて、再熱処理を行う。このとき、処理条件
を 再熱処理温度:T 160≦T≦200(℃) (5) 再熱処理時間:θt 1. 0≦θt ≦4. 0(s) (6) とする必要がある。処理温度が式(5)の範囲より低い
と、熱処理効果はほとんどなく、処理後の熱水収縮率斜
め差は改善されない。また逆に式(5)の範囲よりも高
い場合は、幅方向に過度にフィルムが収縮して平面性が
損なわれるうえに、巻き取り時のしわを解消できず好ま
しくないない。処理時間については、上記式(6)の範
囲内であれば処理温度により選択可能であり、処理温度
が高い場合は短く、低い場合は長く設定するのが好結果
をもたらす。好ましくは、180℃の温度で、2〜3秒
再熱処理する。
The stretched film thus obtained is
Once released from the clip, the remaining unstretched end is trimmed. After that, re-heat treatment is performed by continuously passing through the floating heat treatment apparatus. At this time, the processing conditions must be such that the reheating temperature: T160 ≦ T ≦ 200 (° C.) (5) The reheating time: θt1.0 ≦ θt ≦ 4.0 (s) (6) When the treatment temperature is lower than the range of the formula (5), the heat treatment effect is hardly obtained, and the difference in the shrinkage ratio of the hot water after the treatment is not improved. On the other hand, when the value is higher than the range of the expression (5), the film is excessively shrunk in the width direction to deteriorate the flatness, and it is not preferable because wrinkles at the time of winding cannot be eliminated. The processing time can be selected depending on the processing temperature within the range of the above formula (6), and when the processing temperature is high, it is short, and when the processing temperature is low, it is long. Preferably, re-heat treatment is performed at a temperature of 180 ° C. for 2 to 3 seconds.

【0025】本発明では、前記条件にて得られた二軸配
向ポリアミドフィルムを、直ちに冷却して巻き取る必要
がある。冷却しない場合、フィルム走行中に発生する張
力や捲取張力によって縦方向にフィルムが延ばされてし
まい、しわを誘発したり、得られたフィルムの縦方向の
熱水収縮率が大きくなってしまったりして本発明の目的
を達成できない。好ましくはガラス転移点温度(Tg )
以下、より好ましくは室温以下に冷却する。このための
冷却手法は、フィルム全幅を冷却しうるものなら特に限
定されず、チルロール、冷風吹出しノズルなど公知の方
法が適用しうる。
In the present invention, it is necessary to immediately cool and wind the biaxially oriented polyamide film obtained under the above conditions. If not cooled, the film will be stretched in the longitudinal direction due to the tension and winding tension generated during film running, causing wrinkles and increasing the vertical hot water shrinkage of the obtained film. The purpose of the present invention cannot be achieved by rolling. Preferably the glass transition temperature (Tg)
The cooling is performed below, more preferably below room temperature. The cooling method for this is not particularly limited as long as it can cool the entire width of the film, and a known method such as a chill roll or a cool air blowing nozzle can be applied.

【0026】なお、弧状型浮上式処理装置の前後のフィ
ルム導入出部位にはテンションカットできる装置を併設
することが好ましく、この装置としては、例えば、サク
ションロール、Sラップロールなどが挙げられる。
It is preferable that a device capable of cutting the tension be provided in addition to the film introduction / desorption portions before and after the arc-shaped floating type processing device. Examples of the device include a suction roll and an S-wrap roll.

【0027】[0027]

【実施例】つぎに、本発明を実施例によって具体的に説
明する。なお、以下の実施例および比較例の評価に用い
た測定方法、ならびに特性値の算出方法は、つぎの通り
である。 ・熱水収縮率 2軸配向ポリアミドフィルムの全幅に対して中央部から
左右に全幅の35%の位置に、油性インクで100mm
間隔の平行線をマークし、これを幅10mmにスリット
した。得られた試料を温度20℃、相対湿度65%の雰
囲気下で2時間調湿し、調湿後のマーク間の寸法(以
後、「処理前の寸法」という)を測定した。これを10
0℃熱水中で5分間ボイル処理し、その後、再度、温度
20℃、相対湿度65%の雰囲気下で2時間調湿後、マ
ーク間の寸法(以後、「処理後の寸法」という)を測定
した。これらの測定値を用い、下式にて熱水収縮率を算
出した。
Next, the present invention will be described specifically with reference to examples. In addition, the measurement method used for evaluation of the following Examples and Comparative Examples, and the calculation method of the characteristic value are as follows.・ Hot water shrinkage ratio 100 mm with oil-based ink at a position 35% of the total width from the center to the left and right with respect to the entire width of the biaxially oriented polyamide film
A parallel line of the interval was marked, and this was slit to a width of 10 mm. The obtained sample was conditioned for 2 hours in an atmosphere at a temperature of 20 ° C. and a relative humidity of 65%, and the dimension between marks after the conditioning (hereinafter referred to as “dimension before processing”) was measured. This is 10
After boiling for 5 minutes in hot water of 0 ° C., and then humidifying again in an atmosphere of a temperature of 20 ° C. and a relative humidity of 65% for 2 hours, a dimension between marks (hereinafter, “dimension after processing”) is obtained. It was measured. Using these measured values, the hot water shrinkage was calculated by the following equation.

【0028】[0028]

【数1】 (Equation 1)

【0029】・熱水収縮率斜め差 フィルムの縦方向を基準にして、45度および135度
の各方向の熱水収縮率の差の絶対値を、熱水収縮率斜め
差とした。すなわち、 熱水収縮率斜め差(%)=|45度の方向の熱水収縮率
−135度の方向の熱水収縮率| ・破断強度 2軸配向ポリアミドフィルムを、長さ150mm、幅1
0mmにサンプリングし、温度20℃、相対湿度65%
の雰囲気下で2時間調湿した。そして、島津(株)社製
オートグラフAG−100E型を使用し、温度20℃、
相対湿度65%の条件下で、調湿したフィルムをチャッ
ク間距離100mmで掴み、引っ張り速度500mm/
分で引っ張って破断させ、そのときの強度を測定した。 ・横延伸性 2時間の連続生産を行い、そのときにほとんど破断が生
じないものを○、しばしば破断が生じ、連続生産性に乏
しいものを×と評価した。 実施例1〜6 相対粘度3. 0( 95%濃硫酸中、25℃)のナイロン
6(ユニチカ社製A1030BRF、融点:220℃)
を、260℃で、幅が630mmのTダイよりシート状
に溶融押出し、その後、エアーナイフキャスト法により
15℃の回転ドラムに密着させて急冷し、厚さ150μ
mの実質的に無定形で配向していない未延伸ポリアミド
フィルム(以後、単に「未延伸フィルム」という)を得
た。
Oblique difference in hot water shrinkage The absolute value of the difference between the hot water shrinkage in each direction of 45 ° and 135 ° with respect to the longitudinal direction of the film was defined as the hot water shrinkage oblique difference. Hot water shrinkage diagonal difference (%) = | Hot water shrinkage in the direction of 45 ° -Hot water shrinkage in the direction of 135 ° | Breaking strength A biaxially oriented polyamide film was prepared with a length of 150 mm and a width of 1
Sampling to 0mm, temperature 20 ℃, relative humidity 65%
Under the atmosphere for 2 hours. Then, using an autograph AG-100E manufactured by Shimadzu Corporation at a temperature of 20 ° C.
Under the condition of a relative humidity of 65%, the moisture-conditioned film is gripped at a distance between the chucks of 100 mm, and a pulling speed of 500 mm /
Then, it was broken by pulling in minutes, and the strength at that time was measured. -Lateral stretchability Continuous production was performed for 2 hours. At that time, those that hardly broke were evaluated as ○, and those that frequently broke and poor in continuous productivity were evaluated as x. Examples 1 to 6 Nylon 6 (A1030BRF manufactured by Unitika, melting point: 220 ° C.) having a relative viscosity of 3.0 (in 95% concentrated sulfuric acid at 25 ° C.)
Is melt-extruded in a sheet form from a T-die having a width of 630 mm at 260 ° C., and then closely cooled to a rotating drum at 15 ° C. by an air knife casting method, and rapidly cooled to a thickness of 150 μm.
As a result, an unstretched, substantially amorphous, unoriented polyamide film (hereinafter simply referred to as “unstretched film”) was obtained.

【0030】ついで、この未延伸フィルムを周速の異な
る一連の加熱ローラ群からなる縦延伸機に導き、55℃
の温度で表1に示した種々の条件で縦延伸して、一軸延
伸ポリアミドフィルム(以後、単に「縦延伸フィルム」
という)を得た。
Then, the unstretched film was guided to a longitudinal stretching machine comprising a series of heating rollers having different peripheral speeds,
The film is stretched longitudinally under the various conditions shown in Table 1 at a temperature of
).

【0031】続いて、この縦延伸フィルムをテンター式
横延伸機に導いてクリップに把持させ、60℃でフィル
ム延伸のための予熱を行ったあと、90℃の温度で表1
に示した種々の倍率で横延伸した。その後、同テンター
内で210℃で定幅熱処理を施し、200℃の温度で、
それぞれ表1に示す条件で弛緩することで、中間段階の
二軸配向ポリアミドフィルムを得た。
Subsequently, the longitudinally stretched film was guided to a tenter-type transverse stretching machine, gripped by clips, and preheated at 60 ° C. for film stretching.
The film was transversely stretched at various magnifications as shown in FIG. Thereafter, a constant width heat treatment is performed at 210 ° C. in the same tenter, and at a temperature of 200 ° C.
By relaxing under the conditions shown in Table 1, an intermediate-stage biaxially oriented polyamide film was obtained.

【0032】引き続いて、この中間段階の二軸配向ポリ
アミドフィルムの両端をいったんクリップから解放して
端部の未延伸残部をトリミングしたのち、浮上式熱処理
装置にて、180℃の温度で2. 0s間だけ再熱処理
し、表面温度20℃に調整した冷却ロールに接触させる
ことで直ちに冷却して、最終的な二軸配向ポリアミドフ
ィルムを得た。表1に、得られたフィルムの特性値を、
再熱処理製造条件とともに示す。
Subsequently, both ends of the biaxially oriented polyamide film in the intermediate stage are once released from the clips to trim the remaining unstretched end portions, and then subjected to a floating heat treatment apparatus at a temperature of 180 ° C. for 2.0 seconds. The sheet was reheated only for a short time, and immediately cooled by contact with a cooling roll adjusted to a surface temperature of 20 ° C. to obtain a final biaxially oriented polyamide film. Table 1 shows the characteristic values of the obtained film.
This is shown together with the reheat treatment manufacturing conditions.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例7 再熱処理条件を160℃、4. 0sとする以外は、実施
例1と同様にして、二軸配向ポリアミドフィルムを得
た。 実施例8 再熱処理条件を180℃、1. 2sとする以外は、実施
例1と同様にして、二軸配向ポリアミドフィルムを得
た。 実施例9 再熱処理条件を200℃、1. 0sとする以外は、実施
例1と同様にして、二軸配向ポリアミドフィルムを得
た。
Example 7 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that the reheat treatment conditions were changed to 160 ° C. and 4.0 s. Example 8 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that the conditions for the reheat treatment were set to 180 ° C. and 1.2 s. Example 9 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that the reheat treatment was performed at 200 ° C. and 1.0 s.

【0035】これら実施例1〜9では、いずれも式
(1)のように縦延伸倍率Xを2. 7≦X≦3. 0と
し、また式(2)のように横延伸倍率:Yを3. 4≦Y
≦4. 0とするとともに、式(3)のように縦横延伸倍
率比をY≧1. 3Xとし、さらに式(4)のように弛緩
率:Zを1. 0≦Z≦4. 0(%)としたため、再熱処
理前に熱水収縮率がSMD<STDとなるようにすることが
できた。
In each of Examples 1 to 9, the longitudinal stretching ratio X was set to 2.7 ≦ X ≦ 3.0 as in the formula (1), and the lateral stretching ratio: Y was changed to Y as in the formula (2). 3.4 ≦ Y
≦ 4.0, the longitudinal / lateral stretching ratio is Y ≧ 1.3X as in the formula (3), and the relaxation ratio: Z is 1.0 ≦ Z ≦ 4.0 as in the formula (4). %), It was possible to make the hot water shrinkage ratio SMD <STD before the reheat treatment.

【0036】弛緩処理後かつ再熱処理の前の段階におい
ては、SMDが2.0%以下、STDが2.9%以下、SMD
<STD、かつ熱水収縮率斜め差が1.8%を越えるもの
であったため、再熱処理後に極端に熱収縮することがな
く、熱寸法安定性に優れ、熱水収縮率斜め差が効果的に
低減されたフィルムが得られた。
At the stage after the relaxation treatment and before the reheat treatment, the SMD is 2.0% or less, the STD is 2.9% or less, and the SMD is 2.0% or less.
<STD and hot water shrinkage diagonal difference of more than 1.8% do not cause extreme heat shrinkage after re-heat treatment, excellent thermal dimensional stability, and effective hot water shrinkage diagonal difference Was obtained.

【0037】再熱処理後においては、SMDが2.0%以
下、STDが1.0%以下、かつ熱水収縮率斜め差が1.
8%以下であったため、熱寸法安定性がよく、製袋後の
袋ひねりも殆ど生じず、実用に供するものであった。
After the reheat treatment, the SMD is 2.0% or less, the STD is 1.0% or less, and the difference in the hot water shrinkage is 1.
Since it was 8% or less, the thermal dimensional stability was good and the bag twist after bag making hardly occurred, so that it was practically used.

【0038】また、フィルムの縦方向とその直角方向と
の破断強度がともに25kgf/mm2 以上であり、実用上に
おいて充分な強度が得られた。フィルムの横延伸性も良
好であり、2時間の連続生産を行ってもほとんど破断が
生じなかった。
Further, the breaking strength in both the longitudinal direction and the perpendicular direction of the film was 25 kgf / mm 2 or more, and sufficient strength in practical use was obtained. The film had good transverse stretchability, and hardly any breakage occurred even after continuous production for 2 hours.

【0039】すなわち、表1から明らかなように、本発
明の製造条件によって初めて、操業性の悪化や強度低下
を引き起こすことなく、寸法安定性に優れ、熱水収縮率
斜め差が極小化されたフィルムが得られた。 比較例1〜8 実施例1と同様にして厚さ150μmの未延伸フィルム
を得た。続いて、延伸倍率を前記式(1)〜(3)を満
たさない条件として延伸した。そして、それ以外は実施
例1と同様にして、二軸配向ポリアミドフィルムを得
た。
That is, as is evident from Table 1, the dimensional stability was excellent and the difference in the hot water shrinkage ratio was minimized for the first time under the manufacturing conditions of the present invention without causing deterioration in operability and strength. A film was obtained. Comparative Examples 1 to 8 An unstretched film having a thickness of 150 μm was obtained in the same manner as in Example 1. Subsequently, stretching was performed under the condition that the stretching ratio did not satisfy the above formulas (1) to (3). Then, otherwise, in the same manner as in Example 1, a biaxially oriented polyamide film was obtained.

【0040】比較例1、2においては、熱水収縮率斜め
差は小さいものの、縦延伸倍率が式(1)の範囲未満で
あったため、縦方向の強度が低く、実用に供せないもの
しか得られなかった。
In Comparative Examples 1 and 2, although the diagonal difference in the hot water shrinkage ratio was small, the longitudinal stretching ratio was less than the range of the formula (1). Could not be obtained.

【0041】比較例3〜6においては、縦横延伸倍率比
が式(3)の条件を満たしておらず、再熱処理前の熱水
収縮率がSMD>STDとなるために、最終的に得られるフ
ィルムの熱水収縮率斜め差を極小化することができなか
った。さらに比較例5の条件では縦延伸倍率が高く、横
延伸時に切断が多発した。
In Comparative Examples 3 to 6, the longitudinal / lateral stretching ratio does not satisfy the condition of the formula (3), and the hot water shrinkage ratio before re-heat treatment is SMD> STD. The hot water shrinkage diagonal difference of the film could not be minimized. Further, under the conditions of Comparative Example 5, the longitudinal stretching ratio was high, and frequent cutting occurred during transverse stretching.

【0042】比較例7〜8においては、横延伸倍率が式
(2)の範囲を越えていたので、再熱処理後にも横方向
の熱水収縮率STDの大きいものしか得られず、熱寸法安
定性が悪かった。また横延伸時にしばしば破断が生じ、
連続生産性が乏しかった。 比較例9 弛緩率を6. 0%とした以外は実施例1と同様にして二
軸配向ポリアミドフィルムを得た。しかしながら、再熱
処理前の熱水収縮率がSMD>STDなる関係となったた
め、比較例3〜6と同様、熱水収縮率斜め差の大きいも
のしか得られなかった。 比較例10 再熱処理条件を150℃、10sとした以外は実施例1
と同様にして、二軸配向ポリアミドフィルムを得た。し
かしながら、この条件では、再熱処理の温度が低すぎ、
また時間が長すぎたため、再熱処理の前後において熱水
収縮率斜め差に変化がなく、再熱処理効果は発現しなか
った。 比較例11 再熱処理条件を210℃、2. 0sとした以外は実施例
1と同様にして、二軸配向ポリアミドフィルムを得た。
しかしながら、この条件では、再熱処理の温度が高すぎ
たため、横方向に過度にフィルムが収縮し、しわの混入
したものしか得られなかった。また熱水収縮率斜め差も
大きかった。 比較例12 再熱処理時間を0. 5sとたる以外は実施例1と同様に
して、二軸配向ポリアミドフィルムを得た。しかしなが
ら、この条件では、再熱処理の時間が短すぎて処理効果
が現れず、再熱処理の前後で熱水収縮率は変化しなかっ
た。 比較例13 弛緩率を0%とした以外は実施例1と同様にして、二軸
配向ポリアミドフィルムを得た。しかしながら、この条
件では、再熱処理前の横方向の熱水収縮率STDが大きく
なりすぎ、再熱処理によっても横方向の熱水収縮率STD
は大きく、熱水収縮率斜め差が大きくなり、本発明の目
的を達成できなかった。 比較例14 浮上式熱処理装置による再熱処理の後に冷却しない以外
は、実施例1と同様にして、二軸配向ポリアミドフィル
ムを得た。しかしながら、フィルム走行中に発生する張
力や捲取張力によって縦方向にフィルムが伸ばされ、結
果として、縦方向の熱水収縮率SMDが大きくなり、ま
た、熱水収縮率斜め差も大きくなった。また、縦方向に
しわが発生し、外観の悪いものしか得られなかった。
In Comparative Examples 7 and 8, since the transverse stretching ratio was beyond the range of the formula (2), only those having a large transverse hot water shrinkage ratio STD after re-heat treatment were obtained, and the thermal dimensional stability was high. Sex was bad. Also often breaks during transverse stretching,
Continuous productivity was poor. Comparative Example 9 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the relaxation rate was 6.0%. However, since the hot water shrinkage ratios before the reheat treatment were in a relationship of SMD> STD, as in Comparative Examples 3 to 6, only those having a large difference in the hot water shrinkage ratio were obtained. Comparative Example 10 Example 1 was repeated except that the reheat treatment was performed at 150 ° C. for 10 seconds.
In the same manner as in the above, a biaxially oriented polyamide film was obtained. However, under these conditions, the temperature of the reheat treatment is too low,
Further, since the time was too long, there was no change in the oblique difference in the hot water shrinkage ratio before and after the reheat treatment, and the reheat treatment effect was not exhibited. Comparative Example 11 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that the reheating condition was set to 210 ° C. and 2.0 s.
However, under these conditions, since the temperature of the reheat treatment was too high, the film was excessively shrunk in the lateral direction, and only those containing wrinkles were obtained. The oblique difference in the hot water shrinkage was also large. Comparative Example 12 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that the reheat treatment time was 0.5 s. However, under these conditions, the reheating treatment time was too short to produce a treatment effect, and the hot water shrinkage ratio did not change before and after the reheating treatment. Comparative Example 13 A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the relaxation rate was set to 0%. However, under these conditions, the transverse hot water shrinkage ratio STD before the reheat treatment becomes too large, and the transverse hot water shrinkage ratio STD even after the reheat treatment.
Was large, and the difference in hot water shrinkage ratio was large, and the object of the present invention could not be achieved. Comparative Example 14 A biaxially oriented polyamide film was obtained in the same manner as in Example 1, except that cooling was not performed after the reheat treatment by the floating heat treatment apparatus. However, the film was stretched in the vertical direction due to the tension and the winding tension generated during the running of the film, and as a result, the hot water shrinkage SMD in the vertical direction was increased, and the difference in the hot water shrinkage was also increased. In addition, wrinkles occurred in the vertical direction, and only poor appearance was obtained.

【0043】[0043]

【発明の効果】本発明によれば、寸法安定性に優れ、か
つ、熱水収縮率斜め差を極小化させたフィルムを破断な
く製造することができ、逐次二軸延伸法による二軸配向
ポリアミドフィルムの製造方法として、極めて有効であ
る。また、得られるフィルムは、幅方向にも物性が均一
であるため、これまで制限されていた二軸配向ポリアミ
ドフィルムの利用範囲の拡大がはかれる。
According to the present invention, it is possible to produce a film having excellent dimensional stability and minimizing the difference in oblique hot water shrinkage without breaking, and a biaxially oriented polyamide by a sequential biaxial stretching method. It is extremely effective as a method for producing a film. In addition, since the obtained film has uniform physical properties in the width direction, the range of use of the biaxially oriented polyamide film, which has been limited so far, can be expanded.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 実質的に無定形、無配向の未延伸フィル
ムを縦延伸し、ついで、テンター式横延伸機で横延伸し
て逐次二軸延伸ポリアミドフィルムを製造するに際し、
下記式(1)〜(3)の条件で延伸を行い、つぎに熱処
理を行い、その後に下記式(4)の条件で弛緩処理を行
い、この延伸フィルムの両端を前記テンター式横延伸機
のクリップから解放して浮上式熱処理装置により下記式
(5)(6)の条件で再熱処理して横方向に弛緩させ、
つぎに直ちに冷却して巻き取ることを特徴とするポリア
ミドフィルムの製造方法。 縦延伸倍率:X 2. 7≦X≦3. 0 (1) 横延伸倍率:Y 3. 4≦Y≦4. 0 (2) 縦横延伸倍率比 Y≧1. 3X (3) 弛緩率:Z 1. 0≦Z≦4. 0(%) (4) 再熱処理温度:T 160≦T≦200(℃) (5) 再熱処理時間:θt 1. 0≦θt ≦4. 0(s) (6)
1. A substantially amorphous, non-oriented, unstretched film is longitudinally stretched, and then horizontally stretched by a tenter-type transverse stretching machine to produce a sequentially biaxially stretched polyamide film.
Stretching is performed under the conditions of the following formulas (1) to (3), then heat treatment is performed, and then relaxation treatment is performed under the condition of the following formula (4). After releasing from the clip, it is reheated by the floating heat treatment device under the conditions of the following formulas (5) and (6) to relax in the lateral direction.
Next, a method for producing a polyamide film, comprising immediately cooling and winding. Longitudinal stretching ratio: X 2.7 ≦ X ≦ 3.0 (1) Lateral stretching ratio: Y 3.4 ≦ Y ≦ 4.0 (2) Ratio of longitudinal to transverse stretching ratio Y ≧ 1.3X (3) Relaxation ratio: Z 1.0 ≦ Z ≦ 4.0 (%) (4) Reheat treatment temperature: T 160 ≦ T ≦ 200 (° C.) (5) Reheat treatment time: θt 1.0 ≦ θt ≦ 4.0 (s) (6) )
【請求項2】 弛緩処理を行った後かつ再熱処理を行う
前の段階において、フィルムの縦方向の熱水収縮率が
2.0%以下、この縦方向と直角な方向の熱水収縮率が
2.9%以下、(縦方向の熱水収縮率)<(縦方向と直
角な方向の熱水収縮率)、かつフィルムの縦方向に対し
て45度の方向と135度の方向との熱水収縮率の差が
1.8%を越えることを特徴とする請求項1記載のポリ
アミドフィルムの製造方法。
2. After the relaxation treatment and before the re-heat treatment, the film has a hot water shrinkage of 2.0% or less in a longitudinal direction and a hot water shrinkage in a direction perpendicular to the longitudinal direction. 2.9% or less, (Hot water shrinkage in the vertical direction) <(Hot water shrinkage in the direction perpendicular to the vertical direction), and heat in directions of 45 degrees and 135 degrees with respect to the vertical direction of the film 2. The method for producing a polyamide film according to claim 1, wherein the difference in water shrinkage exceeds 1.8%.
【請求項3】 請求項1記載の製造方法で得たポリアミ
ドフィルムであって、フィルムの縦方向の熱水収縮率が
2. 0%以下、この縦方向と直角な方向の熱水収縮率が
1. 0%以下、フィルムの縦方向に対して45度の方向
と135度の方向との熱水収縮率の差が1.8%以下、
かつフィルムの縦方向とその直角方向との破断強度がと
もに25kgf/mm2 以上であることを特徴とする二軸配向
ポリアミドフィルム。
3. The polyamide film obtained by the production method according to claim 1, wherein the hot water shrinkage in the longitudinal direction of the film is 2.0% or less, and the hot water shrinkage in a direction perpendicular to the longitudinal direction is less than 2.0%. 1.0% or less, the difference in hot water shrinkage ratio between the direction of 45 degrees and the direction of 135 degrees with respect to the longitudinal direction of the film is 1.8% or less,
A biaxially oriented polyamide film characterized in that the breaking strength in both the longitudinal direction and the perpendicular direction of the film is 25 kgf / mm 2 or more.
JP17530296A 1996-07-05 1996-07-05 Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method Expired - Fee Related JP3676883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17530296A JP3676883B2 (en) 1996-07-05 1996-07-05 Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17530296A JP3676883B2 (en) 1996-07-05 1996-07-05 Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method

Publications (2)

Publication Number Publication Date
JPH1016047A true JPH1016047A (en) 1998-01-20
JP3676883B2 JP3676883B2 (en) 2005-07-27

Family

ID=15993730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17530296A Expired - Fee Related JP3676883B2 (en) 1996-07-05 1996-07-05 Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method

Country Status (1)

Country Link
JP (1) JP3676883B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015743A (en) * 2004-06-02 2006-01-19 Toyobo Co Ltd Polyamide resin laminated film roll and its manufacturing method
JP2006015742A (en) * 2004-06-02 2006-01-19 Toyobo Co Ltd Polyamide resin laminated film roll and its manufacturing method
WO2006112090A1 (en) * 2005-04-01 2006-10-26 Toyo Boseki Kabushiki Kaisha Film roll of polyamide-based blend resin and process for producing the same
JP2007130759A (en) * 2004-06-02 2007-05-31 Toyobo Co Ltd Polyamide resin film roll and its manufacturing method
KR100962078B1 (en) * 2005-12-27 2010-06-09 주식회사 효성 Biaxial polyamid film for retort foodstuffs packing and the manufacturing method
JPWO2017217435A1 (en) * 2016-06-15 2018-07-12 ユニチカ株式会社 Polyamide film and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015743A (en) * 2004-06-02 2006-01-19 Toyobo Co Ltd Polyamide resin laminated film roll and its manufacturing method
JP2006015742A (en) * 2004-06-02 2006-01-19 Toyobo Co Ltd Polyamide resin laminated film roll and its manufacturing method
JP2007130759A (en) * 2004-06-02 2007-05-31 Toyobo Co Ltd Polyamide resin film roll and its manufacturing method
CN100349724C (en) * 2004-06-02 2007-11-21 东洋纺织株式会社 Polyamide resin film roll and its producing method
US8137817B2 (en) 2004-06-02 2012-03-20 Toyo Boseki Kabushiki Kaisha Polyamide based resin film roll and a process for producing the same
WO2006112090A1 (en) * 2005-04-01 2006-10-26 Toyo Boseki Kabushiki Kaisha Film roll of polyamide-based blend resin and process for producing the same
US8062740B2 (en) 2005-04-01 2011-11-22 Toyo Boseki Kabushiki Kaisha Polyamide based mixed resin film roll and process for producing the same
KR100962078B1 (en) * 2005-12-27 2010-06-09 주식회사 효성 Biaxial polyamid film for retort foodstuffs packing and the manufacturing method
JPWO2017217435A1 (en) * 2016-06-15 2018-07-12 ユニチカ株式会社 Polyamide film and method for producing the same

Also Published As

Publication number Publication date
JP3676883B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JPH0334456B2 (en)
JPH08174663A (en) Biaxially oriented polyamide resin film and production thereof
JP4001156B2 (en) Polyamide-based mixed resin film roll and method for producing the same
JP3829864B1 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JPH1016047A (en) Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH0552253B2 (en)
JPH1044230A (en) Preparation of biaxially oriented polyamide film
JPH10296853A (en) Manufacture of biaxially oriented polyamide film
JPS6161967B2 (en)
JP2617659B2 (en) Method for producing easily tearable film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JPH11348115A (en) Production of simultaneously biarxially stretched polyamide film
JP4962108B2 (en) Polyamide-based mixed resin film roll and method for producing the same
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPH11147254A (en) Manufacture of polyamide film
JP2000190387A (en) Manufacture of biaxially oriented polyamide film
JPH03193328A (en) Thermoplastic resin stretched film and its manufacture
JPH08197620A (en) Manufacture of biaxially oriented polyamide film
JP2001341198A (en) Biaxially stretched polyamide film and method for manufacturing the same
JP3822075B2 (en) Method for producing biaxially stretched polyamide resin film
JPS61244527A (en) Manufacture of biaxially oriented polyamide film
JPH0519449B2 (en)
JP4162844B2 (en) Method for producing biaxially stretched polyamide resin film
JP4218812B2 (en) Method for producing biaxially stretched polyamide film
JP2797624B2 (en) Method for producing biaxially stretched polyamide film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees