JP2006015742A - Polyamide resin laminated film roll and its manufacturing method - Google Patents

Polyamide resin laminated film roll and its manufacturing method Download PDF

Info

Publication number
JP2006015742A
JP2006015742A JP2005160551A JP2005160551A JP2006015742A JP 2006015742 A JP2006015742 A JP 2006015742A JP 2005160551 A JP2005160551 A JP 2005160551A JP 2005160551 A JP2005160551 A JP 2005160551A JP 2006015742 A JP2006015742 A JP 2006015742A
Authority
JP
Japan
Prior art keywords
polyamide
film
average
based resin
film roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005160551A
Other languages
Japanese (ja)
Other versions
JP4386000B2 (en
Inventor
Tadatsugu Nishi
忠嗣 西
Yoshinori Miyaguchi
義紀 宮口
Naonobu Oda
尚伸 小田
Katsuhiko Nose
克彦 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005160551A priority Critical patent/JP4386000B2/en
Publication of JP2006015742A publication Critical patent/JP2006015742A/en
Application granted granted Critical
Publication of JP4386000B2 publication Critical patent/JP4386000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented polyamide resin film roll smoothly susceptible to bag making processing due to lamination in a good yield and capable of efficiently obtaining a package extremely high in peel strength and hot water peel strength and having no S-shaped curl. <P>SOLUTION: This polyamide resin laminated film roll is constituted so that an adhesion modifying layer comprising a copolyester is laminated, the first sample cutting part is provided within a range of 2 m from the winding end of a film and the final cutting part is provided within a range of 2 m from the winding start of the film. In a case that a sample cutting part is provided at every about 100 m from the first sample cutting part, all of samples cut from the respective cutting parts are adjusted so that physical properties such as a boiling water shrinkage factor, a refractive index or the like in a thickness direction become fluctuation width within a predetermined range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリアミド系樹脂フィルムを巻き取ってなる長尺に亘って物性が均一で高品質なフィルムロールに関するものであり、詳しくは、ポリオレフィン系樹脂フィルムとラミネートしてレトルト食品等の包装に使用する際の加工性が良好なポリアミド系樹脂フィルムロールに関するものである。   The present invention relates to a high-quality film roll having uniform physical properties over a long length obtained by winding a polyamide resin film, and more specifically, used for packaging retort foods by laminating with a polyolefin resin film. It is related with the polyamide-type resin film roll with the favorable workability in making.

ナイロンを主成分とする二軸配向ポリアミド系樹脂フィルムは、強靭で、ガスバリヤー性、耐ピンホール性、透明性、印刷性等に優れているところから、各種液状食品、含水食品、冷凍食品、レトルト食品、ペースト状食品、畜肉・水産食品等の各種の食品の包装材料として広く実用化されており、殊に、近年では、レトルト食品の包装に広汎に利用されている。かかるポリアミド系樹脂フィルムは、たとえばポリエチレンやポリプロピレン等のポリオレフィン系樹脂フィルム等とラミネートし、流れ方向に平行に2つに折り畳んでから3辺を熱融着して切り出し、1辺が開放された開封状態の3方シール袋とされ、内部に各種の食品等を充填して密閉した後に、沸騰水中で加熱殺菌して市場に供される。   Biaxially oriented polyamide resin film mainly composed of nylon is tough and has excellent gas barrier properties, pinhole resistance, transparency, printability, etc., so it can be used for various liquid foods, water-containing foods, frozen foods, It has been widely put into practical use as a packaging material for various foods such as retort foods, pasty foods, livestock meat and fishery foods, and in recent years, it has been widely used for packaging retort foods. Such a polyamide-based resin film is laminated with, for example, a polyolefin-based resin film such as polyethylene or polypropylene, folded in two parallel to the flow direction, then heat-sealed on three sides, and opened on one side. The three-side sealed bag is in a state, filled with various foods and the like, sealed, and then heat-sterilized in boiling water for market.

ところが、二軸配向ポリアミド系樹脂フィルムを用いた場合には、加熱殺菌処理後に包装袋の隅部で反りが生じて4辺がS字状にカールする現象(以下、S字カール現象という)が生じ、包装商品としての見栄えが著しく悪化してしまうことがある。そのため、そのようなカール現象を低減させる方法として、特許文献1の如く、二軸配向ポリアミド系樹脂フィルムにおける沸水収縮歪み率と分子配向角のフィルム幅方向の変化率の積を特定の値に調整する方法が提案されているが、かかる方法では、沸騰水処理時における寸法安定性を高めるために、熱固定時の温度を極端に高くしたり、延伸後の緩和熱処理を過度に施したりする必要があるため、得られるフィルムの強靭性や耐ピンホール性が損なわれるといった問題が生じる。   However, when a biaxially oriented polyamide-based resin film is used, there is a phenomenon in which the corners of the packaging bag are warped after heat sterilization and the four sides curl into an S shape (hereinafter referred to as an S-curl phenomenon). It may occur and the appearance as a packaged product may be remarkably deteriorated. Therefore, as a method of reducing such curling phenomenon, as in Patent Document 1, the product of boiling water shrinkage strain rate and change rate of molecular orientation angle in the film width direction in a biaxially oriented polyamide resin film is adjusted to a specific value. In order to improve dimensional stability during boiling water treatment, it is necessary to extremely increase the temperature during heat setting or excessively perform relaxation heat treatment after stretching. Therefore, there arises a problem that the toughness and pinhole resistance of the obtained film are impaired.

それゆえ、出願人らは、特許文献2の如く、フィルムの沸水収縮率や屈折率を特定の数値範囲に調整することにより、強靭性や耐ピンホール性を低減させることなく、S字カール現象を生じない二軸配向ポリアミド系樹脂フィルムを得る方法を発明し提案した。   Therefore, as described in Patent Document 2, the applicants adjust the boiling water shrinkage and refractive index of the film to a specific numerical range, thereby reducing the S-curl phenomenon without reducing toughness and pinhole resistance. Invented and proposed a method for obtaining a biaxially oriented polyamide-based resin film that does not cause the problem.

特開平4−103335号公報Japanese Patent Laid-Open No. 4-103335 特開平8−174663号公報JP-A-8-174663

上記した特許文献2の方法によれば、強靱で耐ピンホール性に優れており、S字カール現象の生じない二軸配向ポリアミド系樹脂フィルムを得ることが可能となる。しかしながら、ラミネートによる製袋加工においては、熱融着させる際の圧力や時間等の条件は、使用するフィルムロール毎に微調整されるため、フィルムロールに巻かれたフィルムの沸水収縮率や屈折率等の物性値の平均値が特許文献2の範囲に入っている場合でも、一本のフィルムロールにおける変動量が大きい場合には、製袋加工において、ラミネートする際にフィルム同士の間に皺が入ったりして、歩留まりが悪くなる等のトラブルが生じ易い。   According to the method of Patent Document 2 described above, it is possible to obtain a biaxially oriented polyamide-based resin film that is tough and excellent in pinhole resistance and does not cause an S-curl phenomenon. However, in the bag making process by lamination, the conditions such as pressure and time when heat-sealing are finely adjusted for each film roll used, so the boiling water shrinkage and refractive index of the film wound around the film roll Even in the case where the average value of physical property values such as is within the range of Patent Document 2, if the amount of fluctuation in one film roll is large, there is a wrinkle between the films when laminating in the bag making process. And troubles such as poor yield are likely to occur.

一方、出願人らは、複数の樹脂を混合して溶融押し出した後に二軸延伸したフィルムを巻き取る二軸延伸フィルムロールの製造方法において、動摩擦係数の変動を小さくするための方法として、原料チップの形状を揃えることや押出機への原料供給部である漏斗状ホッパの傾斜角度を大きくすることによって原料の偏析を小さくする方法について提案した(特開2004−181777)。しかしながら、かかる方法も、フィルムロールに巻かれたフィルムの沸水収縮率や屈折率等の物性の変動やバラツキを抑えるための方法としては、必ずしも決定的な方法であるとはいえない。   On the other hand, in the manufacturing method of a biaxially stretched film roll for winding a biaxially stretched film after mixing and extruding a mixture of a plurality of resins, the applicants as raw material chips Proposed a method for reducing the segregation of the raw material by making the shape of the same and increasing the inclination angle of the funnel-like hopper which is a raw material supply unit to the extruder (Japanese Patent Laid-Open No. 2004-181777). However, this method is not necessarily a definitive method as a method for suppressing fluctuations and variations in physical properties such as boiling water shrinkage and refractive index of a film wound on a film roll.

それゆえ、出願人らは、高度に均一な二軸延伸フィルムロールを生産するための生産技術について鋭意検討を重ねた結果、フィルム厚み、沸水収縮率や屈折率等の物性が高度に均一で、ラミネートする際にフィルム同士の間に皺が入ることなく歩留まり良く製袋加工を施すことが可能なポリアミド系樹脂フィルムロールを発明するに至った(特願2004−262922)。   Therefore, as a result of earnestly examining the production technology for producing highly uniform biaxially stretched film rolls, the applicants have highly uniform physical properties such as film thickness, boiling water shrinkage rate and refractive index, The inventors have invented a polyamide-based resin film roll that can be formed with a high yield without causing wrinkles between the films when laminating (Japanese Patent Application No. 2004-262922).

上記したフィルム厚み、沸水収縮率や屈折率等の物性が高度に均一なポリアミド系樹脂フィルムロールによれば、ポリアミド系樹脂フィルムの良好な強靭性や耐ピンホール性を損なわず、S字カール現象を生じさせることなく、ラミネート加工時の加工性を良好なものとすることができる。しかしながら、ポリアミド系樹脂フィルム単体では、ラミネート加工する際の剥離強度に限界があり、生鮮食料品等の包装用途に必ずしも適しているとは言えない。また、ラミネート加工する際の剥離強度を高めるための方法として、一般的に、二軸延伸されたポリアミドフィルム表面に接着剤層を形成し、その上にドライラミネート法または押出ラミネート法によってシーラント層を設けて、ヒートシール性のポリアミドフィルム積層体とする方法が知られている。このフィルム積層体に必要に応じて印刷を施した上で、これをたとえば袋状に成形し、そして内容物、たとえば味噌や醤油等の調味料、スープやレトルト食品等の水分含有食品あるいは薬品等を充填後、開ロ部をヒートシールすることによって、一般消費者に提供される包装品となる。   According to the polyamide resin film roll having highly uniform physical properties such as film thickness, boiling water shrinkage and refractive index as described above, the S-curl phenomenon is maintained without deteriorating the good toughness and pinhole resistance of the polyamide resin film. The processability at the time of laminating can be made good without causing the above. However, the polyamide-based resin film alone has a limit in the peel strength at the time of lamination, and is not necessarily suitable for packaging applications such as fresh food products. Also, as a method for increasing the peel strength when laminating, generally, an adhesive layer is formed on the surface of a biaxially stretched polyamide film, and a sealant layer is formed thereon by a dry laminating method or an extrusion laminating method. A method of providing a heat-sealable polyamide film laminate is known. The film laminate is printed as necessary, and then molded into a bag shape, and the contents, for example, seasonings such as miso and soy sauce, water-containing foods such as soup and retort foods, chemicals, etc. After filling, the open portion is heat-sealed to provide a packaged product provided to general consumers.

しかしながら、ポリアミド系樹脂フィルムの物性が不均一であると、シーラント層等を積層した積層ポリアミドフィルムの特性も不均一になってしまい、ラミネート加工した際の剥離強度にバラツキが生じてしまう。   However, if the physical properties of the polyamide-based resin film are non-uniform, the characteristics of the laminated polyamide film in which the sealant layer and the like are laminated also become non-uniform, resulting in variations in peel strength when laminated.

一方、上記のようなシーラント層を有するポリアミドフィルム積層体を形成する各層間に水分が侵入すると、層間の接着力が著しく低下するという問題点がある。これは、包装袋として使用すると破損の原因となる。たとえば、シーラント層を有するポリアミドフィルム積層体を用いたレトルト食品袋を沸水処理あるいはレトルト処理する場合、この問題点は顕著に現れ、袋はいっそう破損し易くなる。また、包装製品の高級化につれて全面多色刷り印刷が普及し、印刷インキ層の存在に基づく層間接着力の低下といった問題も生じてくる。さらに、二軸延伸ポリアミドフィルム層とシーラント層との間に接着剤層が介在する場合、接着剤の種類によっては湿度によってその接着力に影響を受け易く、特に湿度硬化型の接着剤を用いた場合はその影響が顕著に現れ、季節によって接着力が大きく変化するという問題点がある。   On the other hand, when moisture penetrates into each layer forming the polyamide film laminate having the sealant layer as described above, there is a problem that the adhesive strength between the layers is remarkably reduced. This causes damage when used as a packaging bag. For example, when a retort food bag using a polyamide film laminate having a sealant layer is subjected to boiling water treatment or retort treatment, this problem appears remarkably, and the bag is more easily damaged. In addition, as multi-color printing on the entire surface becomes widespread as packaging products become more expensive, problems such as a decrease in interlayer adhesion due to the presence of a printing ink layer also arise. Furthermore, when an adhesive layer is interposed between the biaxially stretched polyamide film layer and the sealant layer, depending on the type of the adhesive, it is easily affected by the adhesive force depending on the humidity, and in particular, a humidity curable adhesive is used. In some cases, the effect appears prominently, and there is a problem that the adhesive strength varies greatly depending on the season.

本発明は、ラミネート加工した際の剥離強度が高度に均一なポリアミド系樹脂積層フィルムロールを生産するための生産技術について鋭意研究開発の結果、達成されたものであり、その目的は、従来のポリアミド系樹脂積層フィルムロールの問題点を解消し、ラミネート加工した際の剥離強度がきわめて高く、高度に均一である上、ほとんどトラブルなくスムーズにラミネートによる製袋加工を行うことができ、S字カールのない包装物を効率的に得ることが可能なポリアミド系樹脂積層フィルムロールを提供することにある。また、製袋加工等の後加工において、高い歩留まりで加工品を得ることが可能なポリアミド系樹脂積層フィルムロールを提供することにある。加えて、そのようなポリアミド系樹脂積層フィルムロールを効率的に製造することが可能な製造方法を提供することにある。   The present invention has been achieved as a result of earnest research and development on production technology for producing a polyamide-based resin laminated film roll having a highly uniform peel strength when laminated, and the object thereof is the conventional polyamide This eliminates the problems associated with resin-based laminated film rolls, has extremely high peel strength when laminated, and is highly uniform, making it possible to carry out bag-making by lamination smoothly and with almost no trouble. An object of the present invention is to provide a polyamide-based resin laminated film roll capable of efficiently obtaining an unwrapped package. Another object of the present invention is to provide a polyamide-based resin laminated film roll capable of obtaining a processed product with a high yield in post-processing such as bag making. In addition, it is providing the manufacturing method which can manufacture such a polyamide-type resin laminated | multilayer film roll efficiently.

かかる本発明の内、請求項1に記載された発明の構成は、少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(1)〜(3)を満たすことにある。
(1)前記各切り出し部から切り出された各試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が2%〜6%であるとともに、すべての試料の最大沸水収縮率の変動率が、前記平均沸水収縮率に対して±2%〜±10%の範囲内である
(2)前記各切り出し部から切り出された各試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下であるとともに、すべての試料の沸水収縮率方向差の変動率が、前記平均沸水収縮率方向差に対して±2%〜±10%の範囲内である
(3)巻取られたロールの長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%の範囲内である
Among the present inventions, the structure of the invention described in claim 1 is such that an adhesion modified layer made of a copolymerized polyester is laminated on at least one side, the width is 0.2 m or more and 3.0 m or less, and the length is 300 m. A polyamide-based resin laminated film roll obtained by winding a polyamide-based resin film having a length of 30000 m or less, and the first sample cut-out portion within 2 m from the end of film winding, and the final within 2 m from the start of film winding When the sample cutout portion is provided at intervals of about 100 m from the first sample cutout portion, the following requirements (1) to (3) are satisfied.
(1) For each sample cut out from each cutout part, when measuring the maximum boiling water shrinkage, which is the maximum value of the boiling water shrinkage in all directions, the average is the average value of the maximum boiling water shrinkage The boiling water shrinkage is 2% to 6%, and the variation rate of the maximum boiling water shrinkage of all the samples is within a range of ± 2% to ± 10% with respect to the average boiling water shrinkage (2) For each sample cut out from each cut-out part, the boiling water shrinkage direction difference, which is the absolute value of the difference between the boiling water shrinkage rate in the +45 degree direction with respect to the longitudinal direction and the boiling water shrinkage ratio in the −45 degree direction with respect to the longitudinal direction, is obtained. The average boiling water shrinkage direction difference, which is the average value of the boiling water shrinkage direction differences, is 1.5% or less, and the variation rate of the boiling water shrinkage direction difference of all the samples is the average boiling water shrinkage. Within ± 2% to ± 10% of rate direction difference There (3) rate of change in thickness over the entire length in the longitudinal direction of the wound roll is in the range of from ± 2% ~ ± 10% relative to the average thickness

請求項2に記載された発明の構成は、請求項1に記載された発明において、各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±2%以内の範囲であることにある。   The configuration of the invention described in claim 2 is that, in the invention described in claim 1, when the refractive index in the thickness direction is measured for each sample cut out from each cutout portion, the average of those refractive indexes is measured. The average refractive index as a value is 1.500 or more and 1.520 or less, and the variation rate of the refractive index of all the samples is within a range of ± 2% with respect to the average refractive index.

請求項3に記載された発明の構成は、請求項1に記載された発明において、前記接着改質層が、共重合ポリエステル水系分散体を含む塗布剤を付与することにより形成されており、前記共重合ポリエステル水系分散体が、グラフト化ポリエステルの粒子と水系溶媒とを含み、前記グラフト化ポリエステルが、ポリエステル主鎖と、親水性基を有するラジカル重合性単量体を含むラジカル重合性単量体により形成されるグラフト部分とを有し、前記グラフト化ポリエステル粒子の平均粒子径が500nm以下であり、そして前記グラフト化ポリエステル粒子のポリエステル主鎖に由来するカルボニル炭素の13C−NMRシグナルの半値幅が300Hz以上であることにある。 The structure of the invention described in claim 3 is the invention described in claim 1, wherein the adhesion-modified layer is formed by applying a coating agent containing a copolymerized polyester aqueous dispersion, A copolymerizable polyester aqueous dispersion comprising grafted polyester particles and an aqueous solvent, wherein the grafted polyester comprises a polyester main chain and a radical polymerizable monomer having a hydrophilic group. A half-width of a 13 C-NMR signal of carbonyl carbon derived from the polyester main chain of the grafted polyester particle, wherein the grafted polyester particle has an average particle size of 500 nm or less Is 300 Hz or more.

請求項4に記載された発明の構成は、請求項1に記載された発明において、ポリアミド系樹脂フィルムを構成するポリアミドの主成分がナイロン6であることにある。   The structure of the invention described in claim 4 is that, in the invention described in claim 1, the main component of the polyamide constituting the polyamide resin film is nylon 6.

請求項5に記載された発明の構成は、請求項1に記載された発明において、異なる2種以上のポリアミド系樹脂の混合物から形成されたポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 5 is that, in the invention described in claim 1, a polyamide resin film formed from a mixture of two or more different polyamide resins is wound up. .

請求項6に記載された発明の構成は、請求項1に記載された発明において、巻き取ったポリアミド系樹脂フィルムがポリオレフィン系樹脂フィルムとラミネートされるものであることにある。   The structure of the invention described in claim 6 is that, in the invention described in claim 1, the wound polyamide resin film is laminated with the polyolefin resin film.

請求項7に記載された発明の構成は、請求項1に記載された発明において、溶融させたポリアミド系樹脂をTダイから押し出し、金属ロールに接触させて冷却することによって得られた未配向のシート状物を二軸に延伸したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 7 is the non-oriented structure obtained in the invention described in claim 1 by extruding the melted polyamide-based resin from the T-die and bringing it into contact with a metal roll and cooling it. That is, a polyamide-based resin film obtained by biaxially stretching a sheet-like material is wound up.

請求項8に記載された発明の構成は、請求項1に記載された発明において、テンター延伸法により延伸したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 8 is that, in the invention described in claim 1, the polyamide resin film stretched by the tenter stretching method is wound.

請求項9に記載された発明の構成は、請求項1に記載された発明において、逐次二軸延伸したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 9 is that in the invention described in claim 1, the polyamide-based resin film that has been sequentially biaxially stretched is wound.

請求項10に記載された発明の構成は、請求項1に記載された発明において、縦方向と横方向との二軸に延伸したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 10 is that, in the invention described in claim 1, a polyamide-based resin film stretched biaxially in the vertical direction and the horizontal direction is wound.

請求項11に記載された発明の構成は、請求項1に記載された発明において、実質的に未配向のポリアミド系樹脂からなるシート状物を、前記ポリアミド系樹脂のガラス転移温度+20℃よりも高温で3倍以上の倍率となるように少なくとも2段階で縦方向に延伸を施した後に、3倍以上の倍率となるように横方向に延伸を施したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 11 is the invention described in claim 1, wherein the sheet-like material made of a substantially unoriented polyamide resin is more than the glass transition temperature of the polyamide resin + 20 ° C. A polyamide-based resin film that has been stretched in the longitudinal direction in at least two stages so as to obtain a magnification of 3 times or more at a high temperature and then wound in the transverse direction so as to obtain a magnification of 3 or more times. There is to be.

請求項12に記載された発明の構成は、請求項1に記載された発明において、最終的な延伸処理を施した後に熱固定したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 12 is that, in the invention described in claim 1, the polyamide-based resin film that is heat-set after the final stretching treatment is wound.

請求項13に記載された発明の構成は、請求項1に記載された発明において、熱固定後に弛緩処理を施したポリアミド系樹脂フィルムを巻き取ったものであることにある。   The structure of the invention described in claim 13 is that, in the invention described in claim 1, the polyamide resin film which has been subjected to relaxation treatment after heat setting is wound up.

請求項14に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤のうちの少なくとも1種が添加されていることにある。   The structure of the invention described in claim 14 is the same as that of the invention described in claim 1, but in the polyamide-based resin film wound up, a lubricant, an anti-blocking agent, a heat stabilizer, an antioxidant, and an antistatic agent. In addition, at least one of a light resistance agent and an impact resistance improvement agent is added.

請求項15に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、無機粒子が添加されていることにある。   The structure of the invention described in claim 15 is that, in the invention described in claim 1, inorganic particles are added to the wound polyamide resin film.

請求項16に記載された発明の構成は、請求項1に記載された発明において、無機粒子が、平均粒径0.5〜5.0μmのシリカ粒子であることにある。   The structure of the invention described in claim 16 is that, in the invention described in claim 1, the inorganic particles are silica particles having an average particle diameter of 0.5 to 5.0 μm.

請求項17に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、高級脂肪酸が添加されていることにある。   The structure of the invention described in claim 17 is that, in the invention described in claim 1, higher fatty acid is added to the wound polyamide-based resin film.

請求項18に記載された発明の構成は、請求項1に記載されたポリアミド系樹脂積層フィルムロールを製造するための製造方法であって、ポリアミド系樹脂チップを溶融押し出ししながら製膜するフィルム化工程と、そのフィルム化工程で得られる未延伸フィルムを縦方向および横方向に二軸延伸する二軸延伸工程と、二軸延伸後のフィルムの少なくとも片面に接着改質層層を積層する積層工程とを含んでおり、下記要件(a)〜(e)を満たすことにある。
(a)前記二軸延伸工程が、縦方向に2段階で延伸した後に横方向に延伸するものであるとともに、前記縦方向の二段階延伸における一段目の延伸倍率を二段目の延伸倍率より高くしたものであること
(b)前記フィルム化工程が、使用量の最も多いポリアミド系樹脂からなるチップと、そのポリアミド系樹脂チップとは組成の異なる他のポリアミド系樹脂チップ1種類以上とを混合した後に溶融押し出しするものであるとともに、使用される各ポリアミド系樹脂チップの形状が、長径および短径を有する楕円断面を有する楕円柱状とされており、かつ、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップが、使用量の最も多いポリアミド系樹脂チップの平均長径、平均短径および平均チップ長さに対し、それぞれ±20%以内の範囲に含まれる平均長径、平均短径および平均チップ長さを有するものに調整されていること
(c)前記フィルム化工程が、原料チップ供給部として漏斗状ホッパを供えた押出機を用いて溶融押出しする工程を含んでいるとともに、前記ホッパの傾斜角度が65度以上に調整されており、かつ、前記ホッパに供給する前のポリアミド系樹脂チップの水分率が800ppm以上1000ppm以下に調整されており、なおかつ、前記ホッパに供給する前のポリアミド系樹脂チップの温度が80℃以上に調整されていること
(d)前記フィルム化工程が、押出機から押し出された溶融樹脂を冷却ロールに巻き取ることにより冷却する工程を含んでいるとともに、その冷却工程においては、溶融樹脂と冷却ロールの表面に接触する部分が、溶融樹脂の全幅に亘って、吸引装置により巻き取り方向と反対方向に吸引されること
(e)前記積層工程が、最終的な接着改質層の被覆量を0.01〜1.00g/mとするように接着改質層形成用の塗布液を塗布するものであること
The structure of the invention described in claim 18 is a manufacturing method for manufacturing the polyamide-based resin laminated film roll described in claim 1, wherein the film is formed by melting and extruding the polyamide-based resin chip. A biaxial stretching process for biaxially stretching the unstretched film obtained in the film forming process in the longitudinal direction and the transverse direction, and a laminating process for laminating an adhesion modified layer layer on at least one surface of the biaxially stretched film And satisfy the following requirements (a) to (e).
(A) The biaxial stretching step involves stretching in the transverse direction after stretching in two stages in the longitudinal direction, and the first-stage stretching ratio in the two-stage stretching in the longitudinal direction is determined from the second-stage stretching ratio. (B) The film forming step mixes a chip made of a polyamide resin having the largest amount of use with one or more other polyamide resin chips having a composition different from that of the polyamide resin chip. After that, the polyamide resin chip to be used is melt-extruded, and the shape of each polyamide resin chip used is an elliptical cylinder having an elliptical cross section having a major axis and a minor axis, and the polyamide resin chip having the largest amount of use Other than polyamide resin chips, the average major axis, average minor axis, and average chip length of the polyamide resin chips with the largest use amount are ± 2 respectively. (C) an extruder provided with a funnel-shaped hopper as a raw material chip supply unit, being adjusted to have an average major axis, an average minor axis and an average chip length included in the range of And a step of melt extrusion using the hopper, the inclination angle of the hopper is adjusted to 65 degrees or more, and the moisture content of the polyamide resin chip before being supplied to the hopper is adjusted to 800 ppm or more and 1000 ppm or less. The temperature of the polyamide resin chip before being supplied to the hopper is adjusted to 80 ° C. or higher. (D) The film forming step uses the molten resin extruded from the extruder as a cooling roll. In addition to the step of cooling by winding, in the cooling step, the part that contacts the surface of the molten resin and the cooling roll, (E) The lamination step is performed to reduce the coating amount of the final adhesion-modified layer to 0.01 to 1.00 g / m by sucking in the direction opposite to the winding direction by the suction device over the entire width of the molten resin. 2 to apply a coating solution for forming an adhesion-modified layer

請求項19に記載された発明の構成は、請求項18に記載された発明において、縦延伸工程の前に実行される予備加熱工程と、縦延伸工程の後に実行される熱処理工程とを含んでおり、それらの縦延伸工程と予備加熱工程と熱処理工程とにおける任意ポイントでのフィルムの表面温度の変動幅が、フィルム全長に亘って平均温度±1℃の範囲内に調整されていることにある。   The structure of the invention described in claim 19 includes the preheating step executed before the longitudinal stretching step and the heat treatment step executed after the longitudinal stretching step in the invention described in claim 18. The fluctuation range of the surface temperature of the film at an arbitrary point in the longitudinal stretching step, the preheating step, and the heat treatment step is adjusted within the range of the average temperature ± 1 ° C. over the entire length of the film. .

請求項20に記載された発明の構成は、少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(4)を満たすことにある。
(4)各切り出し部から切り出された各試料について、ポリオレフィンフィルムをラミネートした場合の剥離強度を求めたときに、それらの剥離強度の平均値である平均剥離強度が500g/15mm巾以上であるとともに、すべての試料の剥離強度の変動率が、前記平均剥離強度に対して±5%〜±30%の範囲内である
The structure of the invention described in claim 20 is a polyamide system in which an adhesion modified layer made of a copolyester is laminated on at least one side, the width is 0.2 m or more and 3.0 m or less, and the length is 300 m or more and 30000 m or less. A polyamide-based resin laminated film roll formed by winding up a resin film, wherein a first sample cut-out portion is provided within 2 m from the end of winding of the film, and a final cut-out portion is provided within 2 m from the start of film winding. When the sample cut-out portion is provided every about 100 m from the first sample cut-out portion, the following requirement (4) is satisfied.
(4) For each sample cut out from each cutout portion, when the peel strength when a polyolefin film is laminated is determined, the average peel strength, which is the average value of those peel strengths, is 500 g / 15 mm width or more. The variation rate of the peel strength of all the samples is within a range of ± 5% to ± 30% with respect to the average peel strength.

請求項21に記載された発明の構成は、少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(5)を満たすことにある。
(5)各切り出し部から切り出された各試料について、ポリオレフィンフィルムをラミネートした場合の90℃の熱水中への30分間浸漬後の熱水剥離強度を求めたときに、それらの熱水剥離強度の平均値である平均熱水剥離強度が150g/15mm巾以上であるとともに、すべての試料の熱水剥離強度の変動率が、前記平均熱水剥離強度に対して±5%〜±30%の範囲内である
The structure of the invention described in claim 21 is a polyamide system in which an adhesion modified layer made of a copolyester is laminated on at least one side, the width is 0.2 m or more and 3.0 m or less, and the length is 300 m or more and 30000 m or less. A polyamide-based resin laminated film roll formed by winding up a resin film, wherein a first sample cut-out portion is provided within 2 m from the end of winding of the film, and a final cut-out portion is provided within 2 m from the start of film winding. When the sample cut-out portion is provided every about 100 m from the first sample cut-out portion, the following requirement (5) is satisfied.
(5) For each sample cut out from each cut-out part, when the hot water peel strength after 30 minutes immersion in 90 ° C. hot water when a polyolefin film is laminated is obtained, the hot water peel strength The average hot water peel strength of 150 g / 15 mm width or more, and the variation rate of the hot water peel strength of all the samples is ± 5% to ± 30% with respect to the average hot water peel strength. Is in range

それゆえ、本発明のポリアミド系樹脂積層フィルムロールは、基材フィルムであるポリアミド系樹脂フィルムと被覆層との剥離強度が非常に高く、かつ、高度に均一である。したがって、本発明のフィルムロールによれば、レトルト食品等の用途に好適な包装袋を、高い生産性で、均質に、かつ、歩留まり良く製造することが可能となる。さらに、本発明のポリアミド系樹脂積層フィルムロールによれば、ほとんどトラブルなくスムーズにラミネートによる製袋加工を行うことができ、S字カールのない包装物を効率的に得ることが可能となる。また、製袋加工等の後加工において、高い歩留まりで加工品を得ることが可能となる。加えて、本発明のポリアミド系フィルムロールを用いれば、ラミネートによる製袋加工後の食品包装用の袋が、強靱で耐ピンホール性にも優れたものとなる。   Therefore, the polyamide-based resin laminated film roll of the present invention has a very high peel strength between the polyamide-based resin film as the base film and the coating layer, and is highly uniform. Therefore, according to the film roll of the present invention, a packaging bag suitable for applications such as retort food can be manufactured with high productivity, homogeneously and with a high yield. Furthermore, according to the polyamide-based resin laminated film roll of the present invention, it is possible to carry out the bag making process by lamination smoothly with almost no trouble, and it is possible to efficiently obtain a package having no S-curl. Further, in post-processing such as bag making processing, a processed product can be obtained with a high yield. In addition, if the polyamide film roll of the present invention is used, the bag for food packaging after the bag making process by lamination becomes tough and excellent in pinhole resistance.

加えて、本発明のポリアミド系樹脂積層フィルムロールを構成するポリアミド系樹脂積層フィルムは、ポリアミドフィルム基材の少なくとも片面に、共重合ポリエステルからなる接着改質層が形成されているため、ドライラミネートや押出ラミネート等で積層されるシーラント材との耐水接着性、耐熱水接着性に優れる。したがって、本発明のフィルムロールを用いて形成される包装袋は、レトルト処理や沸水処理を行っても破袋が著しく少なく、そのため水分含有食品や薬品用の包装袋として広く利用され得る。   In addition, since the polyamide-based resin laminated film constituting the polyamide-based resin laminated film roll of the present invention has an adhesion modified layer made of a copolymerized polyester formed on at least one surface of the polyamide film substrate, Excellent water and water resistant adhesion to sealant materials laminated by extrusion lamination. Therefore, the packaging bag formed using the film roll of the present invention has very few broken bags even when retort treatment or boiling water treatment is performed, and thus can be widely used as a packaging bag for water-containing foods and medicines.

本発明のポリアミド系フィルムロールは、後述する方法により試料を切り出した場合に、すべての試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が2%以上6%以下となるように調整されている。   When the polyamide film roll of the present invention is cut out by the method described later, the maximum boiling water shrinkage rate, which is the maximum value of the boiling water shrinkage rate in all directions, is measured for all the samples. The average boiling water shrinkage, which is the average value of the maximum boiling water shrinkage, is adjusted to be 2% or more and 6% or less.

また、本発明のポリアミド系フィルムロールは、後述する方法により試料を切り出した場合に、すべての試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下となるように調整されている。   The polyamide film roll of the present invention has a boiling water shrinkage rate in the +45 degree direction with respect to the longitudinal direction and a boiling water shrinkage in the -45 degree direction with respect to the longitudinal direction for all the samples when the samples are cut out by the method described later. When the boiling water shrinkage direction difference, which is the absolute value of the difference from the rate, is determined, the average boiling water shrinkage direction difference, which is the average value of the boiling water shrinkage direction differences, is adjusted to be 1.5% or less. ing.

本発明における試料の切り出しは、まず、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けるようにする。なお、「約100m毎」というのは、100m±1m程度のところで試料を切り出しても構わないということである。   In the cutting of the sample in the present invention, first, the first sample cutting portion is provided within 2 m from the end of winding of the film, and the final cutting portion is provided within 2 m from the beginning of winding of the film. A sample cut-out section is provided every about 100 m. Note that “about every 100 m” means that the sample may be cut out at about 100 m ± 1 m.

上記試料の切り出しについてより具体的に説明すると、たとえば、長さ498mのポリアミド系フィルムがロールに巻回されている場合、フィルムの巻き終わりから2m以内までの間で、最初の試料(1)を切り取る。なお、試料の切り出しは、便宜上、フィルムの長手方向に沿う辺と長手方向に対して直交する方向に沿う辺とを有するように矩形状に切り取る(斜めには切り取らない)ようにする。続いて、切り取った部分から100m巻き始め側に離れたところで、2番目の試料(2)を切り取る。同様にして、200m巻き始め側に離れたところで3番目の試料(3)を、300m巻き始め側に離れたところで4番目の試料(4)を、400m巻き始め側に離れたところで5番目の試料(5)を切り取る。このように試料を切り出した場合、残りは100mよりも短くなるため、6番目(最終)の試料(6)はフィルムの巻き始めから2m以内のいずれかの部分を切り取る。そして、切り取られた各試料について、下記の方法で、沸水収縮率(以下、BSという)、最大沸水収縮率(以下、BSxという)、平均沸水収縮率(以下、BSaxという)、沸水収縮率方向差(以下、BSdという)、平均沸水収縮率方向差(以下、BSadという)を測定する。   More specifically, the cutting of the above sample will be described. For example, when a polyamide-based film having a length of 498 m is wound around a roll, the first sample (1) is taken within 2 m from the end of winding of the film. cut out. For convenience, the sample is cut out in a rectangular shape so as to have a side along the longitudinal direction of the film and a side along the direction orthogonal to the longitudinal direction (not cut diagonally). Subsequently, the second sample (2) is cut away from the cut portion at a distance of 100 m from the winding start side. In the same manner, the third sample (3) is separated to the winding start side of 200 m, the fourth sample (4) is separated to the winding start side of 300 m, and the fifth sample is separated to the winding start side of 400 m. Cut out (5). When the sample is cut out in this way, the remainder becomes shorter than 100 m, so the sixth (final) sample (6) cuts out any portion within 2 m from the start of film winding. For each of the cut samples, the boiling water shrinkage rate (hereinafter referred to as BS), the maximum boiling water shrinkage rate (hereinafter referred to as BSx), the average boiling water shrinkage rate (hereinafter referred to as BSax), and the boiling water shrinkage direction in the following manner. A difference (hereinafter referred to as BSd) and an average boiling water shrinkage direction difference (hereinafter referred to as BSad) are measured.

[沸水収縮率(BS)、最大沸水収縮率(BSx)、平均沸水収縮率(BSax)、沸水収縮率方向差(BSd)、平均沸水収縮率方向差(BSad)の測定方法]
ポリアミド系樹脂フィルムロールの各切り出し部から切り出された二軸配向ポリアミド系樹脂フィルムを正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置する。この試料の中央を中心とする円(直径約20cm程度)を描き、縦方向(フィルム引出し方向)を0°として、15°間隔で時計回りに0〜165°方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとする。次いで、切り出した試料を沸水中で30分間加熱処理した後、取り出して表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置し、上述したように各直径方向に引いた直線の長さを測定して処理後の長さとし、下式1〜5によって、BS(沸水収縮率)、BSx(最大沸水収縮率)、BSax(平均沸水収縮率)、BSd(沸水収縮率方向差)、BSad(平均沸水収縮率方向差)を算出する。
BS=[(処理前の長さ−処理後の長さ)/処理前の長さ]×100(%)・・・1
BSx=15°間隔で0〜165°方向に測定した中で最大の収縮率(%)・・・2
BSax=すべての試料のBSxの総和/試料の数・・・3
BSd=|(45°度方向のBS)−(135°度方向のBS)|・・・4
BSad=すべての試料のBSdの総和/試料の数・・・5
[Measuring method of boiling water shrinkage (BS), maximum boiling water shrinkage (BSx), average boiling water shrinkage (BSax), boiling water shrinkage direction difference (BSd), average boiling water shrinkage direction difference (BSad)]
The biaxially oriented polyamide-based resin film cut out from each cut-out portion of the polyamide-based resin film roll is cut into a square shape and left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more. A circle (about 20 cm in diameter) centered on the center of this sample is drawn, and a straight line passing through the center of the circle in the direction of 0 to 165 ° clockwise at 15 ° intervals, with the vertical direction (film drawing direction) being 0 °. Pull, measure the diameter in each direction, and make it the length before processing. The cut sample was then heat-treated in boiling water for 30 minutes, then removed and wiped off the moisture adhering to the surface, air-dried, and left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, as described above. The length of the straight line drawn in each diametric direction is measured and set as the length after treatment. BS (boiling water shrinkage), BSx (maximum boiling water shrinkage), BSax (average boiling water shrinkage), BSd (boiling water shrinkage direction difference) and BSad (average boiling water shrinkage direction difference) are calculated.
BS = [(length before processing−length after processing) / length before processing] × 100 (%)... 1
BSx = Maximum shrinkage rate (%) measured in 0 to 165 ° direction at 15 ° intervals 2
BSax = sum of BSx of all samples / number of samples 3
BSd = | (BS in 45 ° direction) − (BS in 135 ° direction) |
BSad = sum of BSd of all samples / number of samples 5

なお、ポリアミド系フィルムロールを構成するポリアミドフィルムのBSxの値は、二軸配向ポリアミド系樹脂フィルムを袋状に成形し熱水処理を施したときの耐熱性(ラミネート強度あるいは耐熱ラミネート強度ともいう)を確保するとともに、フィルム自体の強靭性・耐ピンホール性を高める上で重要であり、BSxの値が2%未満では、強靭性・耐ピンホール性が不十分となり、一方、6%を超えると、ラミネート不良となったり、熱水処理時の耐熱ラミネート強度が不十分となったりするので好ましくない。強靭性・耐ピンホール性とラミネート性や耐熱ラミネート強度を高める上でより好ましいBSxの範囲は3.5〜5.0%である。   The value of BSx of the polyamide film constituting the polyamide film roll is the heat resistance when the biaxially oriented polyamide resin film is formed into a bag shape and subjected to hot water treatment (also referred to as laminate strength or heat resistant laminate strength). This is important for enhancing the toughness and pinhole resistance of the film itself. If the BSx value is less than 2%, the toughness and pinhole resistance will be insufficient, whereas it will exceed 6%. In such a case, it is not preferable because the laminate becomes defective or the heat-resistant laminate strength at the time of hot water treatment becomes insufficient. The range of BSx that is more preferable for enhancing toughness, pinhole resistance, laminating properties, and heat-resistant laminating strength is 3.5 to 5.0%.

また、ポリアミド系フィルムロールを構成するポリアミドフィルムのBSdの値は、沸水処理時に生じるカール現象に大きな影響を及ぼし、BSdの値が大きいほど袋はそり返り易くなってカールが著しくなるが、BSdを1.5%以下、より好ましくは1.2%以下に抑えれば、沸水処理時における袋の反り返りが可及的に抑えられ、S字カール現象の発生を防止することが可能となる。   In addition, the BSd value of the polyamide film constituting the polyamide film roll has a great influence on the curling phenomenon that occurs during boiling water treatment, and the larger the BSd value, the easier the bag will bend and the curling becomes remarkable. If it is suppressed to 1.5% or less, more preferably 1.2% or less, the warping of the bag during boiling water treatment is suppressed as much as possible, and the occurrence of the S-curl phenomenon can be prevented.

また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が、平均沸水収縮率(BSa)の±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、すべての試料の最大沸水収縮率(BSx)の変動率とは、すべての試料の最大沸水収縮率(BSx)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率との差の大きい方と平均沸水収縮率との差を求めた場合におけるその差の平均沸水収縮率に対する割合のことをいう。   Further, in the polyamide film roll of the present invention, the variation rate of the maximum boiling water shrinkage (BSx) of all the cut out samples is ± 2% to ± 10% (± 2% or more ±) of the average boiling water shrinkage (BSa). 10% or less) is required to be adjusted. Here, the variation rate of the maximum boiling water shrinkage (BSx) of all the samples is the maximum / minimum of the maximum boiling water shrinkage (BSx) of all the samples, and the average boiling water shrinkage of those maximum / minimum. It means the ratio of the difference with respect to the average boiling water shrinkage when the difference between the one with the larger difference between the ratio and the average boiling water shrinkage is obtained.

すなわち、本発明のポリアミド系フィルムロールにおいては、試料(1)〜(6)の沸水収縮率をXn(n=1〜6)とした場合に、Xnの最大値Xmaxと平均沸水収縮率(BSax)との差と、最小値Xminと平均沸水収縮率(BSax)との差とのいずれもが±10%以内であることが必要とされる、ということであり、換言すれば、|BSax−Xn|(なお、||は絶対値を示す)がいずれも10%以下であることが必要とされる、ということである。   That is, in the polyamide film roll of the present invention, when the boiling water shrinkage of samples (1) to (6) is Xn (n = 1 to 6), the maximum value Xmax of Xn and the average boiling water shrinkage (BSax) ) And the difference between the minimum value Xmin and the average boiling water shrinkage (BSax) must be within ± 10%, in other words, | BSax− Xn | (where || indicates an absolute value) is required to be 10% or less.

なお、本発明のポリアミド系フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が、平均沸水収縮率(BSa)の±9%以内の範囲にあると好ましく、±8%以内の範囲にあるとより好ましく、±7%以内の範囲にあるとさらに好ましい。   The polyamide film roll of the present invention preferably has a variation rate of the maximum boiling water shrinkage (BSx) of all the cut out samples within a range of ± 9% of the average boiling water shrinkage (BSa), and ± 8 % Is more preferable, and it is more preferable that it is within ± 7%.

加えて、本発明のポリアミド系フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると2%程度が限界であると考えている。   In addition, the polyamide film roll of the present invention is preferably as small as the variation rate of the maximum boiling water shrinkage (BSx) of all the cut out samples, but the lower limit of the variation rate is about 2% considering the measurement accuracy. I think it is the limit.

また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が、平均沸水収縮率方向差(BSad)の±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、すべての試料の沸水収縮率方向差(BSd)の変動率とは、すべての試料の沸水収縮率方向差(BSd)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率方向差との差の大きい方と平均沸水収縮率方向差との差を求めた場合におけるその差の平均沸水収縮率方向差に対する割合のことをいう。   In the polyamide film roll of the present invention, the fluctuation rate of the boiling water shrinkage direction difference (BSd) of all the cut out samples is ± 2% to ± 10% (± 2) of the average boiling water shrinkage direction difference (BSad). % Or more and ± 10% or less) is required to be adjusted. Here, the fluctuation rate of the boiling water shrinkage direction difference (BSd) of all the samples is the maximum / minimum in the boiling water shrinkage direction difference (BSd) of all the samples, and the average of these maximum / minimum values. When the difference between the larger difference between the boiling water shrinkage direction difference and the average boiling water shrinkage direction difference is obtained, it means the ratio of the difference to the average boiling water shrinkage direction difference.

すなわち、本発明のポリアミド系フィルムロールにおいては、試料(1)〜(6)の沸水収縮率方向差をYn(n=1〜6)とした場合に、Ynの最大値Ymaxと平均沸水収縮率方向差(BSad)との差と、最小値Yminと平均沸水収縮率方向差(BSad)との差とのいずれもが±10%以内であることが必要とされる、ということであり、換言すれば、|BSad−Yn|(なお、||は絶対値を示す)がいずれも10%以下であることが必要とされる、ということである。   That is, in the polyamide film roll of the present invention, when the boiling water shrinkage direction difference of the samples (1) to (6) is Yn (n = 1 to 6), the maximum value Ymax of Yn and the average boiling water shrinkage rate. That is, the difference between the direction difference (BSad) and the difference between the minimum value Ymin and the average boiling water shrinkage direction difference (BSad) must be within ± 10%. In other words, | BSad−Yn | (where || indicates an absolute value) is required to be 10% or less.

なお、本発明のポリアミド系フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が、平均沸水収縮率方向差(BSad)の±9%以内の範囲にあると好ましく、±8%以内の範囲にあるとより好ましく、±7%以内の範囲にあるとさらに好ましい。   In the polyamide film roll of the present invention, it is preferable that the variation rate of the boiling water shrinkage direction difference (BSd) of all the cut out samples is within ± 9% of the average boiling water shrinkage direction difference (BSad). , More preferably within the range of ± 8%, and even more preferably within the range of ± 7%.

加えて、本発明のポリアミド系フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると2%程度が限界であると考えている。   In addition, the polyamide film roll of the present invention is preferable as the fluctuation rate of the boiling water shrinkage direction difference (BSd) of all the cut out samples is smaller, but the lower limit of the fluctuation rate is about 2% in consideration of measurement accuracy. Is the limit.

また、本発明のポリアミド系フィルムロールは、長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、長手方向全長に亘る厚みの変動率とは、長手方向全長に亘る厚み中の最大・最小を求め、それらの最大・最小の内の平均厚みとの差の大きい方と平均厚みとの差を求めた場合におけるその差の平均厚みに対する割合のことをいう。   In the polyamide film roll of the present invention, the variation rate of the thickness over the entire length in the longitudinal direction is within a range of ± 2% to ± 10% (± 2% to ± 10%) with respect to the average thickness. It is necessary to be adjusted to. Here, the variation rate of the thickness over the entire length in the longitudinal direction is the maximum / minimum of the thickness over the entire length in the longitudinal direction, and the difference between the average thickness of the maximum / minimum average thickness and the average thickness It means the ratio of the difference to the average thickness when the difference is obtained.

すなわち、本発明のポリアミド系フィルムロールにおいては、長手方向全長に亘る厚みの最大値Tmaxと平均厚み(長手方向全長に亘る平均厚みTa)との差と、最小値Tminと平均厚み(Ta)との差とのいずれもが±10%以内であることが必要とされる、ということである。   That is, in the polyamide film roll of the present invention, the difference between the maximum value Tmax of the thickness over the entire length in the longitudinal direction and the average thickness (average thickness Ta over the entire length in the longitudinal direction), the minimum value Tmin, and the average thickness (Ta) The difference between the two is required to be within ± 10%.

なお、本発明のポリアミド系フィルムロールは、長手方向全長に亘る厚みの変動率が、平均厚み(Ta)の±8%以内の範囲にあると好ましく、±6%以内の範囲にあるとより好ましい。   In the polyamide film roll of the present invention, the variation rate of the thickness over the entire length in the longitudinal direction is preferably within ± 8% of the average thickness (Ta), and more preferably within ± 6%. .

加えて、本発明のポリアミド系フィルムロールは、長手方向全長に亘る厚みの変動率が小さいほど好ましいが、当該変動率の下限は、製膜装置の性能上から2%程度が限界であると考えている。   In addition, the polyamide-based film roll of the present invention is preferable as the variation rate of the thickness over the entire length in the longitudinal direction is smaller, but the lower limit of the variation rate is considered to be about 2% from the viewpoint of the performance of the film forming apparatus. ing.

また、本発明のポリアミド系樹脂積層フィルムは、切り出したすべての試料の剥離強度(段落番号0209に記載された測定方法によって求められるもの)の平均値である平均剥離強度が500g/15mm巾以上であることが必要であり、750g/15mm巾以上であるとより好ましい。平均剥離強度が500g/15mm巾を下回ると、製袋加工した後の袋の開口部が破裂し易いものとなるので好ましくない。   In addition, the polyamide-based resin laminated film of the present invention has an average peel strength that is an average value of peel strengths of all cut out samples (measured by the measuring method described in paragraph No. 0209) of 500 g / 15 mm width or more. It is necessary that there is a width of 750 g / 15 mm or more. If the average peel strength is less than 500 g / 15 mm width, the bag opening after the bag making process is likely to burst, which is not preferable.

また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の剥離強度の変動率が、平均剥離強度の±5%〜±30%(±5%以上±30%以下)の範囲内となるように調整されることが好ましい。ここで、すべての試料の剥離強度の変動率とは、すべての試料の剥離強度中の最大・最小を求め、それらの最大・最小の内の平均剥離強度との差の大きい方と平均剥離強度との差を求めた場合におけるその差の平均剥離強度に対する割合のことをいう。   In the polyamide film roll of the present invention, the variation rate of the peel strength of all cut out samples is within a range of ± 5% to ± 30% (± 5% to ± 30%) of the average peel strength. It is preferable to adjust so. Here, the variation rate of peel strength of all samples is the maximum / minimum of the peel strengths of all samples, and the difference between the average peel strength of the maximum / minimum and the average peel strength Is the ratio of the difference to the average peel strength when the difference is obtained.

すなわち、本発明のポリアミド系フィルムロールにおいては、試料(1)〜(6)の剥離強度をSn(n=1〜6)とした場合に、Snの最大値Smaxと平均剥離強度(Sa)との差と、最小値Sminと平均剥離強度との差とのいずれもが±30%以内であることが好ましい、ということであり、換言すれば、|Sa−Sn|(なお、||は絶対値を示す)がいずれも30%以下であることが好ましい、ということである。   That is, in the polyamide film roll of the present invention, when the peel strength of the samples (1) to (6) is Sn (n = 1 to 6), the maximum value Smax of Sn and the average peel strength (Sa) And the difference between the minimum value Smin and the average peel strength is preferably within ± 30%. In other words, | Sa−Sn | (where || It is preferable that all of them are 30% or less.

なお、本発明のポリアミド系フィルムロールは、切り出したすべての試料の剥離強度の変動率が、平均剥離強度の±20%以内の範囲にあると好ましく、±15%以内の範囲にあるとより好ましい。加えて、本発明のポリアミド系フィルムロールは、切り出したすべての試料の剥離強度の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると5%程度が限界であると考えている。   In the polyamide film roll of the present invention, the variation rate of the peel strength of all the cut out samples is preferably within ± 20% of the average peel strength, and more preferably within ± 15%. . In addition, the polyamide film roll of the present invention is preferable as the variation rate of the peel strength of all the cut out samples is small, but the lower limit of the variation rate is considered to be about 5% in consideration of measurement accuracy. ing.

さらに、本発明のポリアミド系樹脂積層フィルムは、切り出したすべての試料の熱水剥離強度(段落番号0210に記載された測定方法によって求められるもの)の平均値である平均熱水剥離強度が150g/15mm巾以上であることが好ましく、250g/15mm巾以上であるとより好ましい。平均熱水剥離強度が150g/15mm巾を下回ると、レトルト食品用途として製袋加工した後の袋の開口部が熱水中で破裂し易いものとなるので好ましくない。   Furthermore, the polyamide-based resin laminated film of the present invention has an average hot water peel strength of 150 g / hr, which is an average value of the hot water peel strength (obtained by the measuring method described in paragraph No. 0210) of all the cut out samples. The width is preferably 15 mm or more, and more preferably 250 g / 15 mm or more. An average hot water peel strength of less than 150 g / 15 mm width is not preferable because the opening of the bag after the bag-making process for retort foods tends to burst in hot water.

また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の熱水剥離強度の変動率が、平均熱水剥離強度の±5%〜±30%(±5%以上±30%以下)の範囲内となるように調整されることが好ましい。ここで、すべての試料の熱水剥離強度の変動率とは、すべての試料の熱水剥離強度中の最大・最小を求め、それらの最大・最小の内の平均熱水剥離強度との差の大きい方と平均熱水剥離強度との差を求めた場合におけるその差の平均熱水剥離強度に対する割合のことをいう。   The polyamide film roll of the present invention has a variation rate of hot water peel strength of all cut out samples of ± 5% to ± 30% (± 5% to ± 30%) of the average hot water peel strength. It is preferable to adjust to be within the range. Here, the variation rate of the hot water peel strength of all the samples is the maximum / minimum of the hot water peel strength of all the samples, and the difference between the average hot water peel strength of the maximum and minimum When the difference between the larger one and the average hot water peel strength is determined, it means the ratio of the difference to the average hot water peel strength.

すなわち、本発明のポリアミド系フィルムロールにおいては、試料(1)〜(6)の熱水剥離強度をHn(n=1〜6)とした場合に、Hnの最大値Hmaxと平均熱水剥離強度(Ha)との差と、最小値Hminと平均熱水剥離強度との差とのいずれもが±30%以内であることが好ましい、ということであり、換言すれば、|Ha−Hn|(なお、||は絶対値を示す)がいずれも30%以下であることが好ましい、ということである。   That is, in the polyamide film roll of the present invention, when the hot water peel strength of the samples (1) to (6) is Hn (n = 1 to 6), the maximum value Hmax of Hn and the average hot water peel strength. (Ha), and the difference between the minimum value Hmin and the average hot water peel strength is preferably within ± 30%, in other words, | Ha−Hn | ( Note that || indicates an absolute value) is preferably 30% or less.

なお、本発明のポリアミド系フィルムロールは、切り出したすべての試料の熱水剥離強度の変動率が、平均熱水剥離強度の±20%以内の範囲にあると好ましく、±15%以内の範囲にあるとより好ましい。加えて、本発明のポリアミド系フィルムロールは、切り出したすべての試料の熱水剥離強度の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると5%程度が限界であると考えている。   In the polyamide film roll of the present invention, the variation rate of the hot water peel strength of all the cut out samples is preferably within ± 20% of the average hot water peel strength, and within ± 15%. More preferably. In addition, the polyamide film roll of the present invention is preferable as the variation rate of the hot water peeling strength of all the cut out samples is smaller, but the lower limit of the variation rate is about 5% in consideration of measurement accuracy. I believe.

さらに、本発明のポリアミド系フィルムロールは、上記方法により試料を切り出した場合に、すべての試料について、厚み方向の屈折率(Nz)を求めたときに、それらの屈折率の平均値である平均屈折率(Nza)が1.500以上1.520以下となるように調整されることが好ましい。なお、平均屈折率は、下式6によって算出される。
Nza=すべての試料のNzの総和/試料の数・・・6
Furthermore, the polyamide film roll of the present invention is an average which is an average value of the refractive indexes when the refractive index (Nz) in the thickness direction is obtained for all the samples when the samples are cut out by the above method. It is preferable to adjust the refractive index (Nza) to be 1.500 or more and 1.520 or less. The average refractive index is calculated by the following formula 6.
Nza = total Nz of all samples / number of samples 6

なお、ポリアミド系フィルムロールを構成するポリアミドフィルムのNzの値は、ラミネート強度と厚み斑等のフィルム品位に大きな影響を及ぼす。したがって、平均屈折率が1.500以上1.520以下であるという要件は、二軸配向ポリアミド系樹脂フィルムをポリオレフィン系樹脂フィルムとラミネートして使用する場合の必須の要件となる。そして、Nzが1.500未満では、ポリオレフィン系樹脂フィルム等とのラミネート強度が不十分となり、製袋後の沸水処理等でラミネート基材との間で剥離が起こり易くなる。一方、このNzは、未延伸のポリアミド系樹脂フィルムを二軸延伸する過程で順次低下していく。換言すると、Nzは延伸の指標の1つとも考えることができ、Nzが大きいということは延伸が不十分であることを表わしており、Nzが1.520を超えるものでは、二軸延伸不足による厚み斑等が顕著に現れて、満足なフィルム品位が得られなくなる。ラミネート強度とフィルム品位の両面を考慮して特に好ましいNzの範囲は1.507〜1.516の範囲である。   The Nz value of the polyamide film constituting the polyamide film roll has a great influence on the film quality such as the laminate strength and thickness unevenness. Therefore, the requirement that the average refractive index is 1.500 or more and 1.520 or less is an indispensable requirement when the biaxially oriented polyamide resin film is laminated with the polyolefin resin film. When Nz is less than 1.500, the laminate strength with the polyolefin resin film or the like becomes insufficient, and peeling between the laminate base material is likely to occur due to boiling water treatment after bag making. On the other hand, this Nz gradually decreases in the process of biaxially stretching an unstretched polyamide resin film. In other words, Nz can also be considered as one of the indices of stretching, and a large Nz indicates that stretching is insufficient. If Nz exceeds 1.520, it is due to insufficient biaxial stretching. Thick spots and the like appear remarkably, and satisfactory film quality cannot be obtained. Considering both the laminate strength and the film quality, a particularly preferable range of Nz is in the range of 1.507 to 1.516.

また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が、それらの屈折率の平均値(以下、平均屈折率という)に対して±2%以内の範囲となるように調整されることが好ましい。ここで、すべての試料の屈折率(Nz)の変動率とは、すべての試料の屈折率(Nz)中の最大・最小を求め、それらの最大・最小の内の平均屈折率との差の大きい方と平均屈折率との差を求めた場合におけるその差の平均屈折率に対する割合のことをいう。   In the polyamide film roll of the present invention, the variation rate of the refractive index (Nz) of all the cut out samples is within ± 2% with respect to the average value of the refractive indexes (hereinafter referred to as the average refractive index). It is preferable to adjust so that it may become a range. Here, the variation rate of the refractive index (Nz) of all the samples is the maximum / minimum of the refractive indexes (Nz) of all the samples, and the difference between the average refractive index of the maximum / minimum values. When the difference between the larger one and the average refractive index is obtained, it means the ratio of the difference to the average refractive index.

すなわち、本発明のポリアミド系フィルムロールにおいては、試料(1)〜(6)の屈折率をNz1〜Nz6とした場合に、Nz1〜Nz6の最大値Nzmaxと平均屈折率との差と、Nz1〜Nz6の最小値Nzminと平均屈折率との差とのいずれもが±2%以内であると好ましい、ということであり、換言すれば、|平均屈折率−Nz1|〜|平均屈折率−Nz6|がいずれも2%以下であると好ましい、ということである。また、本発明のポリアミド系フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が、平均屈折率に対して±1%以内の範囲にあるとより好ましい。   That is, in the polyamide film roll of the present invention, when the refractive indexes of the samples (1) to (6) are Nz1 to Nz6, the difference between the maximum value Nzmax of Nz1 to Nz6 and the average refractive index is Nz1 to Nz1. That is, it is preferable that the difference between the minimum value Nzmin of Nz6 and the average refractive index is within ± 2%. In other words, | average refractive index−Nz1 | ˜ | average refractive index−Nz6 | Is preferably 2% or less. In the polyamide film roll of the present invention, it is more preferable that the variation rate of the refractive index (Nz) of all the cut out samples is within ± 1% of the average refractive index.

加えて、本発明のポリアミド系フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度や機械精度の面から0.1%程度が限界であると考えている。   In addition, the polyamide-based film roll of the present invention is preferably as small as the variation rate of the refractive index (Nz) of all the cut out samples, but the lower limit of the variation rate is 0.1 in terms of measurement accuracy and mechanical accuracy. % Is considered the limit.

上述したように、1本のポリアミド系フィルムロールにおける最大沸水収縮率、沸水収縮率方向差を所定の範囲の値に調整するとともに、それらの最大沸水収縮率、沸水収縮率方向差の変動を小さくすることで、製袋加工やラミネート加工における外観の悪化を防止することができ、歩留まり良くスムーズに加工することが可能となる。   As described above, the maximum boiling water shrinkage rate and boiling water shrinkage direction difference in one polyamide film roll are adjusted to values within a predetermined range, and the fluctuations in the maximum boiling water shrinkage rate and boiling water shrinkage direction difference are reduced. By doing so, it is possible to prevent deterioration of the appearance in bag making and laminating, and it is possible to process smoothly with a high yield.

本発明において使用されるポリアミド樹脂としては、たとえば、ε−カプロラクタムを主原料としたナイロン6を挙げることができる。また、その他のポリアミド樹脂としては、3員環以上のラクタム、ω−アミノ酸、二塩基酸とジアミン等の重縮合によって得られるポリアミド樹脂を挙げることができる。具体的には、ラクタム類としては、先に示したε−カプロラクタムの他に、エナントラクタム、カプリルラクタム、ラウリルラクタム、ω−アミノ酸類としては、6−アミノカプロン酸、7−アミノヘプタン酸、9−アミノノナン酸、11−アミノウンデカン酸を挙げることができる。また、二塩基酸類としては、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカジオン酸、ヘキサデカジオン酸、エイコサンジオン酸、エイコサジエンジオン酸、2,2,4−トリメチルアジピン酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、キシリレンジカルボン酸を挙げることができる。さらに、ジアミン類としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ペンタメチレンジアミン、ウンデカメチレンジアミン、2,2,4(または2,4,4)−トリメチルヘキサメチレンジアミン、シクロヘキサンジアミン、ビス−(4,4’−アミノシクロヘキシル)メタン、メタキシリレンジアミン等を挙げることができる。そして、これらを重縮合して得られる重合体またはこれらの共重合体、たとえばナイロン6、7、11、12、6.6、6.9、6.11、6.12、6T、6I、MXD6(メタキシレンジパンアミド6)、6/6.6、6/12、6/6T、6/6I、6/MXD6等を用いることができる。加えて、本発明のポリアミドフィルムロールを製造する場合には、上記したポリアミド樹脂を単独で、あるいは、2種以上を混合して用いることができる。   Examples of the polyamide resin used in the present invention include nylon 6 using ε-caprolactam as a main raw material. Examples of other polyamide resins include polyamide resins obtained by polycondensation of lactams having three or more members, ω-amino acids, dibasic acids and diamines. Specifically, as lactams, in addition to the aforementioned ε-caprolactam, enantolactam, capryllactam, lauryllactam, and ω-amino acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 9- Examples include aminononanoic acid and 11-aminoundecanoic acid. Dibasic acids include adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecadioic acid, hexadecadioic acid, eicosandioic acid, eicosadienedioic acid, 2 2,4-trimethyladipic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and xylylenedicarboxylic acid. Furthermore, as diamines, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, pentamethylenediamine, undecamethylenediamine, 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, cyclohexane Examples thereof include diamine, bis- (4,4′-aminocyclohexyl) methane, and metaxylylenediamine. And polymers obtained by polycondensation of these or copolymers thereof, such as nylon 6, 7, 11, 12, 6.6, 6.9, 6.11, 6.12, 6T, 6I, MXD6 (Metaxylene dipanamid 6), 6 / 6.6, 6/12, 6 / 6T, 6 / 6I, 6 / MXD6, and the like can be used. In addition, when the polyamide film roll of the present invention is produced, the above polyamide resins can be used alone or in admixture of two or more.

なお、上記ポリアミド系樹脂の中でも本発明において特に好ましいのは、相対粘度が2.0〜3.5の範囲のものである。ポリアミド系樹脂の相対粘度は、得られる二軸延伸フィルムの強靭性や延展性等に影響を及ぼし、相対粘度が2.0未満のものでは衝撃強度が不足気味になり、反対に、相対粘度が3.5を超えるものでは、延伸応力の増大によって逐次二軸延伸性が悪くなる傾向があるからである。なお、本発明における相対粘度とは、ポリマー0.5gを97.5%硫酸50mlに溶解した溶液を用いて25℃で測定した場合の値をいう。   Of the polyamide-based resins, those having a relative viscosity in the range of 2.0 to 3.5 are particularly preferable in the present invention. The relative viscosity of the polyamide-based resin affects the toughness and spreadability of the resulting biaxially stretched film. If the relative viscosity is less than 2.0, the impact strength tends to be insufficient. This is because, if it exceeds 3.5, the biaxial stretchability tends to deteriorate with increasing stretching stress. In addition, the relative viscosity in this invention means the value at the time of measuring at 25 degreeC using the solution which melt | dissolved 0.5g of polymers in 50 ml of 97.5% sulfuric acid.

次に、本発明のポリアミド系樹脂フィルムロールを得るための好ましい製造方法について説明する。本発明のポリアミド系樹脂フィルムロールは、原料であるポリアミド樹脂チップを溶融押し出しして得られた未延伸フィルムを縦方向(長手方向)および横方法(幅方向)に二軸延伸した後にロール状に巻き取ることによって製造される。また、二軸延伸の前後あるいは途中において、ポリアミド系樹脂フィルム上に接着改質層を積層する必要があるが、当該接着改質層の積層を縦方向(長手方向)に延伸した後に行うのが好ましい。なお、接着改質層の積層方法については後述する。   Next, the preferable manufacturing method for obtaining the polyamide-type resin film roll of this invention is demonstrated. The polyamide-based resin film roll of the present invention is formed into a roll after biaxially stretching an unstretched film obtained by melting and extruding a raw material polyamide resin chip in the longitudinal direction (longitudinal direction) and the transverse direction (width direction). Manufactured by winding. Moreover, it is necessary to laminate | stack an adhesion modification layer on a polyamide-type resin film before and during biaxial stretching, but it is performed after extending | stretching the lamination | stacking of the said adhesion modification layer to the vertical direction (longitudinal direction). preferable. In addition, the lamination | stacking method of an adhesion modification layer is mentioned later.

本発明者らが、フィルームロールの縦方向の厚み斑(フィルームロールの全長に亘る厚み斑)、沸水収縮率等の物性の変動やバラツキについて検討した結果、かかる縦方向の厚み斑や物性の変動やバラツキは、主として、溶融させた樹脂を未延伸フィルムにするキャスト工程における種々の要因により大きな影響を受けることが判明した。すなわち、押出機と直結した漏斗状ポッパ(以下、単にホッパという)に供給する際の樹脂の温度が低かったり、ホッパに供給する樹脂の水分率が高かったりすると、未延伸フィルムにおける縦方向の厚み斑が大きくなり、二軸延伸フィルムにおける物性の変動やバラツキが大きくなることが分かった。また、Tダイから押し出した樹脂を金属ロールに巻き付ける際に、樹脂と金属ロールとの接触点が乱れた場合にも、未延伸フィルムにおける縦方向の厚み斑が大きくなり、二軸延伸フィルムにおける物性の変動やバラツキが大きくなることが分かった。さらに、二軸延伸工程における延伸条件が不適切であると、未延伸フィルムにおける縦方向の厚み斑が増幅され、物性の変動やバラツキを助長してしまうことも分かった。   As a result of studying fluctuations and variations in physical properties such as vertical unevenness of the filum roll (thickness unevenness over the entire length of the firoom roll) and boiling water shrinkage rate, the present inventors have found such vertical thickness unevenness and physical properties. It has been found that the fluctuations and variations are greatly influenced mainly by various factors in the casting process in which a molten resin is converted into an unstretched film. That is, if the temperature of the resin when supplied to a funnel-shaped popper directly connected to the extruder (hereinafter simply referred to as a hopper) is low or the moisture content of the resin supplied to the hopper is high, the thickness in the longitudinal direction of the unstretched film It was found that the spots became larger, and the fluctuations and variations in physical properties of the biaxially stretched film increased. In addition, when the resin extruded from the T die is wound around a metal roll, even if the contact point between the resin and the metal roll is disturbed, the thickness unevenness in the longitudinal direction in the unstretched film becomes large, and the physical properties in the biaxially stretched film It was found that the fluctuation and variation of Furthermore, it was also found that if the stretching conditions in the biaxial stretching process are inappropriate, the thickness unevenness in the longitudinal direction of the unstretched film is amplified, which promotes fluctuations and variations in physical properties.

さらに、本発明者らは、上記事実に基づいて鋭意検討した結果、フィルムロール製造の際に、以下の手段を講じることにより、物性の変動の少ないフィルムロールを得ることが可能となることを突き止めた。
(1)樹脂チップの形状の均一化
(2)ホッパ形状の適正化
(3)樹脂チップ乾燥時の水分率低減
(4)ホッパへの樹脂供給時の温度保持
(5)溶融樹脂を金属ロールへ接触させる際の吸引
(6)延伸条件の適正化
以下、上記した各手段について順次説明する。
Furthermore, as a result of intensive studies based on the above facts, the present inventors have found out that it is possible to obtain a film roll with little fluctuation in physical properties by taking the following means when manufacturing the film roll. It was.
(1) Uniformity of resin chip shape (2) Optimization of hopper shape (3) Reduction of moisture content when resin chip is dried (4) Temperature retention when resin is supplied to hopper (5) Molten resin to metal roll Suction at the time of contact (6) Optimization of stretching conditions Hereinafter, each of the above-described means will be sequentially described.

(1)樹脂チップの形状の均一化
本発明のフィルムロールの製造において、ブレンド方式を採用する場合には、組成の異なる複数の原料ポリアミド樹脂チップをホッパ内でブレンドした後、溶融混練し、押出機から押出して、フィルム化する。たとえば、原料となるポリアミドが3種類ある場合、3個のホッパにそれぞれのポリアミド樹脂チップを連続式あるいは間欠式に供給し、必要に応じて緩衝ホッパを介して、最終的には、押出機直前あるいは直上のホッパ(以下、「最終ホッパ」という)で3種類のポリアミド樹脂チップを混ぜながら、押出し機の押出量に合わせて原料チップを定量的に押出機に供給してフィルムを形成する。
(1) Uniformization of resin chip shape In the production of the film roll of the present invention, when adopting a blending method, a plurality of raw material polyamide resin chips having different compositions are blended in a hopper, then melt-kneaded and extruded. Extrude from machine and film. For example, when there are three types of polyamide as the raw material, the respective polyamide resin chips are supplied to three hoppers in a continuous or intermittent manner, and finally through the buffer hopper as needed, finally before the extruder Alternatively, while mixing three types of polyamide resin chips in a hopper directly above (hereinafter referred to as “final hopper”), raw material chips are quantitatively supplied to the extruder according to the extrusion amount of the extruder to form a film.

ところが、最終ホッパの容量あるいは形状によっては、最終ホッパ内のチップ量が多い場合および最終ホッパ内のチップの残量が少なくなった場合に、原料偏析の現象、すなわち、最終ホッパから押出機へと供給されるチップの組成が異なったものとなる現象が発生する。また、かかる偏析現象は、チップの形状あるいは比重が異なっている場合に、特に顕著に現れる。さらに、かかる偏析現象によって、長尺なフィルムを製造した場合に、最大沸水収縮率、沸水収縮率方向差、フィルム厚み、厚み方向の屈折率が変動する。   However, depending on the capacity or shape of the final hopper, when the amount of chips in the final hopper is large and the remaining amount of chips in the final hopper is small, the material segregation phenomenon, that is, from the final hopper to the extruder. A phenomenon occurs in which the composition of the supplied chip is different. Further, such segregation phenomenon appears particularly prominent when the shape or specific gravity of the chip is different. Further, due to such segregation phenomenon, when a long film is produced, the maximum boiling water shrinkage rate, the boiling water shrinkage direction difference, the film thickness, and the refractive index in the thickness direction vary.

すなわち、チップの大きさに違いがあると、最終ホッパ内をチップの混合物が落下していくときに、小さいチップは先に落下し易いため、最終ホッパ内のチップ残量が少なくなると、大きいチップの比率が多くなって、これが原料偏析の原因となる。したがって、物性変動の少ないフィルムロールを得るためには、使用する複数種のポリアミド樹脂チップの形状を合わせて、最終ホッパ内での原料偏析の現象を抑止することが必要である。   That is, if there is a difference in the size of the chips, when the mixture of chips falls in the final hopper, small chips tend to fall first, so if the remaining amount of chips in the final hopper decreases, This increases the ratio of this, which causes segregation of raw materials. Therefore, in order to obtain a film roll with little variation in physical properties, it is necessary to match the shapes of a plurality of types of polyamide resin chips to be used to suppress the phenomenon of raw material segregation in the final hopper.

ポリアミドの原料チップは、通常、重合後に溶融状態で重合装置よりストランド状で取り出され、直ちに水冷された後、ストランドカッターでカットされて形成される。このため、ポリアミドのチップは、断面が楕円形の楕円柱状となる。ここで、ポリマーチップの形状と原料偏析との関係について検討した結果、使用量の最も多いポリアミドチップに混合される他のポリアミドチップの断面楕円の平均長径(mm)、平均短径(mm)、平均チップ長さ(mm)を、それぞれ、使用量の最も多いポリアミドの原料チップの断面楕円の平均長径(mm)、平均短径(mm)、平均チップ長さ(mm)に対して±20%以内の範囲に調整することにより、上記原料偏析を低減させることが可能となる。なお、使用量の最も多いポリアミドチップ以外のポリアミドチップの断面楕円の平均長径、平均短径、平均チップ長さを、それぞれ、使用量の最も多いポリアミドの原料チップの断面楕円の平均長径、平均短径、平均チップ長さに対して±15%以内の範囲に調整すると、偏析防止効果がきわめて顕著なものとなるので、より好ましい。   Polyamide raw material chips are usually formed in a molten state after polymerization in the form of strands from a polymerization apparatus, immediately cooled with water, and then cut with a strand cutter. For this reason, the polyamide chip has an elliptical column shape with an elliptical cross section. Here, as a result of examining the relationship between the shape of the polymer chip and the raw material segregation, the average major axis (mm), the average minor axis (mm) of the cross-sectional ellipse of the other polyamide chips mixed with the polyamide chip with the largest amount of use, The average tip length (mm) is ± 20% relative to the average major axis (mm), average minor axis (mm), and average tip length (mm) of the cross-sectional ellipse of the polyamide material chip with the largest use amount, respectively. The raw material segregation can be reduced by adjusting within the above range. The average major axis, average minor axis, and average tip length of the elliptical cross section of the polyamide chip other than the polyamide chip with the largest amount of use are respectively shown in FIG. Adjustment to a range within ± 15% with respect to the diameter and average chip length is more preferable because the effect of preventing segregation becomes extremely remarkable.

(2)ホッパ形状の適正化
最終ホッパとして漏斗状ホッパを用い、その傾斜角を65゜以上にすることによって、大きいチップも小さいチップと同様に落とし易くすることができ、内容物の上端部が水平面を保ちつつ下降していくようになるため、原料偏析の低減に効果的である。より好ましい傾斜角は70゜以上である。なお、ホッパの傾斜角とは、漏斗状の斜辺と、水平な線分との間の角度である。最終ホッパの上流に複数のホッパを使用しても良く、この場合、いずれのホッパにおいても、傾斜角を65゜以上とする必要があり、より好ましくは70゜以上である。
(2) Optimizing the hopper shape By using a funnel-shaped hopper as the final hopper and making its inclination angle 65 ° or more, large chips can be easily dropped as well as small chips. Since it descends while maintaining a horizontal plane, it is effective in reducing raw material segregation. A more preferable inclination angle is 70 ° or more. The inclination angle of the hopper is an angle between the funnel-shaped hypotenuse and the horizontal line segment. A plurality of hoppers may be used upstream of the final hopper. In this case, in any hopper, the inclination angle needs to be 65 ° or more, and more preferably 70 ° or more.

また、使用する原料チップの削れ等により発生する微粉体の比率を低減することも、沸水収縮率の変動を抑制するために好ましい。微粉体が原料偏析の発生を助長するので、工程内で発生する微粉体を除去して、ホッパ内に含まれる微粉体の比率を低減することが好ましい。含まれる微粉体の比率は、原料チップが押出機に入るまでの全工程を通じて、1重量%以内とすることが好ましく、0.5重量%以内とすることが、より好ましい。微粉体の比率を低減するための具体的な方法としては、ストランドカッターでチップ形成時に篩を通したり、原料チップを空送する場合にサイクロン式エアフィルタを通したりすることにより、微粉体を除去する方法を挙げることができる。   It is also preferable to reduce the ratio of the fine powder generated due to the cutting of the raw material chips used in order to suppress fluctuations in the boiling water shrinkage rate. Since the fine powder promotes the occurrence of raw material segregation, it is preferable to remove the fine powder generated in the process and reduce the ratio of the fine powder contained in the hopper. The ratio of the fine powder contained is preferably within 1% by weight and more preferably within 0.5% by weight throughout the entire process until the raw material chips enter the extruder. As a specific method for reducing the fine powder ratio, the fine powder is removed by passing a sieve at the time of chip formation with a strand cutter or by passing a cyclone air filter when the raw material chips are air-fed. The method of doing can be mentioned.

加えて、ホッパ内での原料偏析を低減する手段として、使用するホッパの容量を適正化することも好ましい手段である。ここで、ホッパの適正な容量は、押出機の1時間当たりの吐出量に対して15〜120重量%の範囲内であり、押出機の1時間当たりの吐出量に対して20〜100重量%の範囲内であると、より好ましい。   In addition, as a means for reducing raw material segregation in the hopper, it is also a preferable means to optimize the capacity of the hopper used. Here, the proper capacity of the hopper is in the range of 15 to 120% by weight with respect to the discharge amount per hour of the extruder, and 20 to 100% by weight with respect to the discharge amount per hour of the extruder. It is more preferable that it is within the range.

2種以上の組成の異なるポリアミドの原料チップを混合する方法としては、押出機直上のホッパ(最終ホッパ)で各原料を連続的に押出機へ定量供給しながら、混合する方法が最も好ましい。また、原料チップサイズを前述の範囲内に制御したものを予め混合した後に、いくつかの中間ホッパ(緩衝ホッパ)を介して、最終ホッパおよび押出機に供給することも可能である。複数種の原料を混合する際には、原料チップを連続的に定量供給する装置から、ホッパ内に複数種の原料を定量的に供給しながら混合する方法、あるいは、ブレンダーやパドルドライヤー等を使用して事前に混合する方法等を挙げることができるが、後者を利用する場合には、混合物の排出時に原料偏析が発生しないように、原料チップサイズを小さくすることが好ましい。   As a method of mixing two or more kinds of polyamide raw material chips having different compositions, a method of mixing while continuously feeding each raw material to the extruder with a hopper (final hopper) directly above the extruder is most preferable. It is also possible to feed a final hopper and an extruder through several intermediate hoppers (buffer hoppers) after previously mixing a raw material chip size controlled within the aforementioned range. When mixing multiple types of raw materials, use a method of mixing raw materials chips continuously while quantitatively supplying multiple types of raw materials into a hopper, or using a blender, paddle dryer, etc. However, when using the latter, it is preferable to reduce the raw material chip size so that the raw material segregation does not occur when the mixture is discharged.

(3)樹脂チップ乾燥時の水分率低減
ホッパ内へ供給されるチップは、通常、ブレンダー等の装置によって、加熱され水分が低減される。かかるチップの乾燥に際し、ポリエステルフィルムロールやポリプロピレンフィルムロールの製造においては、一般的に、乾燥時に水分率を低くするほど、押出工程における加水分解が抑えられて良好なフィルムロールが得られると考えられている。しかしながら、本発明者らが検討した結果、ポリアミド系樹脂フィルムロールの製造においては、乾燥時に単純に水分率を低くするだけでは、延伸が困難となってしまい、物性の均一なフィルムロールが得られず、水分率を所定範囲にコントロールし、ある程度の水分を確保することによって、押出工程において加水分解させることなく適度に可塑化させた方が、物性の均一なフィルムロールが得られることが判明した。すなわち、本発明のフィルムロールを得るためには、チップの水分率を800ppm以上1000ppm以下にコントロールすることが必要である。チップの水分率が1000ppmを上回ると、溶融させた場合に加水分解が助長され、粘度が低下して、未延伸フィルムの縦方向の厚み斑が悪くなり、二軸延伸フィルムの縦方向の厚み斑の増加、物性の変動やバラツキの原因となる。反対に、チップの水分率が800ppmを下回ると、溶融させた場合の粘度が高くなりすぎて、製膜性(延伸し易さ)が悪化する。なお、ホッパ内へ供給されるチップの最適な水分率は、850ppm以上950ppm以下である。
(3) Reduction of moisture content during resin chip drying Chips supplied into the hopper are usually heated by a device such as a blender to reduce moisture. When drying such a chip, in the production of a polyester film roll or a polypropylene film roll, it is generally considered that the lower the moisture content during drying, the less hydrolysis in the extrusion process and the better the film roll is obtained. ing. However, as a result of studies by the present inventors, in the production of a polyamide-based resin film roll, it is difficult to stretch simply by lowering the moisture content during drying, and a film roll having uniform physical properties can be obtained. First, it was found that a film roll with uniform physical properties can be obtained by controlling the moisture content within a predetermined range and securing a certain amount of moisture so as to be appropriately plasticized without being hydrolyzed in the extrusion process. . That is, in order to obtain the film roll of the present invention, it is necessary to control the moisture content of the chip to 800 ppm or more and 1000 ppm or less. When the moisture content of the chip exceeds 1000 ppm, hydrolysis is promoted when it is melted, the viscosity is lowered, the thickness unevenness in the longitudinal direction of the unstretched film is deteriorated, and the thickness unevenness in the longitudinal direction of the biaxially stretched film is deteriorated. Increase, fluctuations in physical properties and variations. On the contrary, if the moisture content of the chip is less than 800 ppm, the viscosity when melted becomes too high, and the film-forming property (easy to stretch) deteriorates. In addition, the optimal moisture content of the chip | tip supplied into a hopper is 850 ppm or more and 950 ppm or less.

(4)ホッパへの樹脂供給時の温度保持
上記の如く、チップの水分率を800ppm以上1000ppm以下に調整した場合であっても、加熱乾燥後のチップを放置して常温(室温)まで温度を下げた後にホッパに供給した場合には、物性の均一なフィルムロールを得ることはできない。すなわち、本発明のフィルムロールを得るためには、ブレンダー等で加熱乾燥させたチップを高温に保持したまま、ホッパに供給することが必要である。具体的には、ブレンダーで加熱乾燥させたチップは、80℃以上に保持したままホッパに供給することが必要であり、90℃以上に保持したままホッパに供給するとより好ましい。ホッパに供給するチップの温度が80℃を下回ると、樹脂の噛み込みが悪くなり、縦方向の厚み斑や物性の変動やバラツキの原因となり、本発明のフィルムロールが得られなくなる。なお、ブレンダー等の装置により、チップを乾燥する際には、乾燥温度は、150℃以下に調整することが必要である。乾燥温度が150℃を上回ると、乾燥時に加水分解が起こる可能性があるので好ましくない。また、ブレンダーで加熱乾燥させたチップの温度が、80℃を下回った場合には、80℃以上になるように再度加温してホッパに供給することが必要である。
(4) Maintaining temperature when resin is supplied to the hopper As described above, even when the moisture content of the chip is adjusted to 800 ppm or more and 1000 ppm or less, the chip after heating and drying is allowed to stand until the temperature reaches room temperature (room temperature). When it is supplied to the hopper after being lowered, a film roll with uniform physical properties cannot be obtained. That is, in order to obtain the film roll of the present invention, it is necessary to supply the chips heated and dried by a blender or the like to the hopper while keeping the temperature high. Specifically, the chips dried by heating with a blender need to be supplied to the hopper while being maintained at 80 ° C. or higher, and more preferably supplied to the hopper while being maintained at 90 ° C. or higher. When the temperature of the chip supplied to the hopper is lower than 80 ° C., the resin bite becomes worse, causing vertical thickness unevenness, physical property fluctuations and variations, and the film roll of the present invention cannot be obtained. In addition, when drying a chip | tip with apparatuses, such as a blender, it is necessary to adjust drying temperature to 150 degrees C or less. If the drying temperature exceeds 150 ° C., hydrolysis may occur during drying, which is not preferable. In addition, when the temperature of the chip heat-dried by the blender falls below 80 ° C., it is necessary to reheat the chip to 80 ° C. or higher and supply it to the hopper.

(5)溶融樹脂を金属ロールへ接触させる際の吸引
チップを溶融押し出しして未延伸フィルムを得る際には、押出機によりチップを200〜300℃の温度で溶融させてTダイから押し出すことによってフィルム状(シート状)に成形(すなわち、キャスティング)した後、所定の温度に冷却した金属ロール等の冷却ロールに巻き付ける方法によって急冷する。なお、縦方向の厚み斑、物性の変動やバラツキの観点から、好ましい溶融押し出し温度は、240℃〜290度である。本発明のフィルムロールを得るためには、溶融した樹脂を金属ロールに巻き付ける場合に、エアーギャップ(すなわち、Tダイリップの出口からチルロール表面までの鉛直方向の距離)を20〜60mmに調整するとともに、幅広な吸引口を有するバキュームボックス(バキュームチャンバー)等の吸引装置を利用して、溶融樹脂と冷却ロールの表面に接触する部分を、溶融樹脂の全幅に亘って、巻き取り方向と反対方向に吸引することにより、溶融樹脂を強制的に金属ロールに密着させるのが好ましい。また、その際には、吸引口の部分の吸引風速を、2.0〜7.0m/sec.に調整する必要があり、2.5〜5.5m/sec.に調整するとより好ましい。さらに、バキュームボックスは、吸入口が一連になっているものでも良いが、吸引口における吸引風速の調整を容易なものとするために、吸引口が横方向に所定数のセクションに区分されており各セクション毎に吸引風速の調整を可能としたものとするのが好ましい。また、キャスティングの速度が大きくなると、金属ロールの回転に伴って随伴流が生じ、溶融樹脂の金属ロールへの密着が阻害されてしまうので、吸引装置による吸引をより効果的なものとし、溶融樹脂の金属ロールへの密着度合いを向上させるために、テフロン等の軟質な素材で幅広に形成された遮蔽板を、吸引装置と隣接する上流側(吸引装置に対して金属ロールの回転方向と反対側)に設置して、随伴流を遮断するのが好ましい。さらに、本発明のフィルムロールを得るためには、バキュームボックスの吸引風速のバラツキを、平均吸引風速(設定値)±20%以内に抑えることが必要であり、±10%以内に抑えるとより好ましい。加えて、オリゴマーの粉塵等によりバキュームボックスの吸引風速が変動しないように、バキュームボックス内にフィルターを設けるとともに、そのフィルター前後の差圧をフィードバックすることにより、吸引力を調節するのが好ましい。
(5) Suction when the molten resin is brought into contact with a metal roll When an unstretched film is obtained by melting and extruding a chip, the chip is melted at a temperature of 200 to 300 ° C. by an extruder and extruded from a T die. After forming (that is, casting) into a film shape (sheet shape), it is rapidly cooled by a method of winding it around a cooling roll such as a metal roll cooled to a predetermined temperature. In addition, from the viewpoint of vertical thickness variation, physical property fluctuations, and variations, a preferable melt extrusion temperature is 240 ° C. to 290 ° C. In order to obtain the film roll of the present invention, when the molten resin is wound around the metal roll, the air gap (that is, the vertical distance from the exit of the T die lip to the chill roll surface) is adjusted to 20 to 60 mm, Using a suction device such as a vacuum box (vacuum chamber) with a wide suction port, the part that contacts the surface of the molten resin and the cooling roll is sucked across the entire width of the molten resin in the direction opposite to the winding direction. By doing so, it is preferable that the molten resin is forcibly adhered to the metal roll. In this case, the suction air speed at the suction port is set to 2.0 to 7.0 m / sec. Need to be adjusted to 2.5 to 5.5 m / sec. It is more preferable to adjust to. Furthermore, the vacuum box may have a series of suction ports, but the suction ports are divided into a predetermined number of sections in the lateral direction in order to facilitate adjustment of the suction air velocity at the suction ports. It is preferable that the suction air speed can be adjusted for each section. Further, when the casting speed is increased, an accompanying flow is generated with the rotation of the metal roll, and the adhesion of the molten resin to the metal roll is hindered. In order to improve the degree of adhesion of the metal roll to the metal roll, the upstream side adjacent to the suction device (on the side opposite to the rotation direction of the metal roll with respect to the suction device) It is preferable to block the accompanying flow. Furthermore, in order to obtain the film roll of the present invention, it is necessary to suppress the variation in the suction wind speed of the vacuum box within ± 20% of the average suction wind speed (set value), and more preferably within ± 10%. . In addition, it is preferable to adjust the suction force by providing a filter in the vacuum box and feeding back the differential pressure before and after the filter so that the suction wind speed of the vacuum box does not fluctuate due to oligomer dust or the like.

また、本発明のフィルムロールを得るためには、溶融した樹脂を冷却ロールに巻き付ける場合には、溶融した樹脂シートに針状電極より2〜15kvで90〜105mAの直流負電荷を印加して、グロー放電させながら金属ロールに連続的に密着急冷させることが必要である。なお、この場合に、印可する直流負電荷を7〜14kvの範囲に調整すると、縦方向の厚み斑、物性の変動やバラツキが低下するので好ましい。また、本発明のフィルムロールを得るためには、印可する直流負電荷のバラツキを、平均負電荷(設定値)±20%以内に抑えることが必要であり、±10%以内に抑えるとより好ましい。   Moreover, in order to obtain the film roll of the present invention, when the molten resin is wound around the cooling roll, a DC negative charge of 90 to 105 mA is applied to the molten resin sheet at 2 to 15 kv from the needle electrode, It is necessary to continuously contact and quench the metal roll while glow discharge. In this case, it is preferable to adjust the DC negative charge to be applied in the range of 7 to 14 kv because vertical thickness variation, physical property fluctuations and variations are reduced. Further, in order to obtain the film roll of the present invention, it is necessary to suppress the variation of the DC negative charge to be applied within an average negative charge (set value) of ± 20%, more preferably within ± 10%. .

(6)延伸条件の適正化
未延伸フィルムを二軸延伸する方法としては、未延伸フィルムをロール式延伸機で縦方向に延伸しテンター式延伸機で横方向に延伸した後に熱固定処理および緩和処理を行う縦・横延伸方法等を採用する必要がある。さらに、本発明のフィルムロールを得るためには、二軸延伸する方法として、いわゆる縦−縦−横延伸方法を採用する必要がある。かかる縦−縦−横延伸方法とは、実質的に未配向のポリアミドフィルムを縦延伸するにあたり、一段目の延伸を施し、Tg以下に冷却することなく、引続き二段目の延伸を行い、しかる後、3.0倍以上、好ましくは、3.5倍以上の倍率で横延伸し、さらに熱固定する方法である。そして、本発明のフィルムロールを得るためには、上記した縦−縦−横延伸を行う際に、一段目の縦延伸倍率を二段目の縦延伸倍率より高くすることが必要である。すなわち、そのように一段目の縦延伸倍率を二段目の縦延伸倍率より高くすることにより、沸水収縮率等の物性が良好な上、それらの物性のバラツキが少ないフィルムロールを得ることが可能となる。なお、縦−縦−横延伸を行う場合には、通常、一段目の縦延伸倍率を二段目の縦延伸倍率より低くした方が、一段目の延伸時にロールへの粘着を生ずることなく容易に延伸できるが、テフロン(商標登録)製ロール等の特殊なロールを使用することにより、一段目の縦延伸倍率を二段目の縦延伸倍率より高くしても、ロールへの粘着を起こすことなく容易に延伸することが可能となる。
(6) Optimization of stretching conditions As a method of biaxially stretching an unstretched film, the unstretched film is stretched in the longitudinal direction with a roll-type stretching machine and stretched in the transverse direction with a tenter-type stretching machine, followed by heat setting treatment and relaxation. It is necessary to employ a longitudinal / lateral stretching method for performing the treatment. Furthermore, in order to obtain the film roll of the present invention, it is necessary to adopt a so-called longitudinal-longitudinal-lateral stretching method as a biaxial stretching method. The longitudinal-longitudinal-lateral stretching method means that, in longitudinal stretching of a substantially unoriented polyamide film, the first-stage stretching is performed, and the second-stage stretching is continuously performed without cooling to Tg or less. Thereafter, it is a method of transverse stretching at a magnification of 3.0 times or more, preferably 3.5 times or more, and further heat setting. And in order to obtain the film roll of this invention, when performing longitudinal-longitudinal-lateral stretching mentioned above, it is necessary to make the longitudinal stretch ratio of the 1st stage higher than the longitudinal stretch ratio of the 2nd stage. That is, by making the first stage longitudinal draw ratio higher than the second stage longitudinal draw ratio, it is possible to obtain a film roll with good physical properties such as boiling water shrinkage and few variations in those physical properties. It becomes. In addition, when performing longitudinal-longitudinal-lateral stretching, it is usually easier to make the first-stage longitudinal stretching ratio lower than the second-stage longitudinal stretching ratio without causing sticking to the roll during the first-stage stretching. However, by using a special roll such as a Teflon (trademark registered) roll, even if the longitudinal stretch ratio of the first stage is higher than the longitudinal stretch ratio of the second stage, it causes sticking to the roll. It becomes possible to stretch easily.

上記の如く縦−縦−横延伸を行う場合には、一段目の縦延伸を、80〜90℃の温度下で約2.0〜2.4倍延伸するものとするのが好ましい。一段目の延伸倍率が上記範囲を外れて高くなると、縦方向の厚み斑が大きくなるので好ましくない。加えて、二段目の縦延伸を、65〜75℃の温度下で約1.3〜1.7倍延伸するものとするのが好ましい。二段目の延伸倍率が上記範囲を外れて低くなると、ボイル歪みが大きくなり実用性のないものとなるので好ましくなく、反対に、二段目の延伸倍率が上記範囲を外れて高くなると、縦方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。   When performing longitudinal-longitudinal-lateral stretching as described above, the first-stage longitudinal stretching is preferably stretched about 2.0 to 2.4 times at a temperature of 80 to 90 ° C. When the draw ratio at the first stage is out of the above range and becomes high, the thickness unevenness in the vertical direction becomes large, which is not preferable. In addition, the longitudinal stretching in the second stage is preferably stretched about 1.3 to 1.7 times at a temperature of 65 to 75 ° C. If the draw ratio of the second stage falls outside the above range, it becomes unfavorable because the boil distortion increases and becomes unpractical.On the other hand, if the draw ratio of the second stage goes out of the above range, it becomes high. The strength in the direction (such as strength at 5% elongation) becomes low and becomes unpractical.

また、上記の如く縦−縦−横延伸を行う場合には、縦延伸方法として、熱ロール延伸、赤外線輻射延伸等を採用することができる。また、このような縦−縦−横延伸方法によって本発明のポリアミド系樹脂フィルムを製造した場合には、縦方向の厚み斑、物性の変動やバラツキが小さくなるばかりでなく、横方向の物性変動やバラツキも低減することができる。また、縦−縦−横延伸する場合には、総縦延伸条件を3.0〜4.5倍とするのが好ましい。   Moreover, when performing longitudinal-longitudinal-lateral stretching as described above, hot roll stretching, infrared radiation stretching, or the like can be employed as the longitudinal stretching method. Further, when the polyamide-based resin film of the present invention is produced by such a longitudinal-longitudinal-lateral stretching method, not only the thickness unevenness in the vertical direction, the variation in physical properties and the variation are reduced, but also the variation in physical properties in the lateral direction And variations can also be reduced. In the case of longitudinal-longitudinal-lateral stretching, the total longitudinal stretching condition is preferably 3.0 to 4.5 times.

また、縦−縦−横延伸を行う場合には、横延伸を、120〜140℃の温度下で約4.0〜5.5倍延伸するものとするのが好ましい。横延伸の倍率が上記範囲を外れて低くなると、横方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくなく、反対に、横延伸の倍率が上記範囲を外れて高くなると、横方向の熱収縮率が大きくなるので好ましくない。一方、横延伸の温度が上記範囲を外れて低くなると、ボイル歪みが大きくなり実用性のないものとなるので好ましくなく、反対に、横延伸の温度が上記範囲を外れて高くなると、横方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。   Moreover, when performing longitudinal-longitudinal-lateral stretching, it is preferable to stretch the lateral stretching at a temperature of 120 to 140 ° C. by about 4.0 to 5.5 times. If the transverse stretching ratio falls outside the above range, the transverse strength (5% elongation strength, etc.) becomes low and impractical, which is not preferable. Conversely, the transverse stretching ratio falls within the above range. If the deviation is high, the thermal contraction rate in the lateral direction is increased, which is not preferable. On the other hand, if the transverse stretching temperature falls outside the above range, it becomes unpreferable because the boil distortion becomes large and becomes impractical, and conversely, if the transverse stretching temperature rises outside the above range, It is not preferable because the strength (strength at 5% elongation, etc.) decreases and becomes impractical.

さらに、本発明のフィルムロールを得るためには、縦−縦−横延伸後の熱固定処理を、180〜230℃の温度にて行うのが好ましい。熱固定処理の温度が上記範囲を外れて低くなると、縦方向および横方向の熱収縮率が大きくなるので好ましくなく、反対に、熱固定処理の温度が上記範囲を外れて高くなると、二軸延伸フィルムの衝撃強度が低くなるので好ましくない。   Furthermore, in order to obtain the film roll of this invention, it is preferable to perform the heat setting process after longitudinal-longitudinal-lateral stretching at the temperature of 180-230 degreeC. If the temperature of the heat setting treatment falls outside the above range, the heat shrinkage rate in the longitudinal direction and the transverse direction increases, which is not preferable. On the contrary, if the temperature of the heat setting treatment rises outside the above range, biaxial stretching Since the impact strength of a film becomes low, it is not preferable.

加えて、本発明のフィルムロールを得るためには、熱固定後の緩和処理を、2〜10%緩和させるものとするのが好ましい。緩和処理の割合が上記範囲を外れて低くなると、縦方向および横方向の熱収縮率が大きくなるので好ましくなく、反対に、緩和処理の割合が上記範囲を外れて高くなると、縦方向および幅方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。   In addition, in order to obtain the film roll of the present invention, it is preferable to relax the relaxation treatment after heat setting by 2 to 10%. If the rate of relaxation treatment falls outside the above range, the thermal contraction rate in the longitudinal direction and the transverse direction increases, which is not preferable. Conversely, if the rate of relaxation treatment falls outside the above range, the longitudinal direction and the width direction The strength (such as strength at 5% elongation) becomes low and becomes unpractical.

また、フィルムロールの幅は、特に制限されるものではないが、取扱い易さの点から、フィルムロールの幅の下限は、0.35m以上であると好ましく、0.50m以上であるとより好ましい。一方、フィルムロールの幅の上限は、2.5m以下であると好ましく、2.0m以下であるとより好ましく、1.5m以下であるとさらに好ましい。加えて、フィルムロールの巻長も、特に制限されないが、巻き易さや取扱い易さの点から、フィルムロールの巻長の下限は、500m以上であると好ましく、1,000m以上であるとより好ましい。一方、フィルムロールの巻長の上限は、2,5000m以下であると好ましく、20,000m以下であるとより好ましく、15,000m以下であるとさらに好ましい。なお、フィルム厚みが15μm程度である場合には、12000m以下であると特に好ましい。また、巻取りコアとしては、通常、3インチ、6インチ、8インチ等の紙、プラスチックコアや金属製コアを使用することができる。   Further, the width of the film roll is not particularly limited, but from the viewpoint of easy handling, the lower limit of the width of the film roll is preferably 0.35 m or more, and more preferably 0.50 m or more. . On the other hand, the upper limit of the width of the film roll is preferably 2.5 m or less, more preferably 2.0 m or less, and further preferably 1.5 m or less. In addition, the winding length of the film roll is not particularly limited, but the lower limit of the winding length of the film roll is preferably 500 m or more and more preferably 1,000 m or more from the viewpoint of ease of winding and handling. . On the other hand, the upper limit of the roll length of the film roll is preferably 2,5000 m or less, more preferably 20,000 m or less, and further preferably 15,000 m or less. In addition, when a film thickness is about 15 micrometers, it is especially preferable in it being 12000 m or less. In addition, as the winding core, usually, paper of 3 inches, 6 inches, 8 inches, etc., a plastic core or a metal core can be used.

一方、本発明のポリアミド系フィルムロールを構成するフィルムの厚みも、特に限定するものではないが、たとえば、包装用ポリアミド系フィルムとしては、8〜50μmが好ましく、10〜30μmがさらに好ましい。   On the other hand, the thickness of the film constituting the polyamide film roll of the present invention is not particularly limited. For example, the packaging polyamide film is preferably 8 to 50 μm, more preferably 10 to 30 μm.

加えて、本発明のフィルムロールを構成するポリアミド系樹脂フィルムには、特性を阻害しない範囲内で、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤等の各種の添加剤を含有させることも可能である。特に、二軸延伸フィルムの滑り性を良好にする目的で、各種の無機粒子を含有させることが好ましい。加えて、無機粒子としては、0.5〜5.0μmの平均粒径(すなわち、平均粒子径)を有するものが好ましく、シリカ粒子であると特に好ましい。平均粒径が0.5μmを下回ると、良好な滑り性が得られないし、反対に、平均粒径が5.0μmを上回ると、透明性が不良になったり、印刷時に所謂“抜け”が発生したりするので好ましくない。なお、平均粒子径の測定は、コールターカウンターによって得られる粒度分布から重量平均径を算出する方法を採用することができ、ポリアミド樹脂に添加する前の粒子から測定することも可能であるし、ポリアミド系樹脂フィルムを酸で溶解することにより析出させた粒子から測定することも可能である。また、表面エネルギーを下げる効果を発揮するエチレンビスステアリン酸等の有機滑剤を添加すると、フィルムロールを構成するフィルムの滑り性が優れたものになるので好ましい。   In addition, the polyamide resin film constituting the film roll of the present invention includes a lubricant, an anti-blocking agent, a thermal stabilizer, an antioxidant, an antistatic agent, a light-proofing agent, and an impact resistance within a range that does not impair the properties. It is also possible to include various additives such as an improving agent. In particular, it is preferable to contain various inorganic particles for the purpose of improving the slipperiness of the biaxially stretched film. In addition, as the inorganic particles, those having an average particle size (that is, average particle size) of 0.5 to 5.0 μm are preferable, and silica particles are particularly preferable. If the average particle size is less than 0.5 μm, good slipperiness will not be obtained. Conversely, if the average particle size is more than 5.0 μm, transparency will be poor or so-called “missing” will occur during printing. This is not preferable. In addition, the measurement of the average particle diameter can employ a method of calculating the weight average diameter from the particle size distribution obtained by a Coulter counter, and can be measured from the particles before being added to the polyamide resin. It is also possible to measure from particles precipitated by dissolving a resin-based resin film with an acid. Moreover, it is preferable to add an organic lubricant such as ethylenebisstearic acid that exhibits the effect of reducing the surface energy because the slipping property of the film constituting the film roll becomes excellent.

さらに、本発明のフィルムロールを構成するポリアミド系樹脂フィルムには、用途に応じて寸法安定性を良くするために熱処理や調湿処理を施すことも可能である。加えて、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したり、印刷、蒸着等の加工を施したりすることも可能である。   Furthermore, the polyamide-based resin film constituting the film roll of the present invention can be subjected to heat treatment or humidity control treatment in order to improve dimensional stability depending on the application. In addition, in order to improve the adhesion of the film surface, corona treatment, coating treatment, flame treatment, etc., and processing such as printing, vapor deposition and the like can be performed.

なお、上記した(1)〜(6)の手段の内の特定の何れかのみが、フィルムロールの物性変動の低減に有効に寄与するものではなく、(1)〜(6)の手段を組み合わせて用いることにより、非常に効率的にフィルムロールの物性変動を低減させることが可能となるものと考えられる。   It should be noted that only one of the above-mentioned means (1) to (6) does not effectively contribute to the reduction of the physical property variation of the film roll, and the means (1) to (6) are combined. Therefore, it is considered that the change in physical properties of the film roll can be reduced very efficiently.

以下、上記の如く物性がきわめて均一なポリアミド系樹脂フィルムロールを構成するポリアミド系樹脂フィルムの表面に接着改質層を積層する方法について説明する。なお、本発明において、「分散体」とは、エマルジョン、分散液または懸濁液のことをいい、「グラフト化」とは、重合体主鎖に、主鎖とは異なる重合体からなるグラフト部分を導入することをいい、「グラフト化ポリエステル」とは、ポリエステル主鎖に対してポリエステルとは異なる重合体からなるグラフト部分を有するポリエステルのことをいい、「水系溶媒」とは、主として水からなり、必要に応じて水性有機溶媒を含む溶媒をいう。   Hereinafter, a method for laminating an adhesion modified layer on the surface of the polyamide resin film constituting the polyamide resin film roll having extremely uniform physical properties as described above will be described. In the present invention, “dispersion” refers to an emulsion, dispersion, or suspension, and “grafting” refers to a graft portion comprising a polymer different from the main chain in the polymer main chain. The term “grafted polyester” refers to a polyester having a graft portion made of a polymer different from the polyester with respect to the polyester main chain, and the “aqueous solvent” is mainly composed of water. , Refers to a solvent containing an aqueous organic solvent as required.

(共重合ポリエステル水系分散体)
本発明に用いられ得る共重合ポリエステル水系分散体は、グラフト化ポリエステルの粒子と、水、水系溶媒または有機溶媒とを含み、半透明から乳白色の外観を呈する。このグラフト化ポリエステルは、ポリエステル主鎖と、親水性基を有するラジカル重合性単量体を含むラジカル重合性単量体により形成されるグラフト部分とを有する。
(Copolymerized polyester aqueous dispersion)
The copolymerized polyester aqueous dispersion that can be used in the present invention contains particles of grafted polyester and water, an aqueous solvent or an organic solvent, and exhibits a translucent to milky white appearance. This grafted polyester has a polyester main chain and a graft portion formed by a radical polymerizable monomer including a radical polymerizable monomer having a hydrophilic group.

共重合ポリエステル水系分散体中のグラフト化ポリエステル粒子のレーザー光散乱法により測定される平均粒子径は、500nm以下、好ましくは10nm〜500nm、さらに好ましくは10nm〜300nmである。平均粒子径が500nmを超えると、塗布後の塗膜強度が低下する。   The average particle diameter of the grafted polyester particles in the copolymerized polyester aqueous dispersion measured by a laser light scattering method is 500 nm or less, preferably 10 nm to 500 nm, more preferably 10 nm to 300 nm. When the average particle diameter exceeds 500 nm, the coating film strength after coating decreases.

共重合ポリエステル水系分散体中のグラフト化ポリエステル粒子の含有量は、通常、1重量%〜50重量%、好ましくは3重量%〜30重量%である。   The content of the grafted polyester particles in the copolymerized polyester aqueous dispersion is usually 1% to 50% by weight, preferably 3% to 30% by weight.

本発明に用いられ得る共重合ポリエステル水系分散体の13C−NMR(測定条件:125MHz、25℃、測定溶媒;重水、DSSのシグナルが5Hz以下)を測定した場合、重み付け関数をかけずにフーリエ変換して得られたスペクトルにおいて、ポリエステル主鎖に由来するカルボニル炭素のシグナルの半値幅は300Hz以上、グラフト部分に由来するカルボニル炭素のシグナルの半値幅は150Hz以下であることが好ましい。 When 13 C-NMR (measuring conditions: 125 MHz, 25 ° C., measuring solvent: heavy water, DSS signal is 5 Hz or less) of a copolyester aqueous dispersion that can be used in the present invention is measured, Fourier is not applied to the weighting function. In the spectrum obtained by conversion, the half-value width of the carbonyl carbon signal derived from the polyester main chain is preferably 300 Hz or more, and the half-value width of the carbonyl carbon signal derived from the graft portion is preferably 150 Hz or less.

一般に、13C−NMRにおいてケミカルシフト、半値幅および緩和時間は、被観測炭素原子の置かれている周囲の環境を反映して変わり得ることが知られている。たとえば、重水中に溶解している重合体のカルボニル炭素のシグナルは、170〜200ppmの範囲に観測され、その半値幅はおよそ300Hz以下である。他方、重水に不溶である重合体のカルボニル炭素のシグナルは、170〜200ppmの範囲に観測され、その半値幅はおよそ300Hz以上である。 In general, it is known that the chemical shift, the half width, and the relaxation time in 13 C-NMR can be changed to reflect the surrounding environment where the observed carbon atom is placed. For example, a carbonyl carbon signal of a polymer dissolved in heavy water is observed in the range of 170 to 200 ppm, and its half-value width is approximately 300 Hz or less. On the other hand, a carbonyl carbon signal of a polymer that is insoluble in heavy water is observed in the range of 170 to 200 ppm, and its half-value width is about 300 Hz or more.

グラフト化ポリエステル粒子中のポリエステル主鎖およびグラフト部分が上記のような半値幅を有することにより、本発明に用いられ得る共重合ポリエステル水系分散体中の粒子は、水性分散媒体中においてポリエステル主鎖をコアとするコア−シェル構造をとり得る。   Since the polyester main chain and graft portion in the grafted polyester particles have the half width as described above, the particles in the copolymerized polyester aqueous dispersion that can be used in the present invention have the polyester main chain in the aqueous dispersion medium. A core-shell structure as a core can be taken.

ここでいうコア−シェル構造とは、当該技術分野で公知のように、分散媒体に不溶で凝集状態にある重合体からなるコア部が、分散媒体に可溶で溶解状態にある重合体からなるシェル部で包み込まれた二層構造をいう。この構造は、分散媒体への溶解性が異なる重合体がお互いに化学結合して生成した複合重合体の分散体に特徴的に現われる構造であり、単に分散媒体への溶解性が異なる重合体を混合するだけでは発現し得ない構造であることが知られている。さらに、単なる分散媒体への溶解性が異なる重合体の混合物は、500nm以下の粒子径を有する分散体として存在できない。   The core-shell structure referred to here is, as is known in the art, a core portion made of a polymer that is insoluble in a dispersion medium and in an aggregated state is made of a polymer that is soluble in a dispersion medium and in a dissolved state. A two-layer structure wrapped in a shell part. This structure is characteristic of a composite polymer dispersion formed by chemically bonding polymers having different solubility in a dispersion medium to each other. It is known that the structure cannot be expressed only by mixing. Furthermore, a mixture of polymers having different solubility in a simple dispersion medium cannot exist as a dispersion having a particle size of 500 nm or less.

本発明に用いられる共重合ポリエステル水系分散体中の粒子が上記のようなコア−シェル構造を有することにより、従来の分散体に良く用いられる乳化剤や有機共溶媒を用いなくても重合体粒子の分散媒体への分散状態が安定化される。このことはシェル部の樹脂が十分な水和層を形成し、分散重合体粒子を保護するためである。   Since the particles in the aqueous copolymerized polyester dispersion used in the present invention have the core-shell structure as described above, the polymer particles can be obtained without using an emulsifier or an organic cosolvent often used in conventional dispersions. The dispersion state in the dispersion medium is stabilized. This is because the resin in the shell portion forms a sufficient hydration layer and protects the dispersed polymer particles.

このような共重合ポリエステル水系分散体から得られる塗布膜は、ポリアミドフィルムとの接着性が非常に優れている。さらに、耐ブロッキング性が非常に優れているため、ガラス転移点の比較的低いフィルム基材においても問題なく使用し得る。また積層体とする場合、印刷インキやシーラント層を積層するときに使用する接着剤との接着性も非常に良好である。したがって、本発明のポリアミド系樹脂積層フィルムを使用することにより、得られる積層体(ラミネートフィルム)は、レトルト処理や沸水処理における耐久性が著しく向上され得る。さらに共重合ポリエステル水系分散体中のグラフト化ポリエステルのガラス転移温度が、30℃以下、好ましくは10℃以下であるような柔軟なグラフト化ポリエステルを使用すると、さらに積層体の耐久性が向上する。   The coating film obtained from such a copolymerized polyester aqueous dispersion has very good adhesion to the polyamide film. Furthermore, since the blocking resistance is very excellent, it can be used without any problem even on a film substrate having a relatively low glass transition point. Moreover, when it is set as a laminated body, adhesiveness with the adhesive agent used when laminating printing ink or a sealant layer is also very favorable. Therefore, by using the polyamide-based resin laminated film of the present invention, the obtained laminate (laminate film) can be remarkably improved in durability in retort treatment and boiling water treatment. Further, when a soft grafted polyester having a glass transition temperature of the grafted polyester in the aqueous copolymerized polyester dispersion of 30 ° C. or lower, preferably 10 ° C. or lower is used, the durability of the laminate is further improved.

(ポリエステル主鎖)
本発明においてグラフト化ポリエステルの主鎖として用い得るポリエステルは、好適には少なくともジカルボン酸成分とジオール成分とから合成される飽和または不飽和ポリエステルであり、得られるポリエステルは、1種の重合体または2種以上の重合体の混合物であり得る。そして、本来それ自身では水に分散または溶解しないポリエステルが好ましい。本発明に用い得るポリエステルの重量平均分子量は、5000〜l00000、好ましくは5000〜50000である。重量平均分子量が5000未満であると乾燥塗膜の後加工性等の塗膜物性が低下する。さらに重量平均分子量が5000未満であると、主鎖となるポリエステル自身が水溶化し易いため、形成されるグラフト化ポリエステルが後述するコア−シェル構造を形成し得ない。ポリエステルの重量平均分子量が100000を超えると水分散化が困難となる。水分散化の観点からは100000以下が好ましい。
(Polyester main chain)
In the present invention, the polyester that can be used as the main chain of the grafted polyester is preferably a saturated or unsaturated polyester synthesized from at least a dicarboxylic acid component and a diol component, and the resulting polyester is a single polymer or 2 It can be a mixture of more than one polymer. A polyester that does not inherently disperse or dissolve in water is preferred. The weight average molecular weight of the polyester that can be used in the present invention is 5,000 to 100,000, preferably 5,000 to 50,000. When the weight average molecular weight is less than 5000, physical properties of the coating film such as post-processability of the dried coating film are deteriorated. Furthermore, when the weight average molecular weight is less than 5,000, the polyester itself serving as the main chain is easily water-soluble, so that the formed grafted polyester cannot form the core-shell structure described later. When the weight average molecular weight of the polyester exceeds 100,000, water dispersion becomes difficult. From the viewpoint of water dispersion, it is preferably 100,000 or less.

ガラス転移点は、30℃以下、好ましくは10℃以下である。   The glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.

上記ジカルボン酸成分としては、少なくとも1種の芳香族ジカルボン酸、少なくとも1種の脂肪族および/または脂環族ジカルボン酸、および少なくとも1種のラジカル重合性不飽和二重結合を有するジカルボン酸を含む、ジカルボン酸混合物であることが好ましい。このジカルボン酸混合物中に含まれる、芳香族ジカルボン酸は、30〜99.5モル%、好ましくは40〜99.5モル%、脂肪族および/または脂環族ジカルボン酸は、0〜70モル%、好ましくは0〜60モル%、ラジカル重合性不飽和二重結合を有するジカルボン酸は、0.5〜10モル%、好ましくは2〜7モル%、より好ましくは3〜6モル%である。ラジカル重合性不飽和二重結合を含有するジカルボン酸の含有量が0.5モル%未満の場合、ポリエステルに対するラジカル重合性単量体の効果的なグラフト化が行なわれにくく、水系媒体中での分散粒子径が大きくなる傾向があり、分散安定性が低下する傾向がある。   The dicarboxylic acid component includes at least one aromatic dicarboxylic acid, at least one aliphatic and / or alicyclic dicarboxylic acid, and at least one dicarboxylic acid having a radically polymerizable unsaturated double bond. A dicarboxylic acid mixture is preferred. The aromatic dicarboxylic acid contained in the dicarboxylic acid mixture is 30 to 99.5 mol%, preferably 40 to 99.5 mol%, and the aliphatic and / or alicyclic dicarboxylic acid is 0 to 70 mol%. The dicarboxylic acid having a radically polymerizable unsaturated double bond is preferably 0.5 to 10 mol%, preferably 2 to 7 mol%, more preferably 3 to 6 mol%. When the content of the dicarboxylic acid containing a radically polymerizable unsaturated double bond is less than 0.5 mol%, it is difficult to effectively graft the radically polymerizable monomer to the polyester, The dispersed particle size tends to increase, and the dispersion stability tends to decrease.

芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等が用いられ得る。さらに、必要に応じて5−スルホイソフタル酸ナトリウムも用い得る。   As the aromatic dicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid and the like can be used. Furthermore, sodium 5-sulfoisophthalate may be used as necessary.

脂肪族ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、これらの酸無水物等を用い得る。   As the aliphatic dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, acid anhydrides thereof and the like can be used.

脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、1,3−シクロへキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、これらの酸無水物等を用い得る。   As the alicyclic dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, acid anhydrides thereof and the like can be used.

ラジカル重合性不飽和二重結合を含有するジカルボン酸としては、α,β−不飽和ジカルボン酸類としてフマール酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、不飽和二重結合を含有する脂環族ジカルボン酸として2,5−ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸等を用い得る。これらの内で、フマール酸、マレイン酸および2,5−ノルボルネンジカルボン酸(エンド−ビシクロ−(2,2,1)−5−へプテン−2,3−ジカルボン酸)が好ましい。   Dicarboxylic acids containing radically polymerizable unsaturated double bonds include α, β-unsaturated dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and fats containing unsaturated double bonds. As the cyclic dicarboxylic acid, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride, or the like can be used. Of these, fumaric acid, maleic acid and 2,5-norbornene dicarboxylic acid (endo-bicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid) are preferred.

上記ジオール成分は、炭素数2〜10の脂肪族グリコール、炭素数6〜12の脂環族グリコール、およびエーテル結合含有グリコールのうちの少なくとも1種よりなる。   The diol component is composed of at least one of an aliphatic glycol having 2 to 10 carbon atoms, an alicyclic glycol having 6 to 12 carbon atoms, and an ether bond-containing glycol.

炭素数2〜10の脂肪族グリコールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−へキサンジオール、3−メチル−1,5−ペンタンジオール、1,9−ノナンジオール、2−エチル−2−ブチルプロパンジオール等を用い得る。   Examples of the aliphatic glycol having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -Hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol and the like can be used.

炭素数6〜12の脂環族グリコールとしては、1,4−シクロヘキサンジメタノール等を用い得る。   As the alicyclic glycol having 6 to 12 carbon atoms, 1,4-cyclohexanedimethanol or the like can be used.

エーテル結合含有グリコールとしては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、さらにビスフェノール類の2つのフェノール性水酸基にエチレンオキサイドまたはプロピレンオキサイドをそれぞれ1〜数モル付加して得られるグリコール類、たとえば2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン等を用い得る。ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールも必要に応じて用い得る。   Examples of the ether bond-containing glycol include diethylene glycol, triethylene glycol, dipropylene glycol, and glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, for example, 2,2 -Bis (4-hydroxyethoxyphenyl) propane or the like can be used. Polyethylene glycol, polypropylene glycol, and polytetramethylene glycol may be used as necessary.

上記ジカルボン酸成分およびジオール成分の他に、3官能性以上のポリカルボン酸および/またはポリオールを共重合し得る。   In addition to the dicarboxylic acid component and the diol component, a tri- or higher functional polycarboxylic acid and / or polyol can be copolymerized.

3官能以上のポリカルボン酸としては、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等を用い得る。   The tri- or higher functional polycarboxylic acid includes (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol tris (anne) Hydrotrimellitate) and the like can be used.

3官能性以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等を用い得る。   As the trifunctional or higher functional polyol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, or the like can be used.

3官能性以上のポリカルボン酸および/またはポリオールは、上記ジカルボン酸成分を含む全ポリカルボン酸成分あるいは上記ジオール成分を含む全ポリオール成分に対し0〜5モル%、好ましくは、0〜3モル%の範囲で使用し得る。   The tri- or higher functional polycarboxylic acid and / or polyol is 0 to 5 mol%, preferably 0 to 3 mol%, based on the total polycarboxylic acid component including the dicarboxylic acid component or the total polyol component including the diol component. Can be used in a range of

(グラフト化ポリエステルのグラフト部分)
本発明に用い得るグラフト化ポリエステルのグラフト部分は、親水性基を有するか、または後で親水性基に変化させることができる基を有するラジカル重合性単量体を少なくとも1種含む単量体混合物由来の重合体であり得る。
(Grafted part of grafted polyester)
The graft portion of the grafted polyester that can be used in the present invention is a monomer mixture containing at least one radical polymerizable monomer having a hydrophilic group or a group that can be changed to a hydrophilic group later. It can be a derived polymer.

グラフト部分を構成する重合体の重量平均分子量は500〜50000、好ましくは4000〜50000である。重量平均分子量が500未満の場合には、グラフト化率が低下するのでポリエステルヘの親水性の付与が十分に行なわれなくなり、かつ一般にグラフト部分の重量平均分子量を500未満にコントロールすることは困難である。グラフト部分は分散粒子の水和層を形成する。粒子に十分な厚みの水和層をもたせ、安定な分散体を得るためにはラジカル重合性単量体由来のグラフト部分の、重量平均分子は500以上であることが望ましい。ラジカル重合性単量体のグラフト部分の重量平均分子量の上限は溶液重合における重合性の点で上記のように50000が好ましい。この範囲内での分子量のコントロールは、重合開始剤量、モノマー滴下時間、重合時間、反応溶媒、およびモノマー組成を適切に選択し、必要に応じて連鎖移動剤や重合禁止剤を適宜組み合わせることにより行ない得る。   The polymer constituting the graft part has a weight average molecular weight of 500 to 50,000, preferably 4,000 to 50,000. When the weight average molecular weight is less than 500, the grafting rate decreases, so that hydrophilicity cannot be sufficiently imparted to the polyester, and it is generally difficult to control the weight average molecular weight of the graft portion to less than 500. is there. The graft portion forms a hydrated layer of dispersed particles. In order to provide a hydration layer having a sufficient thickness to the particles and obtain a stable dispersion, the weight average molecule of the graft portion derived from the radical polymerizable monomer is desirably 500 or more. The upper limit of the weight average molecular weight of the graft portion of the radical polymerizable monomer is preferably 50000 as described above in view of polymerizability in solution polymerization. The molecular weight within this range is controlled by appropriately selecting the polymerization initiator amount, monomer dropping time, polymerization time, reaction solvent, and monomer composition, and appropriately combining a chain transfer agent and a polymerization inhibitor as necessary. You can do it.

ガラス転移点は、30℃以下、好ましくは10℃以下である。   The glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.

ラジカル重合性単量体が有する親水性基としては、カルボキシル基、水酸基、スルホン酸基、アミド基、第4級アンモニウム塩、リン酸基等を用い得る。親水性基に変化させ得る基としては、酸無水物、グリシジル、クロル等を用い得る。グラフト化によりポリエステルに導入される親水性基によってグラフト化ポリエステルの水への分散性をコントロールし得る。上記親水性基の中で、カルボキシル基は、そのグラフト化ポリエステルへの導入量を当該技術分野で公知の酸価を用いて正確に決定し得るため、グラフト化ポリエステルの水への分散性をコントロールする上で好ましい。   As the hydrophilic group possessed by the radical polymerizable monomer, a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide group, a quaternary ammonium salt, a phosphoric acid group, or the like can be used. As a group that can be changed to a hydrophilic group, an acid anhydride, glycidyl, chloro, or the like can be used. The dispersibility of the grafted polyester in water can be controlled by the hydrophilic group introduced into the polyester by grafting. Among the hydrophilic groups, the carboxyl group can accurately determine the amount of the grafted polyester introduced into the grafted polyester using an acid value known in the art, so the dispersibility of the grafted polyester in water is controlled. This is preferable.

カルボキシル基含有ラジカル重合性単量体としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等があり、さらに水/アミンに接して容易にカルボン酸を発生するマレイン酸無水物、イタコン酸無水物、メタクリル酸無水物等が用いられ得る。好ましいカルボキシル基含有ラジカル重合性単量体はアクリル酸無水物、メタクリル酸無水物およびマレイン酸無水物である。   Examples of carboxyl group-containing radical polymerizable monomers include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and the like, and maleic anhydride that easily generates carboxylic acid in contact with water / amine. Products, itaconic anhydride, methacrylic anhydride and the like can be used. Preferred carboxyl group-containing radical polymerizable monomers are acrylic acid anhydride, methacrylic acid anhydride and maleic acid anhydride.

上記親水性基含有ラジカル重合性単量体の他に、少なくとも1種の親水性基を含有しないラジカル重合性単量体を共重合することが好ましい。親水性基含有単量体のみの場合、ポリエステル主鎖に対するグラフト化が円滑に起こらず、良好な共重合ポリエステル水系分散体を得ることが難しい。少なくとも1種の親水性基を含有しないラジカル重合性単量体を共重合することによってはじめて効率の高いグラフト化が行なわれ得る。   In addition to the above-mentioned hydrophilic group-containing radical polymerizable monomer, it is preferable to copolymerize a radical polymerizable monomer that does not contain at least one hydrophilic group. In the case of only the hydrophilic group-containing monomer, grafting to the polyester main chain does not occur smoothly, and it is difficult to obtain a good copolymerized polyester aqueous dispersion. Highly efficient grafting can be carried out only by copolymerizing a radically polymerizable monomer that does not contain at least one hydrophilic group.

親水性基を含有しないラジカル重合性単量体としては、エチレン性不飽和結合を有しかつ上記のような親水性基を含有しない単量体の1種またはそれ以上の組み合わせが使用される。このような単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキプロピル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−ヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシルプロピル等のメタクリル酸エステル;アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド等のアクリル酸またはメタクリル酸誘導体;アクリロニトリル、メタクリロニトリル等のニトリル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;塩化ビニル、塩化ビニルデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;スチレン、α−メチルスチレン、t−ブチルスチレン、ビニルトルエン、ビニルナフタリン類等の芳香族ビニル化合物;を挙げることができる。これらのモノマーは単独もしくは2つ以上組み合わせて用いられ得る。   As the radically polymerizable monomer not containing a hydrophilic group, one or more combinations of monomers having an ethylenically unsaturated bond and not containing a hydrophilic group as described above are used. Examples of such monomers include acrylic acid esters such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate; Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxylpropyl methacrylate; acrylamide Acrylic acid or methacrylic acid derivatives such as N-methylolacrylamide and diacetoneacrylamide; Nitriles such as acrylonitrile and methacrylonitrile; Vinyl acetate and vinyl propionate Vinyl esters such as vinyl benzoate; Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; Vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and methyl isopropenyl ketone; N-vinyl pyrrole, N-vinyl N-vinyl compounds such as carbazole, N-vinylindole and N-vinylpyrrolidone; vinyl halides such as vinyl chloride, vinyldenide, vinyl bromide and vinyl fluoride; styrene, α-methylstyrene, t-butylstyrene, And aromatic vinyl compounds such as vinyl toluene and vinyl naphthalenes. These monomers can be used alone or in combination of two or more.

親水性基含有単量体と親水性基を含有しない単量体の使用比率は、グラフト化ポリエステルに導入する親水性基の量を考慮して決定されるが、通常、重量比(親水性基含有単量体:親水性基を含有しない単量体)として、95:5〜5:95、好ましくは90:10〜10:90、さらに好ましくは80:20〜40:60の範囲である。   The use ratio of the hydrophilic group-containing monomer and the monomer that does not contain a hydrophilic group is determined in consideration of the amount of the hydrophilic group to be introduced into the grafted polyester. (Containing monomer: monomer not containing a hydrophilic group) is 95: 5 to 5:95, preferably 90:10 to 10:90, more preferably 80:20 to 40:60.

親水性基含有単量体として、カルボキシル基含有単量体を用いる場合、グラフト化ポリエステルの総酸価は、600−4000eq./106g、好ましくは700−3000eq./106g、最も好ましくは800−2500eq./106gである。酸価が600eq./106g以下の場合、グラフト化ポリエステルを水に分散したときに粒子径の小さい共重合ポリエステル水系分散体が得にくく、さらに共重合ポリエステル水系分散体の分散安定性が低下する。酸価が4000eq./106g以上の場合、共重合ポリエステル水系分散体から形成される接着改質層の耐水性が低くなる。   When a carboxyl group-containing monomer is used as the hydrophilic group-containing monomer, the total acid value of the grafted polyester is 600-4000 eq. / 106 g, preferably 700-3000 eq. / 106 g, most preferably 800-2500 eq. / 106 g. Acid value is 600 eq. In the case of / 106 g or less, when the grafted polyester is dispersed in water, it is difficult to obtain a copolyester aqueous dispersion having a small particle diameter, and the dispersion stability of the copolyester aqueous dispersion is lowered. Acid value is 4000 eq. In the case of / 106 g or more, the water resistance of the adhesion-modified layer formed from the copolyester aqueous dispersion is lowered.

グラフト化ポリエステルにおけるポリエステル主鎖とグラフト部分との重量比(ポリエステル:ラジカル重合性単量体)は、40:60〜95:5、好ましくは55:45〜93:7、さらに好ましくは60:40〜90:10の範囲である。   The weight ratio (polyester: radically polymerizable monomer) between the polyester main chain and the graft portion in the grafted polyester is 40:60 to 95: 5, preferably 55:45 to 93: 7, and more preferably 60:40. It is in the range of ~ 90: 10.

ポリエステル主鎖の重量比率が40重量%以下である場合、すでに説明した母体ポリエステルの優れた性能すなわち高い加工性、優れた耐水性、各種基材への優れた密着性を十分に発揮することができず、逆にアクリル樹脂の望ましくない性能、すなわち低い加工性、光沢、耐水性等を付加してしまう。ポリエステルの重量比率が95重量%以上である場合、グラフト化ポリエステルに親水性を付与するグラフト部分の親水性基量が不足して、良好な水性分散体を得ることができない。   When the weight ratio of the polyester main chain is 40% by weight or less, the above-described excellent performance of the base polyester, that is, high processability, excellent water resistance, and excellent adhesion to various substrates can be sufficiently exhibited. On the contrary, the undesirable performance of the acrylic resin, that is, low processability, gloss, water resistance and the like are added. When the weight ratio of the polyester is 95% by weight or more, the hydrophilic group amount of the graft portion imparting hydrophilicity to the grafted polyester is insufficient, and a good aqueous dispersion cannot be obtained.

(グラフト化反応の溶媒)
グラフト化反応の溶媒は、沸点が50〜250℃の水性有機溶媒から構成されることが好ましい。ここで水性有機溶媒とは20℃における水に対する溶解性が少なくとも10g/L以上、好ましくは20g/L以上である有機溶媒をいう。沸点が250℃を超える水性有機溶媒は、蒸発速度が遅いため、塗膜形成後の塗膜の高温焼付によっても十分に取リ除き得ないので不適当である。また沸点が50℃以下の水性有機溶媒では、それを溶媒としてグラフト化反応を実施する場合、50℃以下の温度でラジカルに分解する開始剤を用いねばならないので取扱上の危険が増大し、好ましくない。
(Solvent for grafting reaction)
The solvent for the grafting reaction is preferably composed of an aqueous organic solvent having a boiling point of 50 to 250 ° C. Here, the aqueous organic solvent means an organic solvent having a solubility in water at 20 ° C. of at least 10 g / L or more, preferably 20 g / L or more. An aqueous organic solvent having a boiling point exceeding 250 ° C. is unsuitable because it has a low evaporation rate and cannot be sufficiently removed even by high-temperature baking of the coating film after forming the coating film. Also, in the case of an aqueous organic solvent having a boiling point of 50 ° C. or lower, when the grafting reaction is carried out using it as a solvent, an initiator that decomposes into radicals at a temperature of 50 ° C. or lower must be used. Absent.

ポリエステルをよく溶解し、かつ親水性基、特にカルボキシル基含有重合性単量体を含む重合性単量体およびその重合体を比較的良く溶解する水性有機溶媒(第一群)としては、エステル類、たとえば酢酸エチル;ケトン類、たとえばメチルエチルケトン、メチルイソブチルケトン、およびシクロへキサノン;環状エーテル類、たとえばテトラヒドロフラン、ジオキサン、および1,3−ジオキソラン;グリコールエーテル類、たとえばエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールプロピルエーテル、エチレングリコールエチルエーテル、およびエチレングリコールブチルエーテル;カルビトール類、たとえばメチルカルビトール、エチルカルビトール、およびブチルカルビトール;グリコール類またはグリコールエーテルの低級エステル類、たとえばエチレングリコールジアセテートおよびエチレングリコールエチルエーテルアセテート;ケトンアルコール類、たとえばダイアセトンアルコール;N−置換アミド類、たとえばジメチルホルムアミド、ジメチルアセトアミド、およびN−メチルピロリドン;等を挙げることができる。   As an aqueous organic solvent (first group) which dissolves polyester well and dissolves a hydrophilic group, particularly a carboxyl group-containing polymerizable monomer, and a polymer thereof relatively well, esters are used. Ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ethers such as tetrahydrofuran, dioxane, and 1,3-dioxolane; glycol ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, Propylene glycol propyl ether, ethylene glycol ethyl ether, and ethylene glycol butyl ether; carbitols such as methyl carbitol, ethyl carbitol, and butyl carbitol; Recalls or lower esters of glycol ethers such as ethylene glycol diacetate and ethylene glycol ethyl ether acetate; ketone alcohols such as diacetone alcohol; N-substituted amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; Etc.

これに対し、ポリエステルをほとんど溶解しないが、親水性基、特にカルボキシル基含有重合性単量体を含む重合性単量体およびその重合体を比較的よく溶解する水性有機溶媒(第二群)として、水、低級アルコール類、低級グリコール類、低級カルボン酸類、低級アミン類等を挙げることが出来る。好ましいのは炭素数1〜4のアルコール類およびグリコール類である。   On the other hand, as an aqueous organic solvent (second group) that dissolves polyester relatively little but dissolves a hydrophilic monomer, particularly a polymerizable monomer containing a carboxyl group-containing polymerizable monomer, and a polymer thereof relatively well. , Water, lower alcohols, lower glycols, lower carboxylic acids, lower amines and the like. Preferred are alcohols having 1 to 4 carbon atoms and glycols.

グラフト化反応を単一溶媒中で行なう場合は、第一群の水性有機溶媒の一種を用い得る。混合溶媒中で行なう場合は、第一群の水性有機溶媒の複数種または第一群の水性有機溶媒の少なくとも一種と第二群の水性有機溶媒の少なくとも一種とを用い得る。   When the grafting reaction is carried out in a single solvent, one of the first group of aqueous organic solvents can be used. When carried out in a mixed solvent, a plurality of first group aqueous organic solvents or at least one first group aqueous organic solvent and at least one second group aqueous organic solvent can be used.

第一群の水性有機溶媒からの単一溶媒中および第一群および第二群の水性有機溶媒のそれぞれ一種からなる混合溶媒中のいずれにおいても、グラフト化反応を行ない得る。しかし、グラフト化反応の進行挙動、グラフト化反応生成物およびそれから導かれる水系分散体の外観、性状等の点から、第一群および第二群の水性有機溶媒のぞれぞれ一種からなる混合溶媒を使用することが好ましい。この理由は、ポリエステルのグラフト化反応においてポリエステル分子間の架橋により系のゲル化が起こりやすいが、以下のように混合溶媒を用いることによりゲル化が防止され得るからである。   The grafting reaction can be carried out either in a single solvent from the first group of aqueous organic solvents or in a mixed solvent comprising one kind of each of the first group and the second group of aqueous organic solvents. However, in view of the progress of the grafting reaction, the appearance and properties of the grafting reaction product and the aqueous dispersion derived from it, a mixture consisting of each of the first group and the second group of aqueous organic solvents. It is preferable to use a solvent. This is because gelation of the system is likely to occur due to cross-linking between polyester molecules in the grafting reaction of polyester, but gelation can be prevented by using a mixed solvent as described below.

第一群の溶媒中では、ポリエステル分子鎖は広がりの大きい鎖ののびた状態にあり、他方、第一群/第二群の混合溶媒中では、ポリエステル分子鎖は広がりの小さい糸まり状に絡まった状態にあることが、これら溶液中のポリエステルの粘度測定により確認された。ポリエステル分子鎖が延びた状態では、ポリエステル主鎖中の反応点がすべてグラフト化反応に寄与し得るので、ポリエステルのグラフト化率は高くなるが、同時に分子間の架橋が起こる率も高くなる。他方、ポリエステル分子鎖が糸まり状になっている場合は、糸まり内部の反応点はグラフト化反応に寄与し得ず、同時に分子間の架橋が起こる率も低くなる。よって、溶媒の種類を選択することによってポリエステル分子の状態を調節することができ、それによりグラフト化率およびグラフト化反応による分子間架橋を調節し得る。   In the first group of solvents, the polyester molecular chains are in a state of extending a wide chain, while in the mixed solvent of the first group / second group, the polyester molecular chains are entangled in a narrow string shape. The state was confirmed by measuring the viscosity of the polyesters in these solutions. In the state in which the polyester molecular chain is extended, all the reaction points in the polyester main chain can contribute to the grafting reaction, so that the grafting rate of the polyester is increased, but at the same time, the rate at which intermolecular crosslinking occurs is also increased. On the other hand, when the polyester molecular chain is in the form of a thread, the reaction points inside the thread cannot contribute to the grafting reaction, and at the same time, the rate of cross-linking between molecules is reduced. Thus, the state of the polyester molecule can be adjusted by selecting the type of solvent, and thereby the grafting rate and intermolecular crosslinking by the grafting reaction can be controlled.

高いグラフト化率とゲル化抑制の両立は、混合溶媒系において達成し得る。第一群/第二群の混合溶媒の最適の混合比率は、使用するポリエステルの溶解性等によって変わり得るが、通常、第一群/第二群の混合溶媒の重量比率は、95:5〜10:90、好ましくは90:10〜20:80、さらに好ましくは85:15〜30:70の範囲である。   A high grafting ratio and gelation suppression can be achieved in a mixed solvent system. The optimum mixing ratio of the mixed solvent of the first group / second group may vary depending on the solubility of the polyester used, etc., but the weight ratio of the mixed solvent of the first group / second group is usually 95: 5 to The range is 10:90, preferably 90:10 to 20:80, more preferably 85:15 to 30:70.

(ラジカル重合開始剤およびその他添加剤)
本発明で用い得るラジカル重合開始剤として、当業者には公知の有機過酸化物類や有機アゾ化合物類を用い得る。
(Radical polymerization initiator and other additives)
As the radical polymerization initiator that can be used in the present invention, organic peroxides and organic azo compounds known to those skilled in the art can be used.

有機過酸化物として、ベンゾイルパ−オキサイド、t−ブチルパ−オキシピバレート、有機アゾ化合物として、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等を挙げることができる。   Benzoyl peroxide, t-butyl peroxypivalate as organic peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), etc. as organic azo compounds Can be mentioned.

グラフト化反応を行なうためのラジカル重合開始剤の使用量は、ラジカル重合性単量体に対して、少なくとも0.2重量%以上、好ましくは0.5重量%以上である。   The amount of radical polymerization initiator used for carrying out the grafting reaction is at least 0.2% by weight, preferably 0.5% by weight or more, based on the radical polymerizable monomer.

重合開始剤の他に、グラフト部分の鎖長を調節するための連鎖移動剤、たとえばオクチルメルカプタン、メルカプトエタノール、3−t−ブチル−4−ヒドロキシアニソール等を必要に応じて用い得る。この場合、ラジカル重合性単量体に対して0〜5重量%の範囲で添加されるのが望ましい。   In addition to the polymerization initiator, a chain transfer agent for adjusting the chain length of the graft portion, for example, octyl mercaptan, mercaptoethanol, 3-t-butyl-4-hydroxyanisole and the like may be used as necessary. In this case, it is desirable to add in the range of 0 to 5% by weight with respect to the radical polymerizable monomer.

(グラフト化反応)
グラフト部分の形成は、上記ポリエステル中のラジカル重合性不飽和二重結合と上記ラジカル重合性単量体とが重合することおよび/またはラジカル重合性不飽和二重結合と上記ラジカル重合性単量体の重合体の活性末端とが反応することにより進行する。グラフト化反応終了後の反応生成物は、目的とするグラフト化ポリエステルの他にグラフト部分を有さないポリエステルおよびポリエステルとグラフトしなかったラジカル重合性単量体の重合体を含有する。反応生成物中のグラフト化ポリエステルの生成比率が低く、グラフト部分を有さないポリエステル及びグラフトしなかったラジカル重合性単量体の重合体の比率が高い場合は、安定性の良好な分散体が得られない。
(Grafting reaction)
The graft portion is formed by polymerization of the radical polymerizable unsaturated double bond and the radical polymerizable monomer in the polyester and / or the radical polymerizable unsaturated double bond and the radical polymerizable monomer. The reaction proceeds with the active end of the polymer. The reaction product after completion of the grafting reaction contains, in addition to the target grafted polyester, a polyester having no graft portion and a polymer of a radical polymerizable monomer not grafted with the polyester. When the ratio of the grafted polyester in the reaction product is low and the ratio of the polyester having no graft portion and the polymer of the radical polymerizable monomer not grafted is high, a dispersion having good stability is obtained. I can't get it.

通常、グラフト化反応は、加温下で上記ポリエステルを含む溶液に対し、上記ラジカル重合性単量体とラジカル開始剤とを一時に添加して行ない得るか、あるいは別々に一定時間を要して滴下した後、さらに一定時間攪拌下に加温を継続して反応を進行させることによって行い得る。あるいは、必要に応じて、ラジカル重合性単量体の一部を先に添加し、次いで残りのラジカル重合性単量体、重合開始剤を別々に一定時間を要して滴下した後、さらに一定時間攪拌下に加温を継続してグラフト化反応を行い得る。   Usually, the grafting reaction can be performed by adding the radical polymerizable monomer and the radical initiator at a time to the solution containing the polyester under heating, or separately taking a certain time. After the dropwise addition, the reaction can be continued by further heating with stirring for a certain period of time. Alternatively, if necessary, a part of the radical polymerizable monomer is added first, and then the remaining radical polymerizable monomer and polymerization initiator are separately added dropwise over a certain period of time, and then further constant. The grafting reaction can be carried out by continuing heating with stirring for a period of time.

ポリエステルと溶媒との重量比率は、ポリエステルとラジカル重合性単量体との反応性およびポリエステルの溶剤溶解性を考慮して、重合工程中均一に反応が進行する重量比率が選択される。通常、70:30〜10:90、好ましくは50:50〜15:85の範囲である。   The weight ratio between the polyester and the solvent is selected so that the reaction proceeds uniformly during the polymerization process in consideration of the reactivity between the polyester and the radical polymerizable monomer and the solvent solubility of the polyester. Usually, it is in the range of 70:30 to 10:90, preferably 50:50 to 15:85.

(グラフト化ポリエステルの水分散化)
本発明に用いられ得るグラフト化ポリエステルは、固体状態で水系媒体に投入するか、または親水性溶媒に溶解後、水系媒体に投入することによって、水分散化され得る。特に、親水性の基を有するラジカル重合性単量体として、スルホン酸基およびカルボキシル基のような酸性基を有する単量体を用いた場合、グラフト化ポリエステルを塩基性化合物で中和することによって、グラフト化ポリエステルを容易に平均粒子径500nm以下の微粒子として水に分散して、共重合ポリエステル水系分散体を調製し得る。
(Water dispersion of grafted polyester)
The grafted polyester that can be used in the present invention can be dispersed in water by charging it into an aqueous medium in a solid state or by dissolving it in a hydrophilic solvent and then adding it to an aqueous medium. In particular, when a monomer having an acidic group such as a sulfonic acid group and a carboxyl group is used as a radical polymerizable monomer having a hydrophilic group, the grafted polyester is neutralized with a basic compound. The grafted polyester can be easily dispersed in water as fine particles having an average particle diameter of 500 nm or less to prepare a copolymerized polyester aqueous dispersion.

塩基性化合物としては塗膜形成時、あるいは以下に述べる硬化剤を配合した場合は焼付硬化時に揮散する化合物が望ましい。そのような塩基性化合物としては、アンモニア、有機アミン類等が好ましい。有機アミン類としては、トリエチルアミン、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、アミノエタノールアミン、N−メチル−N,N−ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3−エトキシプロピルアミン、3−ジエチルアミノプロピルアミン、sec−ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、ジメチルアミノプロピルアミン、メチルイミノビスプロピルアミン、3−メトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等を挙げることができる。   As the basic compound, a compound that volatilizes at the time of forming a coating film, or when a curing agent described below is blended, is baked and cured. As such a basic compound, ammonia, organic amines and the like are preferable. Examples of organic amines include triethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-Ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, dimethylaminopropylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine Etc.

塩基性化合物の使用量は、グラフト部分中に含まれるカルボキシル基を、少なくとも部分中和あるいは完全中和して、水系分散体のpH値を5.0〜9.0の範囲にする量が好ましい。   The amount of the basic compound used is preferably such that the carboxyl group contained in the graft portion is at least partially neutralized or completely neutralized so that the pH value of the aqueous dispersion is in the range of 5.0 to 9.0. .

塩基性化合物で中和された共重合ポリエステル水系分散体を調製する方法としては、グラフト化反応終了後、反応液から溶媒を、減圧下でエクストルダー等により除去してメルト状または固体状(ペレット、粉末等)にし、次いでこれを塩基性化合物水溶液に投じて加熱下攪拌することまたはグラフト化反応を終了した時点で直ちに塩基性化合物水溶液を反応液に投入し、さらに加熱攪拌を継続すること(ワン・ポット法)により水系分散体を調製し得る。利便性の点からワン・ポット法が好ましい。この場合、グラフト化反応に用いた溶媒の沸点が100℃以下ならば蒸留によって一部または全部を容易に取り除き得る。   As a method for preparing a copolyester aqueous dispersion neutralized with a basic compound, after completion of the grafting reaction, the solvent is removed from the reaction solution with an extruder or the like under reduced pressure to obtain a melt or solid (pellet) And then stirring the mixture under heating with heating or immediately after the grafting reaction is completed, adding the basic compound aqueous solution to the reaction solution and continuing the heating and stirring ( An aqueous dispersion can be prepared by a one-pot method). From the viewpoint of convenience, the one-pot method is preferable. In this case, if the boiling point of the solvent used for the grafting reaction is 100 ° C. or less, a part or all of it can be easily removed by distillation.

(接着改質層)
本発明のポリアミド系フィルム積層体において、ポリアミドフィルム基材の少なくとも片面に存在する接着改質層は、上記共重合ポリエステル水系分散体を含む塗布剤をポリアミドフィルム基材上に付与することにより形成される。
(Adhesion modified layer)
In the polyamide film laminate of the present invention, the adhesion modifying layer present on at least one side of the polyamide film substrate is formed by applying a coating agent containing the above copolymerized polyester aqueous dispersion on the polyamide film substrate. The

上記共重合ポリエステル水系分散体は、そのままで接着改質層を形成する塗布剤として使用し得るが、さらに架橋剤(硬化用樹脂)を配合して硬化を行なうことにより、接着改質層に高度の耐水性を付与し得る。   The above-mentioned copolymerized polyester aqueous dispersion can be used as it is as a coating agent for forming an adhesion-modified layer, but it can be used as an adhesive-modified layer by adding a crosslinking agent (curing resin) and curing. Water resistance can be imparted.

架橋剤としては、アルキル化フェノール類、クレゾール類等とホルムアルデヒドとの縮合物のフェノールホルムアルデヒド樹脂;尿素、メラミン、ベンゾグアナミン等とホルムアルデヒドとの付加物、この付加物と炭素原子数が1〜6のアルコールからなるアルキルエーテル化合物等のアミノ樹脂;多官能性エポキシ化合物;多官能性イソシアネート化合物;ブロックイソシアネート化合物;多官能性アジリジン化合物;オキサゾリン化合物等を用い得る。   As a crosslinking agent, phenol formaldehyde resin of a condensate of alkylated phenols, cresols and the like with formaldehyde; adduct of urea, melamine, benzoguanamine, etc. with formaldehyde, this adduct and alcohol having 1 to 6 carbon atoms An amino resin such as an alkyl ether compound comprising: a polyfunctional epoxy compound; a polyfunctional isocyanate compound; a blocked isocyanate compound; a polyfunctional aziridine compound; an oxazoline compound, and the like.

フェノールホルムアルデヒド樹脂としては、たとえば、アルキル化(メチル、エチル、プロピル、イソプロピルまたはブチル)フェノール、p−tert−アミルフェノール、4、4’−sec−ブチリデンフェノール、p−tert−ブチルフェノール、o−、m−、p−クレゾール、p−シクロヘキシルフェノール、4,4’−イソプロピリデンフェノール、p−ノニルフェノール、p−オクチルフェノール、3−ペンタデシルフェノール、フェノール、フェニルo−クレゾール、p−フェニルフェノール、キシレノール等のフェノール類とホルムアルデヒドとの縮合物を挙げることができる。   Examples of the phenol formaldehyde resin include alkylated (methyl, ethyl, propyl, isopropyl or butyl) phenol, p-tert-amylphenol, 4, 4′-sec-butylidenephenol, p-tert-butylphenol, o-, m-, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl o-cresol, p-phenylphenol, xylenol, etc. Mention may be made of condensates of phenols and formaldehyde.

アミノ樹脂としては、たとえば、メトキシ化メチロール尿素、メトキシ化メチロールN,N−エチレン尿素、メトキシ化メチロールジシアンジアミド、メトキシ化メチロールメラミン、メトキシ化メチロールベンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メチロールベンゾグアナミン等が挙げられるが、好ましくはメトキシ化メチロールメラミン、ブトキシ化メチロールメラミン、およびメチロール化ベンゾグアナミン等を挙げることができる。   Examples of amino resins include methoxylated methylol urea, methoxylated methylol N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, and the like. However, preferably, methoxylated methylol melamine, butoxylated methylol melamine, methylolated benzoguanamine and the like can be mentioned.

多官能性エポキシ化合物としては、たとえば、ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、水素化ビスフェノールAのジグリシジルエーテルおよびそのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p−オキシ安息香酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−へキサンジオールジグリシジルエーテルおよびポリアルキレングリコールジグリシジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシアヌレート、1,4−ジグリシジルオキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテル等を挙げることができる。   Examples of the polyfunctional epoxy compound include diglycidyl ether of bisphenol A and oligomer thereof, diglycidyl ether of hydrogenated bisphenol A and oligomer thereof, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, p-oxybenzoic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol diglycidyl ether, propylene Glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether And polyalkylene glycol diglycidyl ethers, trimellitic acid triglycidyl ester, triglycidyl isocyanurate, 1,4-diglycidyloxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tri Examples thereof include glycidyl ether and triglycidyl ether of glycerol alkylene oxide adduct.

多官能性イソシアネート化合物としては、低分子または高分子の芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートを用い得る。ポリイソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネー卜、およびこれらのイソシアネー卜化合物の3量体がある。さらに、これらのイソシアネート化合物の過剰量と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の低分子活性水素化合物、またはポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類等の高分子活性水素化合物とを反応させて得られる末端イソシアネート基含有化合物を挙げることができる。   As the polyfunctional isocyanate compound, a low-molecular or high-molecular aromatic or aliphatic diisocyanate or a trivalent or higher polyisocyanate can be used. Examples of polyisocyanates include tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and trimers of these isocyanate compounds. There is. Further, an excess amount of these isocyanate compounds and low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, and triethanolamine, or polyester polyols, poly The terminal isocyanate group containing compound obtained by making it react with polymer active hydrogen compounds, such as ether polyols and polyamides, can be mentioned.

ブロック化イソシアネートは上記イソシアネート化合物とブロック化剤とを従来公知の適宜の方法より付加反応させて調製し得る。イソシアネートブロック化剤としては、たとえば、フェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類;チオフェノール、メチルチオフェノール等のチオフェノール類;アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等のオキシム類;メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレンクロルヒドリン、1,3−ジクロロ−2−プロパノール等のハロゲン置換アルコール類;t−ブタノール、t−ペンタノール等の第3級アルコール類;ε−カプロラクタム、δ−バレロラクタム、ν−ブチロラクタム、β−プロピルラクタム等のラクタム類;芳香族アミン類;イミド類;アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステル等の活性メチレン化合物;メルカプタン類;イミン類;尿素類;ジアリール化合物類;重亜硫酸ソーダ等を挙げることができる。   The blocked isocyanate can be prepared by subjecting the above isocyanate compound and blocking agent to an addition reaction by a conventionally known appropriate method. Examples of the isocyanate blocking agent include phenols such as phenol, cresol, xylenol, resorcinol, nitrophenol and chlorophenol; thiophenols such as thiophenol and methylthiophenol; oximes such as acetoxime, methylethylketoxime and cyclohexanone oxime; Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol; -Lactams such as caprolactam, δ-valerolactam, ν-butyrolactam, β-propyllactam; aromatic amines; imides; acetylacetone, acetoacetate, malonic acid Active methylene compounds such as Chiruesuteru; mercaptans; imines; ureas; diaryl compounds; can be mentioned sodium bisulfite and the like.

これらの架橋剤は、それぞれ単独または2種以上混合して用い得る。   These crosslinking agents may be used alone or in combination of two or more.

架橋剤の配合量としては、グラフト化ポリエステルに対して、5重量%〜40重量%が好ましい。   As a compounding quantity of a crosslinking agent, 5 to 40 weight% is preferable with respect to grafted polyester.

架橋剤の配合方法としては、(1)架橋剤が水溶性である場合、直接水系分散体中に溶解または分散させる方法、または(2)架橋剤が油溶性である場合、グラフト化反応終了後、水分散化の前または後に架橋剤を加えてコア部にポリエステルと共存させる方法を用い得る。これらの方法は、架橋剤の種類、性状により適宜選択し得る。さらに架橋剤には、硬化剤あるいは促進剤を併用し得る。   As a method of blending the crosslinking agent, (1) when the crosslinking agent is water-soluble, directly dissolving or dispersing in the aqueous dispersion, or (2) when the crosslinking agent is oil-soluble, after completion of the grafting reaction Alternatively, a method of adding a cross-linking agent before or after water dispersion to coexist with polyester in the core part can be used. These methods can be appropriately selected depending on the type and properties of the crosslinking agent. Further, a curing agent or an accelerator can be used in combination with the crosslinking agent.

本発明に用い得る塗布剤に、さらに本発明の効果を損なわない範囲で、帯電防止剤、無機滑剤、有機滑剤等の添加剤を混合し得る。   Additives such as antistatic agents, inorganic lubricants, and organic lubricants can be mixed with the coating agent that can be used in the present invention as long as the effects of the present invention are not impaired.

本発明に用い得る接着改質層に、さらに本発明の効果を損なわない範囲で、帯電防止剤、無機滑剤、有機滑剤等の添加剤を含有させることができ、これらは塗布剤中に含有させて、基材表面に付与される。   The adhesive modification layer that can be used in the present invention can further contain additives such as an antistatic agent, an inorganic lubricant, and an organic lubricant within a range that does not impair the effects of the present invention. And applied to the substrate surface.

接着改質層を形成するために、共重合ポリエステル水系分散体を含む塗布剤をポリアミドフィルム基材に塗布する方法としては、グラビア方式、リバース方式、ダイ方式、バー方式、ディップ方式等公知の塗布方式を用い得る。   As a method for applying a coating agent containing a copolymerized polyester aqueous dispersion to a polyamide film substrate in order to form an adhesion modified layer, known coating methods such as gravure method, reverse method, die method, bar method, dip method, etc. A scheme may be used.

塗布剤の塗布量は、固形分として0.01〜1g/m、好ましくは、0.02〜0.5g/mになるように塗布する。塗布量が0.01g/m以下になると、接着改質層と他層との十分な接着強度が得られない。1g/m 以上になるとブロッキングが発生し、実用上問題がある。 The coating amount of the coating agent, 0.01 to 1 g / m 2 as solids, preferably coated so as to 0.02 to 0.5 g / m 2. When the coating amount is 0.01 g / m 2 or less, sufficient adhesion strength between the adhesion modified layer and the other layer cannot be obtained. When it is 1 g / m 2 or more, blocking occurs, which causes a practical problem.

接着改質層は、二軸延伸ポリアミドフィルム基材に塗布剤を塗布するか、未延伸あるいは一軸延伸後のポリアミドフィルム基材に塗布剤を塗布した後、乾燥し、必要に応じて、さらに一軸延伸あるいは二軸延伸後熱固定を行って調製し得る。塗布剤塗布後の乾燥温度としては、150℃以上、好ましくは200℃以上で乾燥および熱固定を行うことにより塗膜が強固になり、接着改質層とポリアミドフィルム基材との接着性が向上する。   The adhesion-modified layer is applied to the biaxially stretched polyamide film base material, or applied to the unstretched or uniaxially stretched polyamide film base material, and then dried. It can be prepared by stretching or biaxial stretching followed by heat setting. The drying temperature after applying the coating agent is 150 ° C. or higher, preferably 200 ° C. or higher, and drying and heat setting makes the coating film stronger and improves the adhesion between the adhesion-modified layer and the polyamide film substrate. To do.

塗布後に延伸を行う場合、塗布後の乾燥は、塗布フィルムの延伸性を損なわないために塗布フィルムの水分率を0.1〜2%の範囲に制御する必要がある。延伸後は200℃以上で乾燥および熱固定することによリ、塗膜が強固になリ接着改質層とポリアミドフィルム基材との接着性が飛躍的に向上する。   When extending | stretching after application | coating, it is necessary to control the moisture content of an application | coating film in the range of 0.1 to 2%, in order for the drying after application | coating not to impair the stretchability of an application | coating film. After stretching, drying and heat-setting at 200 ° C. or higher greatly improves the adhesion between the re-adhesion modified layer having a strong coating film and the polyamide film substrate.

本発明の積層体に用い得る接着改質層は、共重合ポリエステル水系分散体を含む塗布剤を付与することにより形成され、この共重合ポリエステル水系分散体は、グラフト化ポリエステルの粒子と水系溶媒とを含み、グラフト化ポリエステルは、ポリエステル主鎖と、親水性基を有するラジカル重合性単量体を含むラジカル重合性単量体により形成されるグラフト部分とを有する。   The adhesion-modified layer that can be used in the laminate of the present invention is formed by applying a coating agent containing a copolymerized polyester aqueous dispersion, and the copolymerized polyester aqueous dispersion comprises grafted polyester particles, an aqueous solvent, The grafted polyester has a polyester main chain and a graft portion formed by a radical polymerizable monomer including a radical polymerizable monomer having a hydrophilic group.

なお、上記の如く得られる本発明のポリアミド系樹脂積層フィルムロールを用いてラミネート加工を行う場合には、たとえば以下のようなインキ層、接着剤層、シーラント層を設けることが可能である。   In addition, when laminating using the polyamide-based resin laminated film roll of the present invention obtained as described above, for example, the following ink layer, adhesive layer, and sealant layer can be provided.

(インキ層)
本発明のポリアミド系フィルム積層体において、ポリアミドフィルム基材上に形成された接着改質層上にインキ層が積層される。
(Ink layer)
In the polyamide-based film laminate of the present invention, an ink layer is laminated on an adhesion modified layer formed on a polyamide film substrate.

インキ層を形成する印刷インキとしては、セルロース誘導体をバインダーとしたインキあるいは合成樹脂をバインダーとしたグラビアインキを主として用い得る。特に耐水性が要求される場合は、ポリマー鎖末端に水酸基等を有する塩化ビニル、ポリエステル、ポリエーテル、ポリオール等をバインダーとしたインキに硬化剤を添加して用い得る。インキ層は、接着改質層上に全面的または部分的にあるいは任意の図柄として形成される。   As the printing ink for forming the ink layer, an ink using a cellulose derivative as a binder or a gravure ink using a synthetic resin as a binder can be mainly used. In particular, when water resistance is required, a curing agent can be added to an ink containing vinyl chloride, polyester, polyether, polyol or the like having a hydroxyl group at the end of the polymer chain as a binder. The ink layer is formed entirely or partially on the adhesion modified layer or as an arbitrary pattern.

(接着剤層)
本発明のポリアミド系フィルム積層体において、上記インキ層上に接着剤層が積層される。接着剤層の厚さは、通常、0.1μm〜10μmである。
(Adhesive layer)
In the polyamide film laminate of the present invention, an adhesive layer is laminated on the ink layer. The thickness of the adhesive layer is usually 0.1 μm to 10 μm.

接着剤層を形成する接着剤としては、接着剤層上に積層されるシーラント層が押し出しラミネートによって積層される場合、イソシアネート系接着剤が好ましい。イソシアネート系接着剤としては、一液型として、たとえば、ジイソシアネートと多価アルコールとの反応物であって、分子末端にイソシアネート基を有するポリウレタンまたはポリウレタンプレポリマーを用い得る。あるいは、ポリイソシアネートと、ポリオールまたは水酸基を分子末端に有するポリウレタンプレポリマーとを使用直前に混合する二液型を用い得る。   As the adhesive forming the adhesive layer, when the sealant layer laminated on the adhesive layer is laminated by extrusion lamination, an isocyanate-based adhesive is preferable. As the isocyanate-based adhesive, for example, a polyurethane or a polyurethane prepolymer which is a reaction product of diisocyanate and a polyhydric alcohol and has an isocyanate group at a molecular end can be used as a one-pack type. Alternatively, a two-component type in which a polyisocyanate and a polyurethane prepolymer having a polyol or a hydroxyl group at a molecular terminal are mixed immediately before use can be used.

接着剤層上に積層されるシーラント層がドライラミネートによって積層される場合、接着剤としては、当業者には公知のビニル系、アクリル系、ポリアミド系、エポキシ系、ウレタン系の接着剤を用い得る。これらの内で、ポリイソシアネートとポリオールを使用直前に混合する二液型ポリウレタン系接着剤が好ましい。   When the sealant layer to be laminated on the adhesive layer is laminated by dry lamination, vinyl-based, acrylic-based, polyamide-based, epoxy-based, and urethane-based adhesives known to those skilled in the art can be used as the adhesive. . Among these, a two-component polyurethane adhesive in which polyisocyanate and polyol are mixed immediately before use is preferable.

接着剤層は、上記液状の接着剤を当業者には公知の方法を用いて、インク層上に塗布することによって形成され得る。   The adhesive layer can be formed by applying the liquid adhesive on the ink layer using a method known to those skilled in the art.

(シーラント層)
本発明のポリアミド系フィルム積層体において、上記接着剤層上にシーラント層が積層される。シーラント層の厚さは、通常、20μm〜100μmである。シーラント層は、低密度ポリエチレン(LDPE)、エチレン−酢酸ビニル共重合体(EVA)、アイオノマー、ポリプロピレン(PP)等の合成樹脂を押し出しラミネートまたはドライラミネートすることによって形成され得る。
(Sealant layer)
In the polyamide-based film laminate of the present invention, a sealant layer is laminated on the adhesive layer. The thickness of the sealant layer is usually 20 μm to 100 μm. The sealant layer can be formed by extruding or dry laminating a synthetic resin such as low density polyethylene (LDPE), ethylene-vinyl acetate copolymer (EVA), ionomer, polypropylene (PP).

以下、実施例によって本発明を詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the embodiments of the examples, and can be appropriately changed without departing from the spirit of the present invention. .

また、実施例および比較例で使用した原料チップA〜Eの性状、実施例および比較例で使用した原料チップの組成、実施例および比較例におけるフィルムロールの製膜条件を、それぞれ、表1,2に示す。なお、チップA,C,Dは、ナイロン6(相対粘度=2.8,Tg=41℃)97.00重量%、シリカ粒子3.00重量%からなるものであり、チップB,Eは、ナイロン6(相対粘度=2.8,Tg=41℃)96.45重量%、ポリメタキシリレンアジパミド(相対粘度=2.1)3.00重量%、エチレンビスステアリン酸アマイド0.15重量%、シリカ粒子0.40重量%からなるものである。加えて、チップA,Cに添加されたシリカ粒子は、平均粒子系が約3.0μmのものであり、チップBに添加されたシリカ粒子は、平均粒子系が約1.8μmのものであり、チップD,Eに添加されたシリカ粒子は、平均粒子系が約2.0μmのものである。また、チップA〜Eの形状は、いずれも楕円柱状であり、チップAとチップD、チップBとチップEは、それぞれ、断面長径、断面短径、チップ長さとも同一である。   Further, the properties of the raw material chips A to E used in the examples and comparative examples, the composition of the raw material chips used in the examples and comparative examples, and the film forming conditions of the film rolls in the examples and comparative examples are shown in Table 1, respectively. It is shown in 2. The chips A, C, and D are made of nylon 6 (relative viscosity = 2.8, Tg = 41 ° C.) 97.00% by weight and silica particles 3.00% by weight. Nylon 6 (relative viscosity = 2.8, Tg = 41 ° C) 96.45 wt%, polymetaxylylene adipamide (relative viscosity = 2.1) 3.00 wt%, ethylenebisstearic acid amide 0.15 wt% %, Silica particles 0.40% by weight. In addition, the silica particles added to the chips A and C have an average particle system of about 3.0 μm, and the silica particles added to the chip B have an average particle system of about 1.8 μm. The silica particles added to the chips D and E have an average particle size of about 2.0 μm. The shapes of the chips A to E are all elliptic cylinders, and the chip A and the chip D, the chip B and the chip E are the same in cross section major axis, cross section minor axis, and chip length, respectively.

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

一方、実施例および比較例においてフィルムに塗布した接着改質層を構成する物質の特性の測定方法を以下に示す。なお、以下の記載中、単に部とあるのは重量部を表し、単に%とあるのは重量%を示す。   On the other hand, the measuring method of the characteristic of the substance which comprises the adhesion modification layer apply | coated to the film in an Example and a comparative example is shown below. In the following description, “part” simply means “part by weight”, and “%” simply means “% by weight”.

[重量平均分子量]
重合体0.03gをテトラヒドロフラン10mlに溶かし、GPC−LALLS装置 低角度光散乱光度計LS−8000(東ソー株式会社製、テトラヒドロフラン溶媒、リファレンス:ポリスチレン)で測定した。
[Weight average molecular weight]
0.03 g of the polymer was dissolved in 10 ml of tetrahydrofuran and measured with a GPC-LALLS apparatus low angle light scattering photometer LS-8000 (manufactured by Tosoh Corporation, tetrahydrofuran solvent, reference: polystyrene).

[ポリエステルのグラフト効率]
グラフト化反応により得られた生成物を、UNITY 500(バリアン社製)を用いて、ポリエステル中の二重結合含有成分の二重結合に由来するプロトンのH−NMR(220MHz、測定溶媒CDC1/DMSO−d)を測定し、そのシグナルの強度変化を元に、以下の式1を用いてグラフト効率を算出した。
[Grafting efficiency of polyester]
Using a unity 500 (manufactured by Varian), the product obtained by the grafting reaction was subjected to 1 H-NMR (220 MHz, measurement solvent CDC1 3) of protons derived from the double bond of the double bond-containing component in the polyester. / DMSO-d 6 ) was measured, and the graft efficiency was calculated using the following formula 1 based on the intensity change of the signal.

ポリエステルグラフト効率=(1−(グラフト化ポリエステル中の二重結合含有成分の二重結合に由来のシグナルの相対強度/原料ポリエステル中の二重結合含有成分の二重結合に由来のシグナルの相対強度))×100(%)・・1 Polyester grafting efficiency = (1- (Relative strength of signal derived from double bond of double bond-containing component in grafted polyester / Relative strength of signal derived from double bond of component containing double bond in raw material polyester) )) X 100 (%) ... 1

なお、相対強度は基準シグナルとしての内部インターナルのシグナル強度との比較により算出した。   The relative intensity was calculated by comparison with the signal intensity of internal internal as a reference signal.

[グラフト部分の重量平均分子量の測定]
グラフト化ポリエステルを、KOH/水−メタノール溶液中で還流することによりポリエステルの加水分解を行なった。分解生成物を酸性条件下でTHFを用いて抽出を行ない、抽出液からグラフト部分をヘキサンで再沈殿することによリ精製した。得られた重合体をGPC装置(島津製作所製、テトラヒドロフラン溶媒、ポリスチレン換算)を用いて分子量を測定し、グラフト部分の重量平均分子量を計算した。
[Measurement of weight average molecular weight of graft part]
The polyester was hydrolyzed by refluxing the grafted polyester in a KOH / water-methanol solution. The decomposition product was extracted with THF under acidic conditions, and the grafted portion was purified from the extract by reprecipitation with hexane. The molecular weight of the obtained polymer was measured using a GPC apparatus (manufactured by Shimadzu Corporation, tetrahydrofuran solvent, polystyrene conversion), and the weight average molecular weight of the graft portion was calculated.

[水系分散体の粒子径]
水系分散体を、イオン交換水だけを用いて固形分濃度0.1wt%に調製し、レーザー光散乱粒度分布計Coulter model N4 (Coulter社製)を用いて20℃で粒子径を測定した。
[Particle size of aqueous dispersion]
The aqueous dispersion was prepared to a solid content concentration of 0.1 wt% using only ion-exchanged water, and the particle size was measured at 20 ° C. using a laser light scattering particle size distribution meter Coulter model N4 (manufactured by Coulter).

[水系分散体のB型粘度]
水系分散体の粘度を、回転粘度計(東京計器(株)製, EM型)を用いて25℃で測定した。
[B-type viscosity of aqueous dispersion]
The viscosity of the aqueous dispersion was measured at 25 ° C. using a rotational viscometer (manufactured by Tokyo Keiki Co., Ltd., EM type).

13C−NMRのシグナルの半値幅の測定]
水系分散体を固形分濃度20重量%になるように重水で希釈し、次いでこれにDSSを添加して測定用サンプルを調製した。UNITY 500(バリアン社製)を用いて、25℃で、DSSのシグナルが5Hz以下になるように測定条件を設定した後、サンプルの13C−NMR(125MHz)を測定し、重み付け関数をかけずにフーリエ変換をした。得られたポリエステル主鎖のカルボニル炭素のシグナルとグラフト部分のカルボニル炭素のシグナルの半値幅をそれぞれ計測した。
[Measurement of half width of 13 C-NMR signal]
The aqueous dispersion was diluted with heavy water to a solid content concentration of 20% by weight, and then DSS was added thereto to prepare a measurement sample. Using UNITY 500 (manufactured by Varian), measurement conditions were set so that the DSS signal was 5 Hz or less at 25 ° C., then 13 C-NMR (125 MHz) of the sample was measured, and no weighting function was applied. Fourier transform. The half-value widths of the carbonyl carbon signal of the obtained polyester main chain and the carbonyl carbon signal of the graft portion were measured.

[ガラス転移点(Tg)]
水系分散体をガラス板に塗布し、次いで170℃で乾燥してポリエステル固形分を得た。このポリエステル固形分10mgをサンプルパンに取り、示差走査型熱量計で10℃/分の速度で走査してTgを測定した。
[Glass transition point (Tg)]
The aqueous dispersion was applied to a glass plate and then dried at 170 ° C. to obtain a polyester solid. 10 mg of this polyester solid content was taken into a sample pan and scanned at a rate of 10 ° C./min with a differential scanning calorimeter to measure Tg.

[実施例1]
<接着改質層形成用の塗布液(共重合ポリエステル水系分散液)の調整>
攪拌機、温度計および部分還流式冷却器を具備したステンレススチール製オートクレーブにジメチルテレフタレート466部、ジメチルイソフタレート466部、ネオペンチルグリコール401部、エチレングリコール443部、およびテトラ−n−ブチルチタネート0.52部を仕込み、160〜220℃で4時間かけてエステル交換反応を行った。次いでフマール酸23部を加えて200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで255℃まで昇温し、反応系を徐々に減圧したのち0.2mmHgの減圧下で1時間30分攪拌しながら反応させてポリエステルを得た。得られたポリエステルは淡黄色透明で、ガラス転移温度60℃、重量平均分子量は12000であった。NMR測定等により得られた組成は次の通りであった。
[Example 1]
<Adjustment of coating solution (copolymerized polyester aqueous dispersion) for forming an adhesion modified layer>
In a stainless steel autoclave equipped with a stirrer, thermometer and partial reflux condenser, 466 parts of dimethyl terephthalate, 466 parts of dimethyl isophthalate, 401 parts of neopentyl glycol, 443 parts of ethylene glycol, and 0.52 of tetra-n-butyl titanate The ester exchange reaction was carried out at 160 to 220 ° C. for 4 hours. Next, 23 parts of fumaric acid was added and the temperature was raised from 200 ° C. to 220 ° C. over 1 hour to carry out an esterification reaction. Next, the temperature was raised to 255 ° C., the pressure of the reaction system was gradually reduced, and the reaction was carried out with stirring under a reduced pressure of 0.2 mmHg for 1 hour and 30 minutes to obtain a polyester. The obtained polyester was light yellow and transparent, had a glass transition temperature of 60 ° C. and a weight average molecular weight of 12,000. The composition obtained by NMR measurement and the like was as follows.

ジカルボン酸成分
テレフタル酸 48モル%
イソフタル酸 48モル%
フマール酸 4モル%
ジオール成分
ネオペンチルグリコール 50モル%
エチレングリコール 50モル%
Dicarboxylic acid component terephthalic acid 48mol%
Isophthalic acid 48mol%
4 mol% fumaric acid
Diol component Neopentyl glycol 50 mol%
Ethylene glycol 50 mol%

攪拌器、温度計、還流装置と定量滴下装置を備えた反応器に、上記ポリエステル樹脂75部とメチルエチルケトン56部とイソプロピルアルコール19部とを入れ65℃で加熱、攪拌し樹脂を溶解した。樹脂が完溶した後、メタクリル酸17.5部とアクリル酸エチル7.5部の混合物と、アゾビスジメチルバレロニトリル1.2部とを25部のメチルエチルケトンに溶解した溶液を0.2ml/分でポリエステル溶液中に滴下し、滴下終了後さらに2時間攪拌を続けた。反応溶液から分析用のサンプリング(5g)を行った後、水300部とトリエチルアミン25部を反応溶液に加え、1時間攪拌してグラフト化ポリエステルの分散体を調整した。その後、得られた分散体の温度を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により溜去して共重合ポリエステル水系分散体を得た。   In a reactor equipped with a stirrer, a thermometer, a reflux device and a quantitative dropping device, 75 parts of the polyester resin, 56 parts of methyl ethyl ketone, and 19 parts of isopropyl alcohol were placed and heated and stirred at 65 ° C. to dissolve the resin. After the resin was completely dissolved, a solution of 17.5 parts of methacrylic acid and 7.5 parts of ethyl acrylate and 1.2 parts of azobisdimethylvaleronitrile dissolved in 25 parts of methyl ethyl ketone was added at 0.2 ml / min. Was added dropwise to the polyester solution, and stirring was further continued for 2 hours after the completion of the dropping. After sampling for analysis (5 g) from the reaction solution, 300 parts of water and 25 parts of triethylamine were added to the reaction solution and stirred for 1 hour to prepare a dispersion of grafted polyester. Thereafter, the temperature of the obtained dispersion was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off to obtain a copolymerized polyester aqueous dispersion.

得られた分散体は、白色で平均粒子径300nm、25℃におけるB型粘度は50cpsであった。この分散体5gに重水1.25gを添加して固形分濃度を20重量%とした後、DSSを加えて、125MHz13C−NMRを測定した。ポリエステル主鎖のカルボニル炭素のシグナル(160−175ppm)の半値幅は∞(シグナルが検出されない)であり、グラフト部分のメタクリル酸のカルボニル炭素のシグナル(181−186ppm)の半値幅は110Hzであった。グラフト化反応終了時点でサンプリングした溶液を100℃で8時間真空下で乾燥を行い、その固形分について酸価の測定、ポリエステルのグラフト効率の測定(NMRの測定)、および加水分解によるグラフト部分の分子量の測定を行った。固形分の酸価は2300eq./106gであった。H−NMRの測定では、フマール酸由来のシグナル(δ=6.8−6.9ppm、doublet)が全く検出されなかったことから、ポリエステルのグラフト効率は100%であることを確認した。グラフト部分の分子量は、重量平均分子量10000であった。 The obtained dispersion was white and had an average particle diameter of 300 nm and a B-type viscosity at 25 ° C. of 50 cps. After adding 1.25 g of heavy water to 5 g of this dispersion to make the solid content concentration 20% by weight, DSS was added and 125 MHz 13 C-NMR was measured. The half width of the carbonyl carbon signal (160-175 ppm) of the polyester main chain was ∞ (no signal was detected), and the half width of the carbonyl carbon signal (181-186 ppm) of the methacrylic acid in the graft portion was 110 Hz. . The solution sampled at the end of the grafting reaction is dried at 100 ° C. under vacuum for 8 hours, and the solid content is measured for acid value, polyester grafting efficiency (NMR measurement), and hydrolysis of the grafted portion. The molecular weight was measured. The acid value of the solid content is 2300 eq. / 106 g. In 1 H-NMR measurement, no fumaric acid-derived signal (δ = 6.8-6.9 ppm, doublet) was detected, and it was confirmed that the graft efficiency of polyester was 100%. The molecular weight of the graft portion was 10,000 weight average molecular weight.

しかる後、上記の如く得られた分散体を、固形分濃度5%になるように水で希釈して接着改質層形成用の塗布液(共重合ポリエステル水系分散液)Aを得た。   Thereafter, the dispersion obtained as described above was diluted with water to a solid content concentration of 5% to obtain a coating liquid (copolymerized polyester aqueous dispersion) A for forming an adhesion modified layer.

<ポリアミド系樹脂積層フィルムロールの製造>
一方、上記したチップA,Bを別々に、15klのブレンダー装置を用いて約8.0時間に亘って約120℃に加温しながら予備乾燥した。ブレンダー内から各チップを所定量採取して水分率を測定したところ、チップA,Bの水分率は、いずれも800ppmであった。なお、水分率の測定は、カールフィッシャー水分計(KYOTO Electronics社製 MKC−210)を用い、試料重量1g、試料加熱温度230℃の条件下にて行った。
<Manufacture of polyamide-based resin laminated film roll>
On the other hand, the above-mentioned chips A and B were separately dried using a 15 kl blender apparatus while heating to about 120 ° C. for about 8.0 hours. When a predetermined amount of each chip was collected from the blender and the moisture content was measured, the moisture content of chips A and B was 800 ppm. The moisture content was measured using a Karl Fischer moisture meter (MKC-210 manufactured by KYOTO Electronics) under the conditions of a sample weight of 1 g and a sample heating temperature of 230 ° C.

しかる後、各ブレンダー内のチップを、押出機直上のホッパに、定量スクリューフィーダーで連続的に別々に供給した。なお、チップAの供給量を5.0重量%とし、チップBの供給量を95.0重量%とした。ホッパは、原料チップが150kg入る容量を有しており、押出機の吐出量は、1時間あたり450kgであった。また、ホッパの傾斜角は70゜に調整した。なお、実施例1においては、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップA)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。   Thereafter, the chips in each blender were continuously and separately supplied to the hopper directly above the extruder by a quantitative screw feeder. The supply amount of chip A was 5.0% by weight, and the supply amount of chip B was 95.0% by weight. The hopper had a capacity of 150 kg of raw material chips, and the discharge rate of the extruder was 450 kg per hour. The inclination angle of the hopper was adjusted to 70 °. In Example 1, the average major axis, the average minor axis, and the average chip length of the polyamide resin chip (Chip A) other than the polyamide resin chip with the largest usage amount are the polyamide resin chips with the largest usage amount. The average major axis, average minor axis, and average chip length of (Chip B) are each included within a range of ± 20%.

また、チップA,Bをホッパ内に供給する際に、各ブレンダー内のチップの温度が低くなりすぎないように乾燥から短時間の内にホッパに供給した。ホッパに供給する直前のチップA,Bの温度は、いずれも約91℃であった。そして、供給されたチップA,Bをホッパ内で混合し、単軸式押出機により270℃でTダイから溶融押出しし、17℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ257μmの未延伸フィルムを得た。なお、未延伸フィルムの引取速度(金属ロールの回転速度)は、約60m/min.であった。   Further, when the chips A and B were supplied into the hopper, they were supplied to the hopper within a short time after drying so that the temperature of the chip in each blender would not become too low. The temperatures of chips A and B immediately before being supplied to the hopper were both about 91 ° C. Then, the supplied chips A and B are mixed in a hopper, melt-extruded from a T die at 270 ° C. by a single screw extruder, wound around a rotating metal roll cooled to 17 ° C., and rapidly cooled, An unstretched film having a thickness of 257 μm was obtained. In addition, the take-up speed of the unstretched film (rotational speed of the metal roll) is about 60 m / min. Met.

また、溶融した樹脂を金属ロールに巻き付ける際のエアーギャップは、40mmに調整し、溶融フィルムに針状電極より11±1.1kvで100mAの直流負電荷を印加して、グロー放電させることにより、溶融した樹脂を金属ロールに静電密着させた。さらに、溶融した樹脂を金属ロールに巻き付ける際に、溶融した樹脂が金属ロールと接触する部分を、溶融した樹脂の全幅に亘って、バキュームボックスを利用して、樹脂が巻き取られる方向と反対の方向へ吸引することにより、溶融樹脂の金属ロールへの密着を促進した。なお、バキュームボックスの吸引風速は、吸引口の全幅(すなわち、溶融樹脂の全幅)に亘って、5.0±0.5m/sec.となるように調整した。   In addition, the air gap when the molten resin is wound around the metal roll is adjusted to 40 mm, and by applying a negative DC charge of 100 mA at 11 ± 1.1 kv from the needle electrode to the molten film, glow discharge is performed. The molten resin was electrostatically adhered to a metal roll. Further, when the molten resin is wound around the metal roll, the portion where the molten resin comes into contact with the metal roll is opposite to the direction in which the resin is wound using the vacuum box over the entire width of the molten resin. By attracting in the direction, adhesion of the molten resin to the metal roll was promoted. The suction air velocity of the vacuum box is 5.0 ± 0.5 m / sec. Over the entire width of the suction port (that is, the entire width of the molten resin). It adjusted so that it might become.

しかる後、得られた未延伸フィルムを、テフロン製ロールによって延伸温度約85℃で約2.1倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約1.6倍に縦延伸(第2縦延伸)した。しかる後、縦延伸後のフィルムの表面に、上記した接着改質層形成用の塗布液(共重合ポリエステル水系分散液)Aをグラビア方式で連続的に塗布し、150℃に調節されたロール上で塗布液を乾燥させた。なお、塗布液の塗布量は、0.2g/mの接着改質層が形成されるように調整した。 Thereafter, the unstretched film obtained was stretched about 2.1 times (first longitudinal stretching) at a stretching temperature of about 85 ° C. by a Teflon roll, and then about 1 at a stretching temperature of about 70 ° C. by a ceramic roll. .6 longitudinal stretching (second longitudinal stretching). Thereafter, the coating liquid (copolymerization polyester aqueous dispersion) A for forming the above-mentioned adhesion-modified layer is continuously applied to the surface of the film after longitudinal stretching by a gravure method, and on a roll adjusted to 150 ° C. The coating solution was dried. The coating amount of the coating solution was adjusted so that an adhesion modified layer of 0.2 g / m 2 was formed.

そして、上記の如く縦延伸後のフィルムの表面に接着改質層を塗布した後に、縦延伸されたシートを連続的にテンターに導き、約130℃で4.0倍に横延伸し、約210℃で熱固定して5.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜してミルロールを作製した。なお、フィルムを2000m連続製造したときのフィルム表面温度の変動幅は、予熱工程で平均温度±0.8℃、延伸工程で平均温度±0.6℃、熱処理工程で平均温度±0.5℃の範囲内であった。さらに、得られたミルロールを、幅400mm、長さ2000mにスリットして、3インチ紙管に巻き取り、2本のポリアミド系樹脂積層フィルムロール(スリットロール)を得た。   And after apply | coating the adhesion | attachment modification layer to the surface of the film after longitudinal stretching as mentioned above, the longitudinally stretched sheet | seat is continuously guide | induced to a tenter, transversely stretched 4.0 times at about 130 degreeC, about 210 times By heat-fixing at ℃ and performing 5.0% lateral relaxation treatment, cooling and cutting and removing both edges continuously forms a biaxially stretched film of about 15 μm over 2000 m. A mill roll was prepared. In addition, the fluctuation range of the film surface temperature when the film is continuously produced 2000 m is the average temperature ± 0.8 ° C. in the preheating step, the average temperature ± 0.6 ° C. in the stretching step, and the average temperature ± 0.5 ° C. in the heat treatment step It was in the range. Furthermore, the obtained mill roll was slit into a width of 400 mm and a length of 2000 m, wound up on a 3-inch paper tube, and two polyamide-based resin laminated film rolls (slit rolls) were obtained.

そして、得られた2本のスリットロール(すなわち、同一のミルロールから得られたもの)を用いて、以下の方法により特性の評価を行った。なお、以下のBS(沸水収縮率)、BSx(最大沸水収縮率)、BSd(沸水収縮率方向差)、屈折率の測定においては、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を設け、1番目の試料切り出し部から約100m毎に2番目から20番目の試料切り出し部を設け、フィルムの巻き始めから2m以内に21番目の試料切り出し部を設け、それらの1番目から21番目までの各試料切り出し部から試料フィルムを切り出した。評価結果を表3〜9に示す。評価結果を示す際に、衝撃強度、ラミネート強度については、測定した各試料サンプルの数値の平均値と、各試料サンプルの数値の変動範囲とを示した。また、S字カールについては、各評価レベルとなった試料サンプルの個数と、全試料サンプルの総合評価のレベルとを示した。   Then, using the obtained two slit rolls (namely, those obtained from the same mill roll), the characteristics were evaluated by the following method. In the following BS (boiling water shrinkage), BSx (maximum boiling water shrinkage), BSd (boiling water shrinkage direction difference), and refractive index measurement, the first sample cut-out portion is within 2 m from the end of film winding. Installed, the second to twentieth sample cutout sections are provided approximately every 100 m from the first sample cutout section, and the 21st sample cutout section is provided within 2 m from the beginning of film winding. A sample film was cut out from each of the sample cutout portions. The evaluation results are shown in Tables 3-9. When showing the evaluation results, for the impact strength and the laminate strength, the measured average values of the sample samples and the fluctuation range of the values of the sample samples were shown. For S-curl, the number of sample samples at each evaluation level and the overall evaluation level of all sample samples are shown.

[沸水収縮率]
片方のスリットロールの各切り出し部から切り出された二軸配向ポリアミド系樹脂フィルム(試料フィルム)を一辺21cmの正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置した。この試料の中央を中心とする直径20cmの円を描き、縦方向(フィルム引出し方向)を0°として、15°間隔で時計回りに0〜165°方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとした。次いで、切り出した試料を沸水中で30分間加熱処理した後、取り出して表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置し、上述したように各直径方向に引いた直線の長さを測定して処理後の長さとし、上式1〜5によって、BS(沸水収縮率)、BSx(最大沸水収縮率)、BSax(平均沸水収縮率)、BSd(沸水収縮率方向差)、BSad(平均沸水収縮率方向差)を算出した。
[Boiling water shrinkage]
A biaxially oriented polyamide-based resin film (sample film) cut out from each cut-out portion of one slit roll was cut into a square shape with a side of 21 cm and left for 2 hours or more in an atmosphere of 23 ° C. and 65% RH. Draw a circle with a diameter of 20 cm centered on the center of the sample, draw a straight line passing through the center of the circle in the direction of 0 to 165 ° clockwise at 15 ° intervals, with the vertical direction (film drawing direction) being 0 °. The diameter in the direction was measured and taken as the length before treatment. The cut sample was then heat-treated in boiling water for 30 minutes, then removed and wiped off the moisture adhering to the surface, air-dried, and left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, as described above. The length of the straight line drawn in each diametric direction is measured and set as the length after treatment, and BS (boiling water shrinkage rate), BSx (maximum boiling water shrinkage rate), BSax (average boiling water shrinkage rate), BSd (boiling water shrinkage direction difference) and BSad (average boiling water shrinkage direction difference) were calculated.

そして、全ての試料の最大沸水収縮率(BSx)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率(BSax)との差の大きい方と平均沸水収縮率との差を算出し、その差の平均沸水収縮率(BSax)に対する割合(%)を算出することによって、平均沸水収縮率(BSax)に対する最大沸水収縮率(BSx)の変動率を求めた。また、全ての試料の沸水収縮率方向差(BSd)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率方向差(BSad)との差の大きい方と平均沸水収縮率との差を算出し、その差の平均沸水収縮率方向差(BSad)に対する割合(%)を算出することによって、平均沸水収縮率方向差(BSad)に対する沸水収縮率方向差(BSd)の変動率を求めた。   Then, the maximum / minimum in the maximum boiling water shrinkage (BSx) of all the samples is obtained, and the difference between the larger one of the maximum / minimum average boiling water shrinkage (BSax) and the average boiling water shrinkage And the ratio (%) of the difference to the average boiling water shrinkage (BSax) was calculated to obtain the variation rate of the maximum boiling water shrinkage (BSx) with respect to the average boiling water shrinkage (BSax). In addition, the maximum / minimum difference in boiling water shrinkage direction difference (BSd) of all samples is obtained, and the difference between the maximum / minimum average boiling water shrinkage direction difference (BSad) and the average boiling water shrinkage rate. The difference in boiling water shrinkage direction difference (BSd) with respect to the average boiling water shrinkage direction difference (BSad) is calculated by calculating the ratio (%) of the difference to the average boiling water shrinkage direction difference (BSad). The rate was determined.

[縦方向厚み斑]
スリットロールを長手方向全長に亘って約3cm幅にスリットして厚み斑測定用のスリットロールを作製した。しかる後、アンリツ社製の厚み斑測定装置(広範囲高感度電子マイクロメーターK−313A)を用いて、長手方向全長に亘る平均厚み、最大厚み、最小厚みを求めた。そして、下式7により、それらの最大厚み・最小厚みの内の平均厚みとの差の大きい方と平均厚みとの差を算出し、その差の平均厚みに対する割合(%)を算出することによって、長手方向全長に亘る厚みの変動率を算出した。
厚みの変動率=|最大厚みあるいは最小厚み−平均厚み|/平均厚み・・・7
[Vertical thickness unevenness]
The slit roll was slit to a width of about 3 cm over the entire length in the longitudinal direction to prepare a slit roll for thickness spot measurement. Thereafter, an average thickness, a maximum thickness, and a minimum thickness over the entire length in the longitudinal direction were determined using a thickness spot measuring device (wide range high sensitivity electronic micrometer K-313A) manufactured by Anritsu Corporation. And by calculating the difference between the average thickness and the larger one of the maximum thickness and the minimum thickness among the maximum thickness and the minimum thickness, and calculating the ratio (%) of the difference to the average thickness by the following formula 7. The variation rate of thickness over the entire length in the longitudinal direction was calculated.
Variation rate of thickness = | maximum thickness or minimum thickness−average thickness | / average thickness 7

[屈折率]
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料切り出し部から切り出された各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に、厚み方向の屈折率(Nz)を測定した。また、全試料フィルムの平均の平均屈折率を算出して、全試料中で最大あるいは最小のNzと平均屈折率との差を算出するとともに、その差の平均屈折率に対する割合を変動率として算出した。
[Refractive index]
Using an “Abbe refractometer 4T type” manufactured by Atago Co., Ltd., each sample film cut out from each sample cut-out part was left in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, and then the refractive index in the thickness direction ( Nz) was measured. In addition, the average average refractive index of all sample films is calculated to calculate the difference between the maximum or minimum Nz and the average refractive index in all samples, and the ratio of the difference to the average refractive index is calculated as the variation rate. did.

[衝撃強度]
各切り出し部から切り出された各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後、東洋精機製作所社製の「フィルムインパクトテスター TSS式」を使用し、直径12.7mmの半球型衝突子により破断強度を測定し、衝撃強度とした。また、全試料フィルムの平均の衝撃強度も算出した。
[Impact strength]
Each sample film cut out from each cut-out part was allowed to stand in an atmosphere of 23 ° C. and 65% RH for 2 hours or more, and then a “film impact tester TSS type” manufactured by Toyo Seiki Seisakusho was used. The breaking strength was measured with a hemispherical impactor to determine the impact strength. The average impact strength of all sample films was also calculated.

[ラミネート加工性]
上記した沸水収縮率、縦方向厚み斑、屈折率、衝撃強度を測定したスリットロールとは別のスリットロール(同一のミルロールから得られたもの)を用い、そのスリットロールを構成する二軸配向ポリアミド系樹脂フィルムにウレタン系AC剤(東洋モートン社製「EL443」)を塗布した後、その上に、モダンマシナリー社製のシングルテストラミネータ−装置を用いて厚さ15μmのLDPE(低密度ポリエチレン)フィルムを315℃で押し出し、さらに、その上に厚さ40μmのLLDPE(直鎖状低密度ポリエチレン)フィルムを連続的にラミネートし、ポリアミド系樹脂/LDPE/LLDPEよりなる3層積層構造のラミネートフィルムロールを得た。また、ラミネートフィルムロールを製造する際の加工性を下記の3段階で評価した。
○:ロールに皺が発生せず、条件調整も不要
△:条件調整によりロールの皺が解消
×:どのように条件調整を行っても、ロールに皺が発生
[Lamination workability]
Using a slit roll (obtained from the same mill roll) different from the slit roll whose boiling water shrinkage rate, longitudinal thickness unevenness, refractive index, and impact strength were measured, the biaxially oriented polyamide constituting the slit roll After applying urethane AC agent (“EL443” manufactured by Toyo Morton Co., Ltd.) to a resin-based resin film, a 15 μm-thick LDPE (low density polyethylene) film using a single test laminator device manufactured by Modern Machinery Is extruded at 315 ° C., and a 40 μm thick LLDPE (Linear Low Density Polyethylene) film is continuously laminated thereon, and a laminate film roll having a three-layer structure composed of polyamide resin / LDPE / LLDPE is provided. Obtained. Moreover, the workability at the time of manufacturing a laminate film roll was evaluated in the following three stages.
○: No wrinkle on the roll and condition adjustment is not required. Δ: Roll wrinkle is eliminated by condition adjustment. ×: No matter how the condition is adjusted, wrinkle is generated on the roll.

[ラミネート強度(剥離強度)]
また、そのラミネートフィルムロールから切り出したラミネートフィルムを、幅15mm、長さ200mmに切り出して試験片とし、東洋ボールドウイン社製の「テンシロンUMT−II−500型」を用いて、温度23℃、相対湿度65%の条件下でポリアミド系樹脂フィルム層とLDPE層間の剥離強度を測定した。なお、引張速度は10cm/分、剥離角度は180度とし、剥離部分に水を付けて測定した。また、ラミネート強度の測定は、ラミネートフィルムロールの巻き終わりから2m以内において1番目の試料片を切り出し、1番目の試料片の切り出し部分から約100m毎において2番目から20番目の試料片を切り出し、フィルムの巻き始めから2m以内において21番目の試料片を切り出し、それらの1番目から21番目までの各試料片について測定した。また、それらの測定値の平均も算出した。
[Lamination strength (peel strength)]
In addition, the laminate film cut out from the laminate film roll was cut out into a width of 15 mm and a length of 200 mm as a test piece, and “Tensilon UMT-II-500 type” manufactured by Toyo Baldwin Co., Ltd. was used. The peel strength between the polyamide resin film layer and the LDPE layer was measured under the condition of 65% humidity. The tensile rate was 10 cm / min, the peel angle was 180 degrees, and water was added to the peeled portion for measurement. The laminate strength is measured by cutting out the first sample piece within 2 m from the end of winding of the laminate film roll, and cutting out the second to twentieth sample pieces every about 100 m from the cut out portion of the first sample piece. The 21st sample piece was cut out within 2 m from the beginning of winding of the film, and the measurement was performed on each of the first to 21st sample pieces. Moreover, the average of those measured values was also calculated.

[熱水中剥離強度の測定]
上記の如くラミネートしたラミネートフィルムを90℃の熱水中に30分間浸漬させた後、室温下に約30秒間放置した後に、上記測定と同様の方法によって、ポリアミド系樹脂フィルム層とLDPE層間の剥離強度を測定した。
[Measurement of peel strength in hot water]
The laminate film laminated as described above is immersed in hot water at 90 ° C. for 30 minutes and then left at room temperature for about 30 seconds, and then peeled between the polyamide resin film layer and the LDPE layer by the same method as described above. The strength was measured.

[S字カール現象]
上記の如くラミネートフィルムロールとして巻き取られたラミネートフィルムを、西部機械社製のテストシーラーを用いて巻き長さ方向に平行に2つに折り畳みつつ縦方向に各両端20mmずつを150℃で連続的に熱シールし、それに垂直方向に10mmを150mm間隔で断続的に熱シールして幅200mmの半製品を得た。これを巻き長さ方向に、両縁部をシール部分が10mmとなるように裁断した後、これと垂直方向にシール部分の境界で切断し、3方シール袋(シール幅:10mm)を作製した。それらの3方シール袋の中から、ラミネートフィルムロールの巻き終わりから2m以内の部分から作製された3方シール袋を1番目のサンプルとして選択し、その1番目のサンプルの作製部分から約100,200,・・・1800,1900m離れた部分から作製された3方シール袋を、それぞれ、2番目〜20番目のサンプルとして選択し、ラミネートフィルムロールの巻き始めから2m以内の部分から作製された3方シール袋を21番目のサンプルとして選択した。そして、それらの21枚の3方シール袋を沸騰水中で30分間熱処理した後、23℃、65%RHの雰囲気で一昼夜保持し、さらに、それらの21枚の3方シール袋を重ねて上から袋全面に1kgの荷重をかけ、一昼夜保持した後に荷重を取り去って袋の反り返り(S字カール)の度合いを以下のようにして評価した。
◎ :全く反り返りがない
○ :わずかに反り返りが見られる
× :明らかに反り返りが見られる
××:反り返りが著しい
[S-curl phenomenon]
The laminate film wound up as a laminate film roll as described above is folded into two parallel to the winding length direction using a test sealer manufactured by Seibu Machinery Co. Then, 10 mm in the vertical direction was intermittently heat-sealed at intervals of 150 mm to obtain a semi-finished product having a width of 200 mm. This was cut in the winding length direction and both edges were cut so that the seal portion was 10 mm, and then cut at the boundary of the seal portion in the direction perpendicular to this to produce a three-side seal bag (seal width: 10 mm). . From these three-sided sealing bags, a three-sided sealing bag made from a portion within 2 m from the end of winding of the laminate film roll is selected as the first sample, and about 100, 200,..., 1800, 3900 sealed bags produced from 1900 m apart were selected as the second to 20th samples, respectively, and 3 produced from the portion within 2 m from the start of the lamination film roll. A side seal bag was selected as the 21st sample. And after heat-treating those 21 three-way seal bags for 30 minutes in boiling water, hold them in an atmosphere of 23 ° C. and 65% RH all day and night. A load of 1 kg was applied to the entire surface of the bag, and the bag was removed after being held for a whole day and night, and the degree of bag curl (S-curl) was evaluated as follows.
◎: No warping at all. ○: Slight warping is observed. X: Warping is clearly observed. XX: Warping is remarkable.

[実施例2]
実施例1と同様にして得られた未延伸フィルムを、テフロン製ロールによって延伸温度約90℃で約2.2倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約1.5倍に縦延伸(第2縦延伸)した。さらに、実施例1と同様に、縦延伸されたシートに塗布液Aを塗布して乾燥させた後に、連続的にステンターに導き、約130℃で4.0倍に横延伸し、約210℃で熱固定して5.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様であった。得られたフィルムを、実施例1と同様にスリットして巻き取ることによって、実施例2のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 2]
An unstretched film obtained in the same manner as in Example 1 was longitudinally stretched about 2.2 times (first longitudinal stretching) at a stretching temperature of about 90 ° C. by a Teflon roll, and then stretched at a temperature of about 70 by a ceramic roll. Longitudinal stretching (second longitudinal stretching) was performed at about 1.5 times at a temperature. Further, as in Example 1, the coating liquid A was applied to the longitudinally stretched sheet and dried, and then continuously led to a stenter and stretched 4.0 times at about 130 ° C. to about 210 ° C. The film was heat-fixed and subjected to 5.0% lateral relaxation treatment and then cooled, and both edges were cut and removed to continuously form a biaxially stretched film of about 15 μm over 2000 m. The fluctuation range of the film surface temperature when the film was continuously produced was the same as in Example 1. The obtained film was slit and wound in the same manner as in Example 1 to obtain a polyamide-based resin laminated film roll of Example 2. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例3]
実施例1と同様にして得られた未延伸フィルムを、実施例1と同様に二段階に縦延伸した。しかる後、実施例1と同様に、縦延伸されたシートに塗布液Aを塗布して乾燥させた後に、連続的にステンターに導き、約130℃で3.6倍に横延伸し、約215℃で熱固定して3.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様であった。得られたフィルムを、実施例1と同様にスリットして巻き取ることによって、実施例3のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 3]
The unstretched film obtained in the same manner as in Example 1 was longitudinally stretched in two stages in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, the coating liquid A was applied to the longitudinally stretched sheet and dried, then continuously led to a stenter, and stretched 3.6 times at about 130 ° C., about 215 The film was cooled at a temperature of 3.0 ° C. and then subjected to a transverse relaxation treatment of 3.0%, and then cooled, and both edges were cut and removed to continuously form a biaxially stretched film of about 15 μm over 2000 m. . The fluctuation range of the film surface temperature when the film was continuously produced was the same as in Example 1. The obtained film was slit and wound in the same manner as in Example 1 to obtain a polyamide-based resin laminated film roll of Example 3. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例4]
原料チップAと原料チップBとの混合比率を、チップAを15.0重量%としてチップBを85.0重量%とした以外は、実施例1と同様にして、実施例4のポリアミド系樹脂積層フィルムロールを得た。なお、実施例4においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップA)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 4]
The polyamide-based resin of Example 4 is the same as Example 1 except that the mixing ratio of the raw material chip A and the raw material chip B is 15.0% by weight of chip A and 85.0% by weight of chip B. A laminated film roll was obtained. In Example 4 as well, the average major axis, the average minor axis, and the average chip length of the polyamide resin chip (Chip A) other than the polyamide resin chip with the largest usage amount are the polyamide resin chips with the largest usage amount. The average major axis, average minor axis, and average chip length of (Chip B) are each included within a range of ± 20%. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例5]
原料チップA,Bの代わりに、それぞれ、原料チップD,Eを用いた以外は実施例1と同様にして、実施例5のポリアミド系樹脂積層フィルムロールを得た(すなわち、実施例5においては、5.0重量%のチップDと95.0重量%のチップEとを用いてポリアミド系フィルムロールを製造した)。なお、実施例5においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップD)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップE)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 5]
A polyamide-based resin laminated film roll of Example 5 was obtained in the same manner as in Example 1 except that the raw material chips D and E were used instead of the raw material chips A and B, respectively (that is, in Example 5) A polyamide-based film roll was manufactured using 5.0 wt% Chip D and 95.0 wt% Chip E). In Example 5 as well, the average major axis, the average minor axis, and the average chip length of the polyamide resin chip (chip D) other than the polyamide resin chip with the largest usage amount are the polyamide resin chips with the largest usage amount. The average major axis, average minor axis, and average chip length of (Chip E) are each included within a range of ± 20%. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例6]
ブレンダー内の原料チップを押出機直上のホッパに供給する際にホッパの傾斜角を65゜に変更した以外は実施例1と同様にして、実施例6のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 6]
A polyamide-based resin laminated film roll of Example 6 was obtained in the same manner as in Example 1 except that when the raw material chips in the blender were supplied to the hopper immediately above the extruder, the hopper inclination angle was changed to 65 °. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例7]
溶融した樹脂を金属ロールへの巻き付ける際におけるバキュームボックスの吸引風速を、吸引口の全幅に亘って3.0±0.5m/sec.となるように調整した以外は、実施例1と同様にして、実施例7のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Example 7]
The suction air velocity of the vacuum box when the molten resin is wound around the metal roll is 3.0 ± 0.5 m / sec over the entire width of the suction port. Except having adjusted so that it might become, it carried out similarly to Example 1, and obtained the polyamide-type resin laminated film roll of Example 7. FIG. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例8]
<接着改質層形成用の塗布液(共重合ポリエステル水系分散液)の調整>
実施例1で得られるポリエステル樹脂を90部、メタクリル酸7.0部、アクリル酸エチル3.0部、アゾビスジメチルバレロニトリル0.48部と変更した以外は実施例1と同様の調整により共重合ポリエステル水系分散体を得た。しかる後、分散体を固形分濃度5%になるように水で希釈して接着改質層形成用の塗布液(共重合ポリエステル水系分散液)Bを得た。
[Example 8]
<Adjustment of coating solution (copolymerized polyester aqueous dispersion) for forming an adhesion modified layer>
The same adjustment as in Example 1 was applied except that the polyester resin obtained in Example 1 was changed to 90 parts, 7.0 parts of methacrylic acid, 3.0 parts of ethyl acrylate, and 0.48 parts of azobisdimethylvaleronitrile. A polymerized polyester aqueous dispersion was obtained. Thereafter, the dispersion was diluted with water to a solid content concentration of 5% to obtain a coating solution (copolymerized polyester aqueous dispersion) B for forming an adhesion modified layer.

そして、縦延伸後のシートに塗布する塗布液を上記の塗布液Bに変更した以外は、実施例1と同様にして、実施例8のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。   And the polyamide-type resin laminated film roll of Example 8 was obtained like Example 1 except having changed the coating liquid apply | coated to the sheet | seat after a longitudinal stretch to said coating liquid B. FIG. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[実施例9]
<接着改質層形成用の塗布液(共重合ポリエステル水系分散液)の調整>
ジメチルテレフタレート457部、ジメチルイソフタレート452部、ジメチル−5−ナトリウムスルホイソフタレート7.4部に変更・使用した以外は実施例1と同様の方法でポリエステルを得た。得られたポリエステルは淡黄色透明で、ガラス転移温度62℃、重量平均分子量は12000であった。NMR測定等により得られた組成は次の通りであった。
[Example 9]
<Adjustment of coating solution (copolymerized polyester aqueous dispersion) for forming an adhesion modified layer>
A polyester was obtained in the same manner as in Example 1, except that 457 parts of dimethyl terephthalate, 452 parts of dimethyl isophthalate, and 7.4 parts of dimethyl-5-sodium sulfoisophthalate were used. The obtained polyester was light yellow and transparent, had a glass transition temperature of 62 ° C. and a weight average molecular weight of 12,000. The composition obtained by NMR measurement and the like was as follows.

ジカルボン酸成分
テレフタル酸 49モル%
イソフタル酸 48.5モル%
5−ナトリウムスルホイソフタル酸 2.5モル%
ジオール成分
ネオペンチルグリコール 50モル%
エチレングリコール 50モル%
Dicarboxylic acid component terephthalic acid 49 mol%
Isophthalic acid 48.5 mol%
5-sodium sulfoisophthalic acid 2.5 mol%
Diol component Neopentyl glycol 50 mol%
Ethylene glycol 50 mol%

このポリエステス樹脂を100部とし、メタクリル酸やアクリル酸エチル、アゾビスジメチルバレロニトリル等の成分を添加していない共重合ポリエステル水系分散体を実施例1と同様の方法により得た後、分散体を固形分濃度5%になるように水で希釈して接着改質層形成用の塗布液(共重合ポリエステル水系分散液)Cを得た。   A polyester polyester aqueous dispersion containing 100 parts of this polyester resin and not added with components such as methacrylic acid, ethyl acrylate and azobisdimethylvaleronitrile was obtained in the same manner as in Example 1, and then the dispersion was obtained. Was diluted with water to a solid content concentration of 5% to obtain a coating solution (copolymerized polyester aqueous dispersion) C for forming an adhesion modified layer.

そして、縦延伸後のシートに塗布する塗布液を上記の塗布液Cに変更した以外は、実施例1と同様にして、実施例9のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。   And the polyamide-type resin laminated | multilayer film roll of Example 9 was obtained like Example 1 except having changed the coating liquid apply | coated to the sheet | seat after a longitudinal stretch to said coating liquid C. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[比較例1]
実施例1と同様にして得られた未延伸フィルムを、テフロン製ロールによって延伸温度約90℃で約1.5倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約2.2倍に縦延伸(第2縦延伸)した。さらに、実施例1と同様に、縦延伸されたシートに塗布液Aを塗布して乾燥させた後に、連続的にステンターに導き、実施例1と同様に横延伸し、熱固定して横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様であった。しかる後、得られたフィルムを、実施例1と同様にスリットして巻き取ることによって、比較例1のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Comparative Example 1]
An unstretched film obtained in the same manner as in Example 1 was longitudinally stretched about 1.5 times (first longitudinal stretching) at a stretching temperature of about 90 ° C. by a Teflon roll, and then stretched at a temperature of about 70 by a ceramic roll. Longitudinal stretching (second longitudinal stretching) was performed at about 2.2 times at a temperature. Further, as in Example 1, the coating liquid A was applied to the longitudinally stretched sheet and dried, and then continuously led to a stenter, laterally stretched in the same manner as in Example 1, and heat-fixed to be laterally relaxed. After the treatment, the film was cooled and both edges were cut and removed to continuously form a biaxially stretched film of about 15 μm over 2000 m. The fluctuation range of the film surface temperature when the film was continuously produced was the same as in Example 1. Thereafter, the obtained film was slit and wound in the same manner as in Example 1 to obtain a polyamide-based resin laminated film roll of Comparative Example 1. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[比較例2]
原料チップAの代わりに原料チップCを用いた以外は実施例1と同様にして、比較例2のポリアミド系樹脂積層フィルムロールを得た。なお、比較例2においては、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップC)の平均長径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれていない。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Comparative Example 2]
A polyamide-based resin laminated film roll of Comparative Example 2 was obtained in the same manner as in Example 1 except that the raw material chip C was used instead of the raw material chip A. In Comparative Example 2, the average major axis and the average chip length of the polyamide resin chip (chip C) other than the polyamide resin chip with the largest use amount are the polyamide resin chips (chip B) with the largest use amount. The average major axis and the average chip length are not included within the range of ± 20%. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[比較例3]
原料チップA,Bの予備乾燥条件を、約4.0時間に亘って約100℃に加温する方法に変更した以外は、実施例1と同様にして、比較例3のポリアミド系樹脂積層フィルムロールを得た。なお、予備乾燥後に、ブレンダー内から各チップを所定量採取して水分率を測定したところ、チップA,Bの水分率は、いずれも1500ppmであり、ホッパに供給する直前のチップA,Bの温度は、いずれも約85℃であった。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Comparative Example 3]
Polyamide-based resin laminated film of Comparative Example 3 in the same manner as in Example 1 except that the predrying conditions of the raw material chips A and B were changed to a method of heating to about 100 ° C. over about 4.0 hours. Got a roll. After pre-drying, a predetermined amount of each chip was collected from the blender and the moisture content was measured. As a result, the moisture content of chips A and B was 1500 ppm, and the chips A and B just before being supplied to the hopper The temperatures were all about 85 ° C. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[比較例4]
原料チップA,Bを、予備乾燥した後に押出機直上のホッパに供給する前に、各ブレンダー内で約5時間に亘って放置した以外は、実施例1と同様にして、比較例4のポリアミド系樹脂積層フィルムロールを得た。なお、ホッパに供給する直前のチップA,Bの水分率は、いずれも800ppmであり、ホッパに供給する直前のチップA,Bの温度は、いずれも約30℃であった。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Comparative Example 4]
The polyamide of Comparative Example 4 was prepared in the same manner as in Example 1 except that the raw material chips A and B were pre-dried and then allowed to stand for about 5 hours in each blender before being supplied to the hopper immediately above the extruder. A system resin laminated film roll was obtained. The moisture content of chips A and B immediately before being supplied to the hopper was 800 ppm, and the temperature of chips A and B immediately before being supplied to the hopper was about 30 ° C. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

[比較例5]
溶融した樹脂を金属ロールへの巻き付ける際においてバキュームボックスによる吸引を行わなかった以外は、実施例1と同様にして、比較例5のポリアミド系樹脂積層フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表3〜9に示す。
[Comparative Example 5]
A polyamide-based resin laminated film roll of Comparative Example 5 was obtained in the same manner as in Example 1 except that suction by a vacuum box was not performed when the molten resin was wound around a metal roll. And the characteristic of the obtained film roll was evaluated by the method similar to Example 1. FIG. The evaluation results are shown in Tables 3-9.

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

Figure 2006015742
Figure 2006015742

[実施例のフィルムの効果]
表3〜9から、実施例1〜7のフィルムロールは、いずれも、ロール全体に亘る縦方向の厚み斑が非常に小さく、沸水収縮率、屈折率、ラミネート強度(剥離強度)や熱水剥離強度等の物性の変動が小さいことが分かる。また、そのように沸水収縮率や屈折率等の物性の変動が小さい実施例1〜7のフィルムロールは、いずれも、S字カール現象が起こらず、ラミネート加工性が良好であることが分かる。その上、実施例1〜7のフィルムロールを構成するフィルムは、衝撃強度(強靱性、耐ピンホール性)が良好であり、ラミネート強度(剥離強度)や熱水剥離強度がきわめて高いことが分かる。これに対して、比較例1〜5のフィルムロールは、ロール全体に亘る縦方向の厚み斑や、沸水収縮率、屈折率、ラミネート強度(剥離強度)や熱水剥離強度等の物性の変動が大きくなっており、S字カール現象が見られたり、ラミネート加工性が不良であったりすることが分かる。
[Effects of Example Film]
From Tables 3 to 9, all of the film rolls of Examples 1 to 7 have very small longitudinal thickness unevenness over the entire roll, boiling water shrinkage rate, refractive index, laminate strength (peel strength) and hot water peel. It can be seen that fluctuations in physical properties such as strength are small. Moreover, it turns out that the film roll of Examples 1-7 with such a small fluctuation | variation of physical properties, such as boiling water shrinkage | contraction rate and a refractive index, does not generate an S-shaped curl phenomenon, but has favorable laminating property. In addition, it can be seen that the films constituting the film rolls of Examples 1 to 7 have good impact strength (toughness and pinhole resistance), and extremely high laminate strength (peel strength) and hot water peel strength. . On the other hand, the film rolls of Comparative Examples 1 to 5 have variations in physical properties such as vertical thickness unevenness, boiling water shrinkage rate, refractive index, laminate strength (peel strength) and hot water peel strength throughout the roll. It can be seen that the S-curl phenomenon is observed and the laminate processability is poor.

本発明のポリアミド系樹脂積層フィルムロールは、上記の如く優れた加工特性を有しているので、食品のレトルト加工用途に好適に用いることができる。
Since the polyamide-based resin laminated film roll of the present invention has excellent processing characteristics as described above, it can be suitably used for food retort processing.

Claims (21)

少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、
フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(1)〜(3)を満たすことを特徴とするポリアミド系樹脂積層フィルムロール。
(1)前記各切り出し部から切り出された各試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が2%〜6%であるとともに、すべての試料の最大沸水収縮率の変動率が、前記平均沸水収縮率に対して±2%〜±10%の範囲内である
(2)前記各切り出し部から切り出された各試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下であるとともに、すべての試料の沸水収縮率方向差の変動率が、前記平均沸水収縮率方向差に対して±2%〜±10%の範囲内である
(3)巻取られたロールの長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%の範囲内である
A polyamide-based resin laminated film formed by winding a polyamide-based resin film having a width of 0.2 m or more and 3.0 m or less and a length of 300 m or more and 30000 m or less, in which an adhesion-modified layer made of a copolyester is laminated on at least one surface. A roll,
A first sample cutout is provided within 2 m from the end of film winding, a final cutout is provided within 2 m from the start of film winding, and a sample cutout is provided approximately every 100 m from the first sample cutout. A polyamide-based resin laminated film roll characterized by satisfying the following requirements (1) to (3).
(1) For each sample cut out from each cutout part, when measuring the maximum boiling water shrinkage, which is the maximum value of the boiling water shrinkage in all directions, the average is the average value of the maximum boiling water shrinkage The boiling water shrinkage is 2% to 6%, and the variation rate of the maximum boiling water shrinkage of all the samples is within a range of ± 2% to ± 10% with respect to the average boiling water shrinkage (2) For each sample cut out from each cut-out part, the boiling water shrinkage direction difference, which is the absolute value of the difference between the boiling water shrinkage rate in the +45 degree direction with respect to the longitudinal direction and the boiling water shrinkage ratio in the −45 degree direction with respect to the longitudinal direction, is obtained. The average boiling water shrinkage direction difference, which is the average value of the boiling water shrinkage direction differences, is 1.5% or less, and the variation rate of the boiling water shrinkage direction difference of all the samples is the average boiling water shrinkage. Within ± 2% to ± 10% of rate direction difference There (3) rate of change in thickness over the entire length in the longitudinal direction in the coiled roll, it is within a range of ± 2% ~ ± 10% relative to the average thickness
各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±2%以内の範囲であることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   When the refractive index in the thickness direction was measured for each sample cut out from each cutout portion, the average refractive index, which is the average value of those refractive indexes, was 1.500 or more and 1.520 or less, and all samples The polyamide-based resin laminated film roll according to claim 1, wherein a variation rate of the refractive index is in a range of ± 2% or less with respect to the average refractive index. 前記接着改質層が、共重合ポリエステル水系分散体を含む塗布剤を付与することにより形成されており、前記共重合ポリエステル水系分散体が、グラフト化ポリエステルの粒子と水系溶媒とを含み、前記グラフト化ポリエステルが、ポリエステル主鎖と、親水性基を有するラジカル重合性単量体を含むラジカル重合性単量体により形成されるグラフト部分とを有し、前記グラフト化ポリエステル粒子の平均粒子径が500nm以下であり、そして前記グラフト化ポリエステル粒子のポリエステル主鎖に由来するカルボニル炭素の13C−NMRシグナルの半値幅が300Hz以上であることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。 The adhesion-modified layer is formed by applying a coating agent containing a copolymerized polyester aqueous dispersion, and the copolymerized polyester aqueous dispersion contains grafted polyester particles and an aqueous solvent, and the graft The grafted polyester has a polyester main chain and a graft portion formed by a radical polymerizable monomer including a radical polymerizable monomer having a hydrophilic group, and the average particle diameter of the grafted polyester particles is 500 nm. 2. The polyamide-based resin laminated film roll according to claim 1, wherein a half-value width of 13 C-NMR signal of carbonyl carbon derived from a polyester main chain of the grafted polyester particles is 300 Hz or more. . ポリアミド系樹脂フィルムを構成するポリアミドの主成分がナイロン6であることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the main component of the polyamide constituting the polyamide-based resin film is nylon 6. 被覆層を積層する前のポリアミド系樹脂フィルムを巻き取ったポリアミド系樹脂フィルムロールが、
異なる2種以上のポリアミド系樹脂の混合物から形成されたポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。
A polyamide resin film roll wound up with a polyamide resin film before laminating the coating layer is
The polyamide resin laminated film roll according to claim 1, wherein the polyamide resin film is formed by winding a polyamide resin film formed from a mixture of two or more different polyamide resins.
巻き取ったポリアミド系樹脂フィルムがポリオレフィン系樹脂フィルムとラミネートされるものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the wound polyamide-based resin film is laminated with a polyolefin-based resin film. 被覆層を積層する前のポリアミド系樹脂フィルムを巻き取ったポリアミド系樹脂フィルムロールが、
溶融させたポリアミド系樹脂をTダイから押し出し、金属ロールに接触させて冷却することによって得られた未配向のシート状物を二軸に延伸したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。
A polyamide resin film roll wound up with a polyamide resin film before laminating the coating layer is
Extruding the melted polyamide resin from a T-die, bringing it into contact with a metal roll and cooling it, and winding a polyamide resin film obtained by biaxially stretching an unoriented sheet-like material The polyamide-based resin laminated film roll according to claim 1.
テンター延伸法により延伸したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film is rolled up by a tenter stretching method. 逐次二軸延伸したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film wound up sequentially biaxially is wound. 縦方向と横方向との二軸に延伸したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film is wound around a polyamide-based resin film stretched biaxially in a longitudinal direction and a transverse direction. 実質的に未配向のポリアミド系樹脂からなるシート状物を、前記ポリアミド系樹脂のガラス転移温度+20℃よりも高温で3倍以上の倍率となるように少なくとも2段階で縦方向に延伸を施した後に、3倍以上の倍率となるように横方向に延伸を施したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   A sheet-like material composed of a substantially unoriented polyamide resin was stretched in the longitudinal direction in at least two stages so that the glass transition temperature of the polyamide resin + 20 ° C. and a magnification of 3 times or more. 2. The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film is a roll of a polyamide-based resin film that has been stretched in the transverse direction so as to have a magnification of 3 times or more. 最終的な延伸処理を施した後に熱固定したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film is heat-fixed after being subjected to a final stretching treatment. 熱固定後に弛緩処理を施したポリアミド系樹脂フィルムを巻き取ったものであることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein the polyamide-based resin film that has been subjected to a relaxation treatment after heat setting is wound up. 巻き取られたポリアミド系樹脂フィルム中に、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤のうちの少なくとも1種が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   That at least one of a lubricant, an antiblocking agent, a heat stabilizer, an antioxidant, an antistatic agent, a light resistance agent, and an impact resistance improver is added to the wound polyamide resin film. The polyamide-based resin laminated film roll according to claim 1. 巻き取られたポリアミド系樹脂フィルム中に、無機粒子が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide resin laminated film roll according to claim 1, wherein inorganic particles are added to the wound polyamide resin film. 無機粒子が、平均粒径0.5〜5.0μmのシリカ粒子であることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide resin laminated film roll according to claim 1, wherein the inorganic particles are silica particles having an average particle diameter of 0.5 to 5.0 μm. 巻き取られたポリアミド系樹脂フィルム中に、高級脂肪酸が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂積層フィルムロール。   The polyamide-based resin laminated film roll according to claim 1, wherein a higher fatty acid is added to the wound polyamide-based resin film. 請求項1に記載されたポリアミド系樹脂積層フィルムロールを製造するための製造方法であって、
ポリアミド系樹脂チップを溶融押し出ししながら製膜するフィルム化工程と、
そのフィルム化工程で得られる未延伸フィルムを縦方向および横方向に二軸延伸する二軸延伸工程と、
二軸延伸後のフィルムの少なくとも片面に接着改質層層を積層する積層工程とを含んでおり、
下記要件(a)〜(e)を満たすことを特徴とするポリアミド系樹脂積層フィルムロールの製造方法。
(a)前記二軸延伸工程が、縦方向に2段階で延伸した後に横方向に延伸するものであるとともに、前記縦方向の二段階延伸における一段目の延伸倍率を二段目の延伸倍率より高くしたものであること
(b)前記フィルム化工程が、使用量の最も多いポリアミド系樹脂からなるチップと、そのポリアミド系樹脂チップとは組成の異なる他のポリアミド系樹脂チップ1種類以上とを混合した後に溶融押し出しするものであるとともに、使用される各ポリアミド系樹脂チップの形状が、長径および短径を有する楕円断面を有する楕円柱状とされており、かつ、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップが、使用量の最も多いポリアミド系樹脂チップの平均長径、平均短径および平均チップ長さに対し、それぞれ±20%以内の範囲に含まれる平均長径、平均短径および平均チップ長さを有するものに調整されていること
(c)前記フィルム化工程が、原料チップ供給部として漏斗状ホッパを供えた押出機を用いて溶融押出しする工程を含んでいるとともに、前記ホッパの傾斜角度が65度以上に調整されており、かつ、前記ホッパに供給する前のポリアミド系樹脂チップの水分率が800ppm以上1000ppm以下に調整されており、なおかつ、前記ホッパに供給する前のポリアミド系樹脂チップの温度が80℃以上に調整されていること
(d)前記フィルム化工程が、押出機から押し出された溶融樹脂を冷却ロールに巻き取ることにより冷却する工程を含んでいるとともに、その冷却工程においては、溶融樹脂と冷却ロールの表面に接触する部分が、溶融樹脂の全幅に亘って、吸引装置により巻き取り方向と反対方向に吸引されること
(e)前記積層工程が、最終的な接着改質層の被覆量を0.01〜1.00g/mとするように接着改質層形成用の塗布液を塗布するものであること
A manufacturing method for manufacturing the polyamide-based resin laminated film roll according to claim 1,
A film forming process for forming a film while melting and extruding a polyamide resin chip;
A biaxial stretching step of biaxially stretching the unstretched film obtained in the film forming step in the machine direction and the transverse direction;
A lamination step of laminating an adhesion modified layer layer on at least one side of the film after biaxial stretching,
The manufacturing method of the polyamide-type resin laminated | multilayer film roll characterized by satisfy | filling the following requirements (a)-(e).
(A) The biaxial stretching step involves stretching in the transverse direction after stretching in two stages in the longitudinal direction, and the first-stage stretching ratio in the two-stage stretching in the longitudinal direction is determined from the second-stage stretching ratio. (B) The film forming step mixes a chip made of a polyamide resin having the largest amount of use with one or more other polyamide resin chips having a composition different from that of the polyamide resin chip. After that, the polyamide resin chip to be used is melt-extruded, and the shape of each polyamide resin chip used is an elliptical cylinder having an elliptical cross section having a major axis and a minor axis, and the polyamide resin chip having the largest amount of use Other than polyamide resin chips, the average major axis, average minor axis, and average chip length of the polyamide resin chips with the largest use amount are ± 2 respectively. (C) an extruder provided with a funnel-shaped hopper as a raw material chip supply unit, being adjusted to have an average major axis, an average minor axis and an average chip length included in the range of And a step of melt extrusion using the hopper, the inclination angle of the hopper is adjusted to 65 degrees or more, and the moisture content of the polyamide resin chip before being supplied to the hopper is adjusted to 800 ppm or more and 1000 ppm or less. The temperature of the polyamide resin chip before being supplied to the hopper is adjusted to 80 ° C. or higher. (D) The film forming step uses the molten resin extruded from the extruder as a cooling roll. In addition to the step of cooling by winding, in the cooling step, the part that contacts the surface of the molten resin and the cooling roll, (E) The lamination step is performed to reduce the coating amount of the final adhesion-modified layer to 0.01 to 1.00 g / m by sucking in the direction opposite to the winding direction by the suction device over the entire width of the molten resin. 2 to apply a coating solution for forming an adhesion-modified layer
縦延伸工程の前に実行される予備加熱工程と、縦延伸工程の後に実行される熱処理工程とを含んでおり、
それらの縦延伸工程と予備加熱工程と熱処理工程とにおける任意ポイントでのフィルムの表面温度の変動幅が、フィルム全長に亘って平均温度±1℃の範囲内に調整されていることを特徴とする請求項18に記載のポリアミド系樹脂積層フィルムロールの製造方法。
A preheating step that is performed before the longitudinal stretching step, and a heat treatment step that is performed after the longitudinal stretching step,
The fluctuation range of the surface temperature of the film at an arbitrary point in the longitudinal stretching step, the preheating step, and the heat treatment step is adjusted within a range of an average temperature ± 1 ° C. over the entire length of the film. The manufacturing method of the polyamide-type resin laminated film roll of Claim 18.
少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、
フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(4)を満たすことを特徴とするポリアミド系樹脂積層フィルムロール。
(4)各切り出し部から切り出された各試料について、ポリオレフィンフィルムをラミネートした場合の剥離強度を求めたときに、それらの剥離強度の平均値である平均剥離強度が500g/15mm巾以上であるとともに、すべての試料の剥離強度の変動率が、前記平均剥離強度に対して±5%〜±30%の範囲内である
A polyamide-based resin laminated film formed by winding a polyamide-based resin film having a width of 0.2 m or more and 3.0 m or less and a length of 300 m or more and 30000 m or less, in which an adhesion-modified layer made of a copolyester is laminated on at least one surface. A roll,
A first sample cutout is provided within 2 m from the end of film winding, a final cutout is provided within 2 m from the start of film winding, and a sample cutout is provided approximately every 100 m from the first sample cutout. When satisfying the following requirement (4), a polyamide-based resin laminated film roll.
(4) For each sample cut out from each cutout portion, when the peel strength when a polyolefin film is laminated is determined, the average peel strength, which is the average value of those peel strengths, is 500 g / 15 mm width or more. The variation rate of the peel strength of all the samples is within a range of ± 5% to ± 30% with respect to the average peel strength.
少なくとも片面に共重合ポリエステルからなる接着改質層が積層されており幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂積層フィルムロールであって、
フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(5)を満たすことを特徴とするポリアミド系樹脂積層フィルムロール。
(5)各切り出し部から切り出された各試料について、ポリオレフィンフィルムをラミネートした場合の90℃の熱水中への30分間浸漬後の熱水剥離強度を求めたときに、それらの熱水剥離強度の平均値である平均熱水剥離強度が150g/15mm巾以上であるとともに、すべての試料の熱水剥離強度の変動率が、前記平均熱水剥離強度に対して±5%〜±30%の範囲内である
A polyamide-based resin laminated film formed by winding a polyamide-based resin film having a width of 0.2 m or more and 3.0 m or less and a length of 300 m or more and 30000 m or less, in which an adhesion-modified layer made of a copolyester is laminated on at least one surface. A roll,
A first sample cutout is provided within 2 m from the end of film winding, a final cutout is provided within 2 m from the start of film winding, and a sample cutout is provided approximately every 100 m from the first sample cutout. When satisfying the following requirement (5), a polyamide-based resin laminated film roll.
(5) For each sample cut out from each cut-out part, when the hot water peel strength after 30 minutes immersion in 90 ° C. hot water when a polyolefin film is laminated is obtained, the hot water peel strength The average hot water peel strength of 150 g / 15 mm width or more, and the variation rate of the hot water peel strength of all the samples is ± 5% to ± 30% with respect to the average hot water peel strength. Is in range
JP2005160551A 2004-06-02 2005-05-31 Polyamide-based resin laminated film roll and method for producing the same Active JP4386000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160551A JP4386000B2 (en) 2004-06-02 2005-05-31 Polyamide-based resin laminated film roll and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004164971 2004-06-02
JP2005160551A JP4386000B2 (en) 2004-06-02 2005-05-31 Polyamide-based resin laminated film roll and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006015742A true JP2006015742A (en) 2006-01-19
JP4386000B2 JP4386000B2 (en) 2009-12-16

Family

ID=35790389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160551A Active JP4386000B2 (en) 2004-06-02 2005-05-31 Polyamide-based resin laminated film roll and method for producing the same

Country Status (1)

Country Link
JP (1) JP4386000B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023294A (en) * 2007-07-23 2009-02-05 Toyobo Co Ltd Manufacturing process of biaxially oriented polyamide film
WO2009054431A1 (en) * 2007-10-26 2009-04-30 Toyo Boseki Kabushiki Kaisha Polyamide-based laminated biaxially-stretched film, and vapor-deposited polyamide-based laminated resin film
JP2009119843A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
JP2009119845A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
JP2009226822A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
JP2009226821A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
JP2009274440A (en) * 2008-04-14 2009-11-26 Toyobo Co Ltd Vapor-deposited laminated polyamide resin film
CN101835608A (en) * 2007-10-26 2010-09-15 东洋纺织株式会社 Polyamide-based laminated biaxially-stretched film, and vapor-deposited polyamide-based laminated resin film
US20210395519A1 (en) * 2018-10-05 2021-12-23 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll
US20220009151A1 (en) * 2019-01-28 2022-01-13 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747545A (en) * 1993-08-05 1995-02-21 Mitsubishi Chem Corp Production of pellet composed of aliphatic polyamide resin polyamide resin composition
JPH07290565A (en) * 1994-04-28 1995-11-07 Toyobo Co Ltd Production of biaxially oriented polyamide film
JPH08174663A (en) * 1994-12-22 1996-07-09 Toyobo Co Ltd Biaxially oriented polyamide resin film and production thereof
JPH08197620A (en) * 1995-01-24 1996-08-06 Toyobo Co Ltd Manufacture of biaxially oriented polyamide film
JPH08267569A (en) * 1995-03-30 1996-10-15 Toyobo Co Ltd Biaxially oriented polyamide resin film
JPH1016047A (en) * 1996-07-05 1998-01-20 Unitika Ltd Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH1044230A (en) * 1996-07-31 1998-02-17 Unitika Ltd Preparation of biaxially oriented polyamide film
JPH10100226A (en) * 1996-10-01 1998-04-21 Toyobo Co Ltd Manufacture of thermoplastic resin film
JP2000062019A (en) * 1998-08-17 2000-02-29 Toray Ind Inc Method and apparatus for preparing stretched film
JP2000309074A (en) * 1999-02-23 2000-11-07 Toyobo Co Ltd Laminated biaxially oriented polyamide film
JP2001239578A (en) * 2000-02-28 2001-09-04 Unitika Ltd Biaxially oriented nylon 6 film and manufacturing method therefor
JP2002029014A (en) * 2000-07-17 2002-01-29 Toyobo Co Ltd Laminated film
JP2003170494A (en) * 2001-04-26 2003-06-17 Toyobo Co Ltd Heat-shrinkable polyester film roll and its production method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747545A (en) * 1993-08-05 1995-02-21 Mitsubishi Chem Corp Production of pellet composed of aliphatic polyamide resin polyamide resin composition
JPH07290565A (en) * 1994-04-28 1995-11-07 Toyobo Co Ltd Production of biaxially oriented polyamide film
JPH08174663A (en) * 1994-12-22 1996-07-09 Toyobo Co Ltd Biaxially oriented polyamide resin film and production thereof
JPH08197620A (en) * 1995-01-24 1996-08-06 Toyobo Co Ltd Manufacture of biaxially oriented polyamide film
JPH08267569A (en) * 1995-03-30 1996-10-15 Toyobo Co Ltd Biaxially oriented polyamide resin film
JPH1016047A (en) * 1996-07-05 1998-01-20 Unitika Ltd Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH1044230A (en) * 1996-07-31 1998-02-17 Unitika Ltd Preparation of biaxially oriented polyamide film
JPH10100226A (en) * 1996-10-01 1998-04-21 Toyobo Co Ltd Manufacture of thermoplastic resin film
JP2000062019A (en) * 1998-08-17 2000-02-29 Toray Ind Inc Method and apparatus for preparing stretched film
JP2000309074A (en) * 1999-02-23 2000-11-07 Toyobo Co Ltd Laminated biaxially oriented polyamide film
JP2001239578A (en) * 2000-02-28 2001-09-04 Unitika Ltd Biaxially oriented nylon 6 film and manufacturing method therefor
JP2002029014A (en) * 2000-07-17 2002-01-29 Toyobo Co Ltd Laminated film
JP2003170494A (en) * 2001-04-26 2003-06-17 Toyobo Co Ltd Heat-shrinkable polyester film roll and its production method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023294A (en) * 2007-07-23 2009-02-05 Toyobo Co Ltd Manufacturing process of biaxially oriented polyamide film
JP4665999B2 (en) * 2007-10-26 2011-04-06 東洋紡績株式会社 Polyamide-based laminated biaxially stretched film
JP4666002B2 (en) * 2007-10-26 2011-04-06 東洋紡績株式会社 Polyamide-based laminated biaxially stretched film
JP2009119842A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
JP2009119845A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
CN101835608A (en) * 2007-10-26 2010-09-15 东洋纺织株式会社 Polyamide-based laminated biaxially-stretched film, and vapor-deposited polyamide-based laminated resin film
CN101835608B (en) * 2007-10-26 2013-11-06 东洋纺织株式会社 Polyamide-based laminated biaxially-stretched film, and vapor-deposited polyamide-based laminated resin film
JP2009119843A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
JP4666000B2 (en) * 2007-10-26 2011-04-06 東洋紡績株式会社 Polyamide-based laminated biaxially stretched film
JP2009119844A (en) * 2007-10-26 2009-06-04 Toyobo Co Ltd Laminated biaxially-stretched polyamide-based film
JP4666001B2 (en) * 2007-10-26 2011-04-06 東洋紡績株式会社 Polyamide-based laminated biaxially stretched film
WO2009054431A1 (en) * 2007-10-26 2009-04-30 Toyo Boseki Kabushiki Kaisha Polyamide-based laminated biaxially-stretched film, and vapor-deposited polyamide-based laminated resin film
JP2009226821A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
JP2009226822A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
JP2009274440A (en) * 2008-04-14 2009-11-26 Toyobo Co Ltd Vapor-deposited laminated polyamide resin film
US20210395519A1 (en) * 2018-10-05 2021-12-23 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll
US20220009151A1 (en) * 2019-01-28 2022-01-13 Toyobo Co., Ltd. Biaxially oriented polyamide film and polyamide film mill roll

Also Published As

Publication number Publication date
JP4386000B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4687289B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP4386000B2 (en) Polyamide-based resin laminated film roll and method for producing the same
TWI433868B (en) Polyamide-based laminated biaxially stretched film and evaporated polyamide-based laminated resin film
TWI404750B (en) Polyamide-based mixed resin film roll and its manufacturing method
JP6921389B2 (en) Polyester film and its manufacturing method
TWI607869B (en) Polyamide resin film
JP7439734B2 (en) Method for manufacturing biaxially oriented polyamide film
JP2008087349A (en) Polyamide mixed resin laminated film roll and its manufacturing method
JP2023178296A (en) Easily adhesive polyamide film
JP4475188B2 (en) Polyamide-based resin laminated film roll and method for producing the same
JP4687294B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
JP4172825B2 (en) Laminated polyamide film
JP2007021775A (en) Polyamide mixed resin laminated film roll and its manufacturing method
JP5181763B2 (en) Polyamide-based laminated biaxially stretched film
JP2005186628A (en) Polyamide film lamination
JP2007015189A (en) Polyamide-based mixed resin-laminated film roll and its manufacturing method
JP5181764B2 (en) Polyamide-based laminated biaxially stretched film
JP3937246B2 (en) Polyamide film laminate
JP4962108B2 (en) Polyamide-based mixed resin film roll and method for producing the same
WO2021024615A1 (en) Readily adhering polyamide film
JP2005096386A (en) Biaxially oriented polyester resin film for folding
JP2005335308A (en) Biaxially oriented polyester film
JP2005097498A (en) Biaxially oriented polyester resin film for folding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R151 Written notification of patent or utility model registration

Ref document number: 4386000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350