JP4945841B2 - Manufacturing method of polyamide resin film and polyamide resin film - Google Patents

Manufacturing method of polyamide resin film and polyamide resin film Download PDF

Info

Publication number
JP4945841B2
JP4945841B2 JP2001020221A JP2001020221A JP4945841B2 JP 4945841 B2 JP4945841 B2 JP 4945841B2 JP 2001020221 A JP2001020221 A JP 2001020221A JP 2001020221 A JP2001020221 A JP 2001020221A JP 4945841 B2 JP4945841 B2 JP 4945841B2
Authority
JP
Japan
Prior art keywords
stretching
polyamide resin
film
tenter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001020221A
Other languages
Japanese (ja)
Other versions
JP2002225128A (en
Inventor
伸二 藤田
勝也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001020221A priority Critical patent/JP4945841B2/en
Publication of JP2002225128A publication Critical patent/JP2002225128A/en
Application granted granted Critical
Publication of JP4945841B2 publication Critical patent/JP4945841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ポリアミド樹脂フィルムの製造方法に関し、詳しくは、幅方向に物性の均一なポリアミド樹脂フィルムの製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂フィルム、特に二軸配向されたポリエステル系、ポリアミド系、ポリオレフィン系、ポリビニル系樹脂、ポリフェニレンサルファイド等のフィルムは、包装及び工業用途、その他の多くの用途に供せられており、フィルムの幅方向のどの部分でも同じ物性値であることが望ましい。
【0003】
しかし、従来の製造方法では製品フィルムの幅方向の物性を均一にすることは極めて困難であった。この理由として、テンター内においてフィルムの両端部は把持手段であるクリップによって拘束されているに対し、フィルムの中央部は把持手段の影響が低く拘束力が弱くなり、延伸工程によって生じる縦方向の延伸応力や、熱固定工程によって発生する収縮応力の影響によって、クリップで把持されている端部に対してフィルムの中央部分は遅れが生じることがわかっている。そして、横延伸と熱固定を連続に同一のテンターで行う場合において、テンターに入る前のフィルムの面上に幅方向に沿って直線を描いておくと、この直線はテンター内で変形してフィルムの進行方向に対して延伸工程の始めの領域で凸型に変形し、延伸工程の終わり直前の領域で直線に戻り、延伸工程終了後には凹型に変形する。さらに熱固定工程の領域の始めで凹形の変形は最大値に達し、このまま曲線は変化しないでその後のテンターを通過し、テンターを出たフィルムには凹形の変形が残る。この現象はボーイング現象と称されているものであるが、このボーイング現象はフィルムの幅方向の物性値を不均一にする原因になっている。ボーイング現象によって、フィルムの側端部分ではボーイング線に対して更に縦方向に傾斜した配向主軸が生じて、幅方向で配向主軸の角度が異なる傾向がある。この結果、例えば縦方向の熱収縮率、熱膨張率、湿潤膨張率等の物性値がフィルムの幅方向で異なってくる。このボーイング現象によって、包装用途の一例である印刷ラミネート加工、製袋工程等においては、印刷ピッチずれ、斑の発生、カーリング、蛇行などのトラブルが生じていた。また、工業用途の一例であるフロッピー(登録商標)ディスク等のベースフィルムでは面内異方性のため磁気記録持性の低下などのトラブルが生じていた。
【0004】
ボーイング現象を減少ないし解消する技術として、特開昭50−73978号公報において、延伸工程と熱固定工程との間にニップロール群を設置するフィルムの製造方法が提案されている。しかし、この技術ではニップロールを設置する中間帯の温度がガラス転移点温度以上であり、ニップ点でのフィルムの剛性が低いためボーイング現象の改善効果が低い。また、特公昭63−24459号公報には横延伸完了後のフィルムの両端部を把持しながら中央付近の狭い範囲のみをニップロールによって強制的な前進をもたらす工程が提案されている。しかし、この技術はニップロールをテンター内の高温領域に設置して、かつロール及びその周辺装置を冷却する必要があり、またフィルムが高温であるためロールによる傷が発生する恐れがあり、実用性に乏しい。また、特公昭62−43856号公報には、横延伸直後のフィルムをガラス転移点温度以下に冷却した後、多段に熱固定を行い、熱固定と同時に横方向に伸長する技術が提案されている。しかし、この技術は冷却工程に加えて多段に熱固定する工程と再延伸との複雑な工程となっており、テンター内の雰囲気温度やフィルム温度を長時間にわたり安定して制御することが困難である。また、特公平1−25694号公報、特公平1−25696号公報には、フィルムの走行方向を逆転させて横延伸、熱固定をする技術が提案されている。しかし、この技術はフィルムの走行方向を逆転させるのにフィルムを一旦巻き取る必要があり、オフラインでの製造方法であるため、生産性の点で問題点がある。
【0005】
【発明が解決しようとする課題】
本発明は、フィルム製造時のボーイング現象の発生を減少させ、幅方向に物性の均一なフィルムを効率よく得ることが可能なポリアミド樹脂フィルムの製造方法の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、下記の構成を有する。
(1) 実質的に未配向のポリアミド樹脂シートを、テンターを用いて縦方向に3.1〜6.0倍延伸した後、引続き前記テンターを用いて横方向に3.0倍以上延伸するポリアミド樹脂フィルムの製造方法において、前記縦延伸を、前記未配向のポリアミド樹脂シートのガラス転移温度(Tg)+10℃以上、低温結晶化温度(Tc)+40℃以下の温度条件下で行い、引続き前記テンターを用いて、ガラス転移温度(Tg)未満に冷却せずに、前記横延伸をガラス転移温度(Tg)以上、融点(Tm)−20℃以下の温度条件下で行い、前記横延伸後、前記テンターにより、縦方向および横方向に20%以下の緩和処理を行うことを特徴とするポリアミド樹脂フィルムの製造方法。
(2) 上記(1)において前記テンターが、クリップの駆動がリニアモーター方式のテンターであることを特徴とするポリアミド樹脂フィルムの製造方法。
(3) 前記(1)〜(2)のいずれか一項に記載のポリアミド樹脂フィルムの製造方法により形成されてなるポリアミド樹脂フィルム。
【0007】
本発明の製造方法により形成されてなるポリアミド樹脂フィルムの厚みは特に限定されず、「フィルム」は所謂「シート」も含む。
【0008】
本発明において「実質的に未配向」とは主配向軸が特定方向に定まっていないことを示す。
【0009】
【発明の実施の形態】
本発明の製造方法によって製造されるポリアミド樹脂フィルムはテンターにより延伸され単層であっても、多層構造などの複合体であっても良い。
【0010】
本発明のポリアミド樹脂フィルムの製造方法は、実質的に未配向のポリアミド樹脂シートを、テンターを用いて縦方向にガラス転移温度(Tg)+10°C以上、低温結晶化温度(Tc)+40°C以下の温度条件下で3.1〜6.0倍延伸した後、得られた一軸配向フィルムを引続き前記テンターを用いてガラス転移温度(Tg)未満に冷却せずに、横方向にガラス転移温度(Tg)以上、融点(Tm)−20°C以下の温度条件下で3.0倍以上延伸する。
【0011】
縦方向延伸時の延伸温度が(Tg+10°C)未満では、延伸応力が著しく増加し、ボーイング現象を低減する効果が現れず、かつ引続き行う横延伸時に破断が頻発する。縦方向延伸時の延伸温度が(Tc+40°C)を超えると得られたポリアミド樹脂フィルムの厚み斑が大きくなり、かつ熱結晶化が著しく進行し、延伸応力が増大し、さらに引続き行う横延伸時に破断が頻発する。好ましくは、縦方向延伸時の延伸温度が(Tg+20°C)〜(Tc+30°C)であるのがよい。
【0012】
縦方向延伸時の延伸倍率が3.1倍未満であるとボーイング現象は低減するものの、得られたポリアミド樹脂フィルムの縦方向強度が小さくなり、6.0倍を超えるとボーイング現象を低減する効果が発現せず、かつ引続き行う横延伸時に破断が頻発する。好ましくは、縦方向延伸時の延伸倍率が3.3〜5.0倍であるのがよい。
【0013】
得られた一軸配向フィルムを、引続き縦延伸時と同一のテンターを用いて、ガラス転移温度(Tg)未満に冷却せずに、横延伸を行うことが本発明の特徴の1つである。すなわち、一軸配向フィルムを強制的に冷却するのではなく加熱保温し、しかも横延伸のための加熱を兼用することにある。一軸配向フィルムを強制的に冷却し、更に横延伸のために再加熱すると、熱結晶化が著しく進行し、横延伸応力が増大し、ボーイング現象を低減する効果が現れない。上記の加熱保温時においても熱結晶化は進行するが、前述の強制冷却および再加熱も場合に比べると進行速度が甚だ遅く、実用上問題とならない。
【0014】
横延伸時の延伸温度がTg未満では延伸応力が著しく増加し、破断が頻発する。横延伸時の延伸温度が(Tm−20°C)を超えると厚み斑が大きくなり、かつ熱結晶化が著しく進行し、延伸応力が増大して、破断が頻発する。好ましくは、横延伸時の延伸温度が(Tg+20°C)〜(Tm−40°C)であるのがよい。
【0015】
横延伸時の延伸倍率が3.0倍未満であるとポリアミド樹脂フィルムの強度が低下し、かつ厚み斑が増大しやすくなる。好ましくは、横延伸時の延伸倍率が3.5倍〜5.0倍であるのがよい。横延伸時の延伸倍率が高すぎると、延伸応力が増大し、破断が頻発しやすくなる。
【0016】
本発明のポリアミド樹脂フィルムの製造方法においては、延伸に使用する前記テンターが、クリップの駆動がリニアモーター方式のテンターであるのが好ましい。クリップの駆動がリニアモーター方式のテンターを用いることにより、クリップの駆動がスクリュー方式やパンタグラフ方式等に比べ、フィルム形成速度が向上し、特に縦延伸倍率の条件設定が容易に制御可能となって、より幅方向の物性が均一なフィルムを得やすくなる。
【0017】
さらに、本発明のポリアミド樹脂フィルムの製造方法においては、上記のようにして得られた二軸配向ポリアミド樹脂フィルムを、前記横延伸後に引き続いて、延伸時と同一のテンターにより、熱固定を行うことが好ましい。熱固定を行うことにより、ポリアミド樹脂フィルムの吸湿寸法変化、乾熱寸法変化、ボイル寸法変化が低減され、後加工工程中及び後加工品の寸法変化に起因する、例えば製袋カール等のトラブル誘発を防止できる。さらに、熱固定工程中の緩和処理における緩和率は、縦方向および/または横方向に20%以下であることが好ましく、特に好ましくは、緩和率が、縦方向および/または横方向に5〜15%であるのがよい。緩和率が20%を超えると、縦方向および/または横方向に延伸時に発生する残留応力を熱固定工程で吸収することが出来ずに、実質的な緩和効果が現れにくく、フィルムがテンター内で弛むために、テンター内において熱風によるフィルムのバタツキが生じ、フィルムの破断やフィルムへの擦り傷を誘発やすい。
【0018】
さらに、上記緩和処理において、温度は(Tm−70°C)〜Tmの温度であるのが好ましく、特に好ましくは、(Tm−50°C)〜(Tm−5°C)であるのがよい。緩和処理温度が(Tm−70°C)未満では緩和効果が現れにくく、Tmを超えると熱結晶化が著しく進行し破断が頻発しやすくなる。
【0019】
上記のように、本発明のポリアミド樹脂フィルムの製造方法は、実質的に未配向のポリアミド樹脂シートを、クリップの駆動がリニアモーター方式のテンターを用いて縦方向に、前記未配向のポリアミド樹脂シートのガラス転移温度(Tg)+10°C以上、低温結晶化温度(Tc)+40°C以下の温度条件下で、3.1〜6.0倍となるよう延伸した後、ガラス転移温度(Tg)未満に冷却せずに、引続き前記テンターを用いて横方向に、ガラス転移温度(Tg)以上、融点(Tm)−20°C以下の温度条件下で、3.0倍以上となるよう延伸し、さらに、前記テンターにより、縦方向および/または横方向に20%以下の緩和処理を含む熱固定工程を行うのが好ましい。
【0020】
本発明のポリアミド樹脂フィルムの製造方法は、上述したような条件での延伸を行えば、他の製造における工程は特に限定されず、例えば、延伸前の実質的に未配向のポリアミド樹脂シートは、フィルムを構成するポリアミド樹脂原料を乾燥したのち、押し出し機により溶融押出し、口金より回転ドラム上にキャストして急冷固化するなどの従来一般の方法により得られる。
【0021】
本発明のポリアミド樹脂フィルムの製造方法により、ボーイング減少の発生を減少させ、幅方向に物性の均一な熱可塑性フィルムが得られる理由として、下記のことが考えられる。本発明においては、縦延伸を特定の延伸温度と延伸倍率に制御することにより、縦延伸により発生する残留熱収縮応力を低減し、かつ横延伸時に発生する延伸応力を低減することができ、ボーイング現象が減少する。また同時に同一テンター内の縦延伸と横延伸の間を保温してガラス転移温度(Tg)未満に冷却しないことにより、強制冷却から再加熱時に生ずる結晶化促進作用を防止し、横延伸時に発現する配向の形成が容易になって延伸性が向上し、また、横延伸時に発生する延伸応力を低減することができ、ボーイング現象が減少する。また、横延伸と熱固定を連続に同一のテンターで行う場合では、ボーイング現象は延伸工程終了後にも多少発生し、その後の熱固定工程の直後で最大値をとることが確認されている。延伸工程と熱固定工程との間には延伸による延伸応力と熱固定による収縮応力が存在するが、熱固定工程のフィルムの温度が高いとフィルムの剛性が低くなり、フィルムの中央部が延伸工程側へ変形し易くなり、ボーイング現象が発生すると考えられる。同一テンターを用いて横延伸と熱固定を行う場合は、緩和処理を含む熱固定工程を行うことで、フィルム幅方向で均一な緩和処理が可能となり、ボーイング現象が減少する。従って、緩和処理を特定の条件に制御することにより、ボーイング減少を低減できる。このように、フィルムの延伸性が向上し、ボーイング現象を減少させて、幅方向に物性の均一な、製造時あるいは使用時の取り扱い性に優れたフィルムを経済的に得ることができる。
【0022】
本発明を試験例および実施例を用いてより具体的に説明するが、本発明はそれらに限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0023】
試験例
1.試験方法
(1)ガラス転移温度(Tg)、低温結晶化温度(Tc)、及び融点(Tm)
実施例1〜3、参考例4〜5、比較例1〜5の熱可塑性樹脂フィルム製造において得られた未配向シートを液体窒素中で凍結し、減圧解凍後に、セイコー電子製DSCを用いて昇温速度10℃/分で測定し、得られた吸熱発熱曲線よりガラス転移温度(Tg)、低温結晶化温度(Tc)及び融点(Tm)を算出した。
【0024】
(2)破断回数
フィルム形成状態として、実施例1〜3、参考例4〜5、比較例1〜5の熱可塑性樹脂フィルム製造を、それぞれ2時間同一条件で行い、フィルムの破断回数を計測した。
【0025】
(3)ボーイング歪
実施例1〜3、参考例4〜5、比較例1〜5の熱可塑性樹脂フィルム製造において、テンターに入る前の未配向シートの表面に幅方向に直線を描き、最終的に得られた熱可塑性樹脂フィルムにおいて上記直線の弓状に変形した状態(ボーイング線)より下記式1を用いてボーイング歪(B:単位%)を算出した。
B(%)=b/W×100 式1
W(mm):フィルムの幅
b(mm):ボーイング線の最大ふくらみ量
【0026】
(4)沸水収縮率斜め差
実施例1〜3、比較例1〜3のポリアミド樹脂フィルムを、全幅の中央部および中央から左右に全幅の40%の位置(端部)から、それぞれ21cm角に切り出しサンプルとする。各々のサンプルの中央を中心とする直径20cmの円を描き、ポリアミド樹脂フィルムの縦方向を0°としたときの0°、45°、90°及び135°方向に円の中心を通る直線を引き、各方向における円の直径を測定し、処理前の長さとする。上記各サンプルを沸騰水中で30分間加熱処理した後、取り出して、表面に付着した水分を除去、風乾する。風乾後、各方向の直径を再度測定し、処理後の長さとし、下記式2を用いて沸水収縮率(%)を算出した。
沸水収縮率(%)=(処理前の長さ−処理後の長さ)/処理前の長さ×100 式2
さらに縦方向を0°としたときの45°と135°方向の上記沸水収縮率の差の絶対値を求め、両方の端部のサンプルにおける平均値を沸水収縮率斜め差(%)とした。
【0027】
(5)厚み斑
参考例4、5、比較例4、5の熱可塑性樹脂フィルムを縦方向、横方向にそれぞれ1m×5cmの短冊状に裁断し、厚さ計(K306C、安立電気(株)製)を用いて厚み形状を測定した。下記式3により、1m当りの厚み斑を算出し、これを5回繰り返して平均値を求め測定値とした。
厚み斑(%)=(最大厚み−最小厚み)/平均厚み×100 式3
【0028】
2.試験結果
上記試験(1)の結果は実施例、参考例および比較例中に、試験(2)〜(5)の結果は表1、2に示す。
【0029】
【実施例】
実施例1
ナイロン6ペレット(相対粘度2.8)を真空乾燥した後、これを押出し機に供給して265°Cで溶解し、T型ダイよりシート状に押し出し、直流高電圧を印可して20°Cの回転ドラム上に静電気的に密着させ、冷却固化させて厚さ200μmの未配向シートを得た。この未配向シートのガラス転移温度(Tg)は40°C、低温結晶化温度(Tc)は68°C、融点(Tm)は220°Cであった。上記未配向シートを連続的にリニアモーター方式で駆動するテンターに導き、延伸温度65°Cで縦方向に3.5倍延伸した後、65°Cに保温しつつ、引続き同一テンターで、延伸温度120°Cで横方向に4.0倍延伸した後、さらに同一テンターで215°Cで縦方向に6%、及び横方向に6%の緩和処理を施した後に冷却し、両縁部を裁断除去して、厚み15μmの二軸配向ポリアミドフィルムを得た。
【0030】
実施例2
縦延伸を温度75°Cで行う以外はすべて実施例1と同様にして二軸配向ポリアミドフィルムを得た。
【0031】
実施例3
緩和処理時の縦方向の緩和率を10%で行う以外はすべて実施例1と同様にして二軸配向ポリアミドフィルムを得た。
【0032】
参考例4
ポリエチレンテレフタレートペレット(固有粘度0.65)を真空乾燥した後、これを押出し機に供給して285°Cで溶解し、T型ダイよりシート状に押し出し、直流高電圧を印可して20°Cの回転ドラム上に静電気的に密着させ、冷却固化させて厚さ190μmの未配向シートを得た。この未配向シートのガラス転移温度(Tg)は79°C、低温結晶化温度(Tc)は135°C、融点(Tm)は265°Cであった。上記未配向シートを連続的にリニアモータ方式で駆動するテンターに導き、延伸温度110°Cで縦方向に4.5倍延伸した後、110°Cに保温しつつ、引続き同一テンターで延伸温度140°Cで横方向に4.0倍延伸した後、さらに同一テンターで230°Cで縦方向に8%、及び横方向に10%の緩和処理を施した後に冷却し、両縁部を裁断除去して、厚み12μmの二軸配向ポリエチレンテレフタレートフィルムを得た。
【0033】
参考例5
縦延伸を倍率3.5倍で行う以外はすべて参考例4と同様にして二軸配向ポリエチレンテレフタレートフィルムを得た。
【0034】
比較例1
縦延伸を温度45°Cで行う以外はすべて実施例1と同様にして二軸配向ポリアミドフィルムを得た。
【0035】
比較例2
縦延伸と横延伸を異なるテンターを用いて行い、その間の温度を35°Cにする以外はすべて実施例1と同様にして二軸配向ポリアミドフィルムを得た。
【0036】
比較例3
縦方向の緩和処理を行わない以外はすべて実施例1と同様にして二軸配向ポリアミドフィルムを得た。
【0037】
比較例4
縦延伸を倍率6.5倍で行う以外はすべて参考例4と同様にして二軸配向ポリエチレンテレフタレートフィルムを得た。
【0038】
比較例5
縦延伸を温度180°Cで行う以外はすべて参考例4と同様にして二軸配向ポリエチレンテレフタレートフィルムを得た。
【0039】
【発明の効果】
本発明の製造方法によれば、ボーイング現象の発生を減少させ、破断の発生がなく、厚み斑も小さい、幅方向の物性の均一性が高いポリアミド樹脂フィルムを効率よく得ることができ、コスト性にも優れる。
【表1】

Figure 0004945841
【表2】
Figure 0004945841
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyamide resin film, and more particularly to a method for producing a polyamide resin film having uniform physical properties in the width direction.
[0002]
[Prior art]
Thermoplastic resin films, especially biaxially oriented polyester-based, polyamide-based, polyolefin-based, polyvinyl-based resins, polyphenylene sulfide, and other films are used for packaging and industrial applications, and many other applications. It is desirable that the same physical property value be obtained in any part in the width direction.
[0003]
However, it has been extremely difficult to make the physical properties in the width direction of the product film uniform by the conventional manufacturing method. The reason for this is that both ends of the film in the tenter are constrained by clips that are gripping means, whereas the central part of the film is less affected by the gripping means and the restraining force is weak, and the longitudinal stretching caused by the stretching process It has been found that the central portion of the film is delayed with respect to the end portion held by the clip due to the influence of the stress and the shrinkage stress generated by the heat setting process. And in the case where transverse stretching and heat setting are continuously performed with the same tenter, if a straight line is drawn along the width direction on the surface of the film before entering the tenter, the straight line is deformed in the tenter and the film is deformed. It changes into a convex shape in the region at the beginning of the stretching process, returns to a straight line in the region immediately before the end of the stretching step, and deforms into a concave shape after the stretching step. Further, at the beginning of the region of the heat setting process, the concave deformation reaches a maximum value, and the curve does not change and passes through the subsequent tenter, and the concave deformation remains in the film exiting the tenter. This phenomenon is called a bowing phenomenon. This bowing phenomenon causes non-uniform physical property values in the width direction of the film. Due to the bowing phenomenon, an orientation main axis inclined further in the vertical direction with respect to the bowing line is generated at the side edge portion of the film, and the angle of the orientation main axis tends to be different in the width direction. As a result, for example, physical property values such as thermal shrinkage rate, thermal expansion rate, and wet expansion rate in the vertical direction differ in the width direction of the film. Due to this bowing phenomenon, troubles such as printing pitch deviation, occurrence of spots, curling, and meandering have occurred in the printing lamination process and the bag making process, which are examples of packaging applications. In addition, base films such as floppy (registered trademark) disks, which are examples of industrial applications, have problems such as a decrease in magnetic recording durability due to in-plane anisotropy.
[0004]
As a technique for reducing or eliminating the bowing phenomenon, Japanese Patent Application Laid-Open No. 50-73978 proposes a film manufacturing method in which a nip roll group is installed between a stretching process and a heat setting process. However, in this technique, the temperature of the intermediate zone where the nip roll is installed is equal to or higher than the glass transition temperature, and the rigidity of the film at the nip point is low, so the effect of improving the bowing phenomenon is low. Japanese Examined Patent Publication No. 63-24459 proposes a process for forcibly advancing only a narrow range near the center by nip roll while gripping both ends of a film after transverse stretching. However, this technique requires the nip roll to be installed in a high temperature region in the tenter and cool the roll and its peripheral devices, and because the film is hot, there is a risk of scratches caused by the roll. poor. Japanese Patent Publication No. 62-43856 proposes a technique in which a film immediately after transverse stretching is cooled to a temperature below the glass transition temperature and then heat-fixed in multiple stages and stretched in the transverse direction at the same time as heat fixing. . However, in addition to the cooling process, this technology is a complicated process of heat-setting in multiple stages and re-stretching, and it is difficult to stably control the atmospheric temperature and film temperature in the tenter for a long time. is there. Japanese Patent Publication Nos. 1-256694 and 1-256696 propose a technique of reversing the running direction of the film to perform transverse stretching and heat fixing. However, this technique has a problem in terms of productivity because the film needs to be wound once to reverse the traveling direction of the film and is an off-line manufacturing method.
[0005]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the polyamide resin film which can reduce the generation | occurrence | production of the bowing phenomenon at the time of film manufacture, and can obtain a film with a uniform physical property in the width direction efficiently.
[0006]
[Means for Solving the Problems]
The present invention has the following configuration.
(1) A polyamide resin sheet is stretched 3.1 to 6.0 times in the longitudinal direction using a tenter and then stretched 3.0 times or more in the transverse direction using the tenter. In the method for producing a resin film, the longitudinal stretching is performed under the temperature conditions of the glass transition temperature (Tg) + 10 ° C. or higher and the low-temperature crystallization temperature (Tc) + 40 ° C. or lower of the unoriented polyamide resin sheet. using, without cooling to below the glass transition temperature (Tg) of, the transverse stretching the glass transition temperature (Tg) or higher, are performed by the melting point (Tm) temperature of -20 ° C. or less, after the transverse stretching, A method for producing a polyamide resin film, wherein a relaxation treatment of 20% or less is performed in the longitudinal direction and the lateral direction by the tenter.
(2) The method for producing a polyamide resin film according to the above (1), wherein the tenter is a linear motor type tenter.
(3) A polyamide resin film formed by the method for producing a polyamide resin film according to any one of (1) to (2) .
[0007]
The thickness of the polyamide resin film formed by the production method of the present invention is not particularly limited, and “film” includes so-called “sheet”.
[0008]
In the present invention, “substantially non-oriented” means that the main alignment axis is not defined in a specific direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The polyamide resin film produced by the production method of the present invention may be stretched by a tenter and may be a single layer or a composite such as a multilayer structure.
[0010]
In the method for producing a polyamide resin film of the present invention, a substantially unoriented polyamide resin sheet is obtained by using a tenter in the vertical direction to have a glass transition temperature (Tg) of + 10 ° C. or higher and a low temperature crystallization temperature (Tc) of + 40 ° C. After stretching by 3.1 to 6.0 times under the following temperature conditions, the obtained uniaxially oriented film was continuously cooled to below the glass transition temperature (Tg) using the tenter, and the glass transition temperature in the transverse direction. The film is stretched 3.0 times or more under a temperature condition of (Tg) or higher and melting point (Tm) −20 ° C. or lower.
[0011]
When the stretching temperature during the longitudinal stretching is less than (Tg + 10 ° C.), the stretching stress increases remarkably, the effect of reducing the bowing phenomenon does not appear, and breakage frequently occurs during the subsequent transverse stretching. When the stretching temperature during the longitudinal stretching exceeds (Tc + 40 ° C), the thickness unevenness of the obtained polyamide resin film becomes large, the thermal crystallization progresses significantly, the stretching stress increases, and further during the transverse stretching. Breaks occur frequently. Preferably, the stretching temperature during longitudinal stretching is (Tg + 20 ° C.) to (Tc + 30 ° C.).
[0012]
Although the bowing phenomenon is reduced when the draw ratio during longitudinal stretching is less than 3.1 times, the strength in the longitudinal direction of the obtained polyamide resin film is reduced, and when it exceeds 6.0 times, the effect of reducing the bowing phenomenon is reduced. Does not develop, and breakage frequently occurs during the subsequent transverse stretching. Preferably, the draw ratio during longitudinal stretching is 3.3 to 5.0 times.
[0013]
It is one of the characteristics of the present invention that the obtained uniaxially oriented film is continuously stretched without being cooled below the glass transition temperature (Tg) using the same tenter as that used for longitudinal stretching. That is, the uniaxially oriented film is not forcibly cooled but heated and kept warm, and also used for heating for transverse stretching. When the uniaxially oriented film is forcibly cooled and further reheated for transverse stretching, thermal crystallization proceeds significantly, the transverse stretching stress increases, and the effect of reducing the bowing phenomenon does not appear. Thermal crystallization proceeds even at the time of the above-mentioned heat insulation, but the above-described forced cooling and reheating are much slower than in the case, and there is no practical problem.
[0014]
When the stretching temperature during transverse stretching is less than Tg, the stretching stress is remarkably increased and breakage occurs frequently. When the stretching temperature during transverse stretching exceeds (Tm−20 ° C.), the thickness unevenness increases, and thermal crystallization progresses remarkably, stretching stress increases, and breakage occurs frequently. Preferably, the stretching temperature during transverse stretching is (Tg + 20 ° C) to (Tm-40 ° C).
[0015]
If the draw ratio during transverse stretching is less than 3.0, the strength of the polyamide resin film is lowered and thickness spots are likely to increase. Preferably, the draw ratio during transverse stretching is 3.5 to 5.0 times. If the draw ratio during transverse stretching is too high, the stretching stress increases and breakage tends to occur frequently.
[0016]
In the method for producing a polyamide resin film of the present invention, the tenter used for stretching is preferably a linear motor type tenter for driving the clip. By using a linear motor type tenter for driving the clip, the film formation speed is improved compared to the screw type or pantograph type for driving the clip, and in particular, the condition setting of the longitudinal draw ratio can be easily controlled. It becomes easier to obtain a film having more uniform physical properties in the width direction.
[0017]
Furthermore, in the method for producing a polyamide resin film of the present invention, the biaxially oriented polyamide resin film obtained as described above is heat-set by the same tenter as that at the time of stretching, after the transverse stretching. Is preferred. By heat fixing, changes in moisture absorption dimension, dry heat dimension, and boil dimension of the polyamide resin film are reduced, and troubles such as bag-making curl are caused by post-processing and post-processed product dimensional changes. Can be prevented. Further, the relaxation rate in the relaxation treatment during the heat setting step is preferably 20% or less in the vertical direction and / or the horizontal direction, and particularly preferably, the relaxation rate is 5 to 15 in the vertical direction and / or the horizontal direction. % Should be good. If the relaxation rate exceeds 20%, the residual stress generated during stretching in the machine direction and / or the transverse direction cannot be absorbed in the heat setting step, so that a substantial relaxation effect is difficult to appear, and the film is within the tenter. The loosening causes fluttering of the film due to hot air in the tenter, which easily induces film breakage and scratches on the film.
[0018]
Furthermore, in the relaxation treatment, the temperature is preferably (Tm−70 ° C.) to Tm, and particularly preferably (Tm−50 ° C.) to (Tm−5 ° C.). . When the relaxation treatment temperature is less than (Tm-70 ° C), the relaxation effect hardly appears, and when it exceeds Tm, thermal crystallization proceeds significantly and breakage tends to occur frequently.
[0019]
As described above, the method for producing a polyamide resin film according to the present invention includes a substantially unoriented polyamide resin sheet, wherein the clip is driven in a longitudinal direction using a linear motor type tenter, and the unoriented polyamide resin sheet is used. Glass transition temperature (Tg) + 10 ° C. or higher, low-temperature crystallization temperature (Tc) + 40 ° C. or lower under conditions of 3.1 to 6.0 times, and glass transition temperature (Tg) Without cooling to below, the tenter is continuously stretched in the transverse direction so as to be 3.0 times or more under the temperature condition of glass transition temperature (Tg) or higher and melting point (Tm) -20 ° C or lower. Furthermore, it is preferable to perform a heat setting step including a relaxation treatment of 20% or less in the vertical direction and / or the horizontal direction with the tenter.
[0020]
The process for producing the polyamide resin film of the present invention is not particularly limited as long as it is stretched under the conditions described above. For example, the substantially unoriented polyamide resin sheet before stretching is After the polyamide resin raw material which comprises a film is dried, it is obtained by the conventional general methods, such as melt-extrusion with an extruder, cast on a rotating drum from a die, and rapidly solidify by cooling.
[0021]
The following can be considered as the reason why the production of the polyamide resin film of the present invention can reduce the occurrence of bowing reduction and obtain a thermoplastic film having uniform physical properties in the width direction. In the present invention, by controlling the longitudinal stretching to a specific stretching temperature and stretching ratio, the residual heat shrinkage stress generated by the longitudinal stretching can be reduced, and the stretching stress generated during the transverse stretching can be reduced. The phenomenon is reduced. At the same time, by keeping the temperature between the longitudinal stretching and the transverse stretching in the same tenter and not cooling below the glass transition temperature (Tg), the crystallization promoting action that occurs during forced heating to reheating is prevented, and manifests during transverse stretching. Orientation can be easily formed to improve stretchability, and stretching stress generated during transverse stretching can be reduced, resulting in a reduction in the bowing phenomenon. In the case where the transverse stretching and the heat setting are continuously performed with the same tenter, it is confirmed that the bowing phenomenon occurs somewhat even after the stretching process is finished and takes the maximum value immediately after the subsequent heat setting process. There are stretching stress due to stretching and shrinkage stress due to heat setting between the stretching process and heat setting process, but if the temperature of the film in the heat setting process is high, the rigidity of the film becomes low and the center part of the film is in the stretching process It is considered that the bowing phenomenon occurs due to easy deformation to the side. In the case of performing transverse stretching and heat setting using the same tenter, by performing a heat setting process including a relaxation process, a uniform relaxation process can be performed in the film width direction, and the bowing phenomenon is reduced. Therefore, the bowing reduction can be reduced by controlling the relaxation process to a specific condition. Thus, the stretchability of the film is improved, the bowing phenomenon is reduced, and a film having uniform physical properties in the width direction and excellent in handleability during production or use can be economically obtained.
[0022]
The present invention will be described more specifically with reference to test examples and examples. However, the present invention is not limited to these examples, and it is needless to say that the present invention can be implemented with modifications within a range that can meet the gist of the present invention. All of these are possible within the scope of the present invention.
[0023]
Test Example 1 Test Method (1) Glass transition temperature (Tg), low temperature crystallization temperature (Tc), and melting point (Tm)
The unoriented sheets obtained in the production of the thermoplastic resin films of Examples 1 to 3, Reference Examples 4 to 5 and Comparative Examples 1 to 5 were frozen in liquid nitrogen, and after thawing under reduced pressure, they were elevated using a DSC manufactured by Seiko Electronics. The glass transition temperature (Tg), the low-temperature crystallization temperature (Tc) and the melting point (Tm) were calculated from the endothermic exothermic curve obtained by measuring at a temperature rate of 10 ° C./min.
[0024]
(2) Number of breaks As the film formation state, the thermoplastic resin film production of Examples 1 to 3, Reference Examples 4 to 5 and Comparative Examples 1 to 5 was performed under the same conditions for 2 hours, and the number of breaks of the film was measured. .
[0025]
(3) Boeing distortion In the thermoplastic resin film production of Examples 1 to 3, Reference Examples 4 to 5, and Comparative Examples 1 to 5, a straight line was drawn in the width direction on the surface of the unoriented sheet before entering the tenter, and finally The bowing strain (B: unit%) was calculated using the following formula 1 from the state (Boeing line) in which the thermoplastic resin film obtained above was deformed into a linear bow shape.
B (%) = b / W × 100 Formula 1
W (mm): Film width b (mm): Maximum amount of bowing of the bowing line [0026]
(4) Boiling water shrinkage rate oblique difference The polyamide resin films of Examples 1 to 3 and Comparative Examples 1 to 3 are each 21 cm square from the central part of the full width and the position (end part) of 40% of the full width from the center to the left and right A cut sample is used. Draw a 20cm diameter circle centered on the center of each sample, and draw straight lines that pass through the center of the circle in the 0 °, 45 °, 90 °, and 135 ° directions when the longitudinal direction of the polyamide resin film is 0 °. Measure the diameter of the circle in each direction and make it the length before processing. Each of the above samples is heated in boiling water for 30 minutes, and then taken out to remove moisture adhering to the surface and air-dried. After air-drying, the diameter in each direction was measured again, the length after treatment was taken, and the boiling water shrinkage (%) was calculated using the following formula 2.
Boiling water shrinkage rate (%) = (length before treatment−length after treatment) / length before treatment × 100 Formula 2
Furthermore, the absolute value of the difference between the boiling water shrinkage rates in the 45 ° and 135 ° directions when the vertical direction was 0 ° was determined, and the average value of the samples at both ends was taken as the oblique difference (%) in boiling water shrinkage rate.
[0027]
(5) Thickness variation The thermoplastic resin films of Reference Examples 4 and 5 and Comparative Examples 4 and 5 were cut into 1 mx 5 cm strips in the vertical and horizontal directions, respectively, and the thickness gauge (K306C, Anritsu Electric Co., Ltd.) The thickness shape was measured using The following equation 3 was used to calculate thickness spots per meter, and this was repeated 5 times to obtain an average value, which was used as a measured value.
Thickness unevenness (%) = (maximum thickness−minimum thickness) / average thickness × 100 Formula 3
[0028]
2. Test results The results of the test (1) are shown in Examples , Reference Examples and Comparative Examples, and the results of the tests (2) to (5) are shown in Tables 1 and 2.
[0029]
【Example】
Example 1
Nylon 6 pellets (relative viscosity 2.8) are vacuum-dried and then fed to an extruder, melted at 265 ° C, extruded into a sheet from a T-die, applied with high DC voltage, and 20 ° C. The sheet was electrostatically adhered onto the rotating drum and cooled and solidified to obtain an unoriented sheet having a thickness of 200 μm. This unoriented sheet had a glass transition temperature (Tg) of 40 ° C., a low-temperature crystallization temperature (Tc) of 68 ° C., and a melting point (Tm) of 220 ° C. The unoriented sheet is continuously led to a tenter driven by a linear motor system, stretched 3.5 times in the longitudinal direction at a stretching temperature of 65 ° C, and then kept at 65 ° C while continuing to stretch at the same tenter. After stretching 4.0 times in the transverse direction at 120 ° C, it is further cooled by 6% in the longitudinal direction and 6% in the transverse direction at 215 ° C with the same tenter, then cooled and both edges are cut. Removal of a biaxially oriented polyamide film having a thickness of 15 μm was obtained.
[0030]
Example 2
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the longitudinal stretching was performed at a temperature of 75 ° C.
[0031]
Example 3
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the longitudinal relaxation rate during the relaxation treatment was 10%.
[0032]
Reference example 4
Polyethylene terephthalate pellets (intrinsic viscosity 0.65) are vacuum-dried, then supplied to an extruder, melted at 285 ° C, extruded into a sheet form from a T-die, applied with a DC high voltage, and 20 ° C. The sheet was electrostatically adhered onto the rotating drum and cooled and solidified to obtain an unoriented sheet having a thickness of 190 μm. This unoriented sheet had a glass transition temperature (Tg) of 79 ° C., a low-temperature crystallization temperature (Tc) of 135 ° C., and a melting point (Tm) of 265 ° C. The unoriented sheet is continuously led to a tenter that is driven by a linear motor method, stretched 4.5 times in the longitudinal direction at a stretching temperature of 110 ° C., and then kept at 110 ° C. After stretching 4.0 times in the transverse direction at ° C, after further relaxation treatment of 8% in the longitudinal direction and 10% in the transverse direction at 230 ° C with the same tenter, it is cooled and both edges are cut and removed. Thus, a biaxially oriented polyethylene terephthalate film having a thickness of 12 μm was obtained.
[0033]
Reference Example 5
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 4 except that the longitudinal stretching was performed at a magnification of 3.5.
[0034]
Comparative Example 1
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the longitudinal stretching was performed at a temperature of 45 ° C.
[0035]
Comparative Example 2
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that longitudinal stretching and lateral stretching were performed using different tenters and the temperature between them was 35 ° C.
[0036]
Comparative Example 3
A biaxially oriented polyamide film was obtained in the same manner as in Example 1 except that the longitudinal relaxation treatment was not performed.
[0037]
Comparative Example 4
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 4 except that the longitudinal stretching was performed at a magnification of 6.5 times.
[0038]
Comparative Example 5
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Reference Example 4 except that the longitudinal stretching was performed at a temperature of 180 ° C.
[0039]
【Effect of the invention】
According to the production method of the present invention, it is possible to efficiently obtain a polyamide resin film that reduces the occurrence of the bowing phenomenon, does not cause breakage, has small thickness unevenness, and has high uniformity in physical properties in the width direction. Also excellent.
[Table 1]
Figure 0004945841
[Table 2]
Figure 0004945841

Claims (3)

実質的に未配向のポリアミド樹脂シートを、テンターを用いて縦方向に3.1〜6.0倍延伸した後、引続き前記テンターを用いて横方向に3.0倍以上延伸するポリアミド樹脂フィルムの製造方法において、前記縦延伸を、前記未配向のポリアミド樹脂シートのガラス転移温度(Tg)+10℃以上、低温結晶化温度(Tc)+40℃以下の温度条件下で行い、引続き前記テンターを用いて、ガラス転移温度(Tg)未満に冷却せずに、前記横延伸をガラス転移温度(Tg)以上、融点(Tm)−20℃以下の温度条件下で行い、
前記横延伸後、前記テンターにより、縦方向および横方向に20%以下の緩和処理を含む熱固定工程を行うことを特徴とするポリアミド樹脂フィルムの製造方法。
A substantially unoriented polyamide resin sheet is stretched 3.1 to 6.0 times in the longitudinal direction using a tenter, and then stretched 3.0 times or more in the transverse direction using the tenter. In the production method, the longitudinal stretching is performed under a temperature condition of a glass transition temperature (Tg) + 10 ° C. or higher and a low-temperature crystallization temperature (Tc) + 40 ° C. or lower of the unoriented polyamide resin sheet, and subsequently using the tenter. , without cooling to below the glass transition temperature (Tg) of, the transverse stretching the glass transition temperature (Tg) or higher, are performed by the melting point (Tm) temperature of -20 ° C. or less,
A method for producing a polyamide resin film comprising performing a heat setting step including a relaxation treatment of 20% or less in the longitudinal direction and the transverse direction by the tenter after the transverse stretching.
前記テンターが、クリップの駆動がリニアモーター方式のテンターであることを特徴とする請求項1記載のポリアミド樹脂フィルムの製造方法。  2. The method for producing a polyamide resin film according to claim 1, wherein the tenter is a linear motor type tenter for driving a clip. 請求項1または2記載のポリアミド樹脂フィルムの製造方法により形成されてなるポリアミド樹脂フィルム。The polyamide resin film formed by the manufacturing method of the polyamide resin film of Claim 1 or 2 .
JP2001020221A 2001-01-29 2001-01-29 Manufacturing method of polyamide resin film and polyamide resin film Expired - Fee Related JP4945841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020221A JP4945841B2 (en) 2001-01-29 2001-01-29 Manufacturing method of polyamide resin film and polyamide resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020221A JP4945841B2 (en) 2001-01-29 2001-01-29 Manufacturing method of polyamide resin film and polyamide resin film

Publications (2)

Publication Number Publication Date
JP2002225128A JP2002225128A (en) 2002-08-14
JP4945841B2 true JP4945841B2 (en) 2012-06-06

Family

ID=18885965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020221A Expired - Fee Related JP4945841B2 (en) 2001-01-29 2001-01-29 Manufacturing method of polyamide resin film and polyamide resin film

Country Status (1)

Country Link
JP (1) JP4945841B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150054B2 (en) 2006-06-21 2008-09-17 株式会社神戸製鋼所 FORGING STEEL, PROCESS FOR PRODUCING THE SAME AND FORGED PRODUCT
FR2922810B1 (en) * 2007-10-24 2013-05-31 Darlet Marchante Technologie METHOD FOR STRETCHING A SYNTHETIC MATERIAL FILM IN THE FORM OF AN EXTENDED BAND.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767740B2 (en) * 1987-12-22 1995-07-26 東レ株式会社 Method for producing biaxially stretched polyester film
JPH03264334A (en) * 1990-03-15 1991-11-25 Diafoil Co Ltd Manufacture of polyester film
JP2841817B2 (en) * 1990-10-04 1998-12-24 東洋紡績株式会社 Method for producing thermoplastic resin film
JPH10146932A (en) * 1996-11-15 1998-06-02 Ube Ind Ltd Laminated stretched film
JP3589088B2 (en) * 1999-05-27 2004-11-17 宇部興産株式会社 Sequential biaxially stretched film
JP3589094B2 (en) * 1999-06-22 2004-11-17 宇部興産株式会社 Sequential biaxially stretched film

Also Published As

Publication number Publication date
JP2002225128A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JPH0334456B2 (en)
KR960013068B1 (en) Thermoplastic resin film & a method for producing the same
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JP2841755B2 (en) Polyamide film and method for producing the same
JP4651228B2 (en) Method for producing simultaneous biaxially stretched film
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JP2936688B2 (en) Method for producing thermoplastic resin film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JP2841816B2 (en) Method for producing thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
JP2917443B2 (en) Thermoplastic stretched film
JPH0780928A (en) Production of plastic film
JPH03193328A (en) Thermoplastic resin stretched film and its manufacture
JP3692758B2 (en) Inline coating method
JP4110465B2 (en) Thermoplastic resin film and method for producing the same
JPH06166102A (en) Manufacture of polyester film
JPH03216326A (en) Manufacture of thermoplastic resin film
JPH03158225A (en) Manufacture of thermoplastic resin film
JP2002361734A (en) Method for producing biaxially oriented polyamide film
JP4068249B2 (en) Method for producing biaxially stretched polyamide film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JPH0245976B2 (en) NIJIKUENSHINHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPH04173229A (en) Biaxially oriented polyamide film and its manufacture
JP2936699B2 (en) Method for producing polyamide film
JP2920973B2 (en) Method for reducing bowing of stretched thermoplastic resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4945841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees