JP4110465B2 - Thermoplastic resin film and method for producing the same - Google Patents

Thermoplastic resin film and method for producing the same Download PDF

Info

Publication number
JP4110465B2
JP4110465B2 JP2002256954A JP2002256954A JP4110465B2 JP 4110465 B2 JP4110465 B2 JP 4110465B2 JP 2002256954 A JP2002256954 A JP 2002256954A JP 2002256954 A JP2002256954 A JP 2002256954A JP 4110465 B2 JP4110465 B2 JP 4110465B2
Authority
JP
Japan
Prior art keywords
temperature
stretching
thermoplastic resin
film
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002256954A
Other languages
Japanese (ja)
Other versions
JP2004090527A (en
Inventor
伸二 藤田
勝也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002256954A priority Critical patent/JP4110465B2/en
Publication of JP2004090527A publication Critical patent/JP2004090527A/en
Application granted granted Critical
Publication of JP4110465B2 publication Critical patent/JP4110465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱可塑性樹脂フィルムの幅方向に物性の均一な製造方法に係わる。 更に詳しくは、横延伸、熱固定される際に生じるボーイング現象を抑制し、幅方向に均一な物理的、化学的及び物理化学的性質を有するフィルムの製造方法に関する。
【0002】
【従来の技術】
熱可塑性樹脂フィルム、特に二軸延伸されたポリエステル系、ポリアミド系、ポリオレフィン系、ポリビニル系樹脂、ポリフェニレンサルファイド等のフィルムは、包装及び工業用途、その他の用途に供せられており、フィルムの幅方向のどの部分でも同じ物性値であることが望ましい。
【0003】
しかし、従来の製造方法では製品フィルムの幅方向の物性を均一にすることは極めて困難であった。 この理由は、テンター内においてフィルムの両端はクリップに把持されていて、延伸工程によって生じる縦方向の延伸応力や、熱固定工程によって発生する収縮応力は、把持手段であるクリップによって拘束されているに対し、フィルムの中央部は把持手段の影響が低く拘束力が弱くなり、上記の応力の影響によってクリップで把持されている端部に対してフィルムの中央部分が遅れるためである。
【0004】
そして、横延伸と熱固定を連続に同一のテンターで行う場合において、テンターに入る前のフィルムの面上に幅方向に沿って直線を描いておくと、この直線はテンター内で変形してフィルムの進行方向に対して延伸工程の始めの領域で凸型に変形し、延伸工程の終わり直前の領域で直線に戻り、延伸工程終了後には凹型に変形する。 さらに熱固定工程の領域の始めで凹形の変形は最大値に達し、テンターを出たフィルムには凹形の変形が残る。
【0005】
この現象はボーイング現象と称されているものであるが、このボーイング現象はフィルムの幅方向の物性値を不均一にする原因になっている。 ボーイング現象によって、フィルムの側端部分ではボーイング線に対して更に縦方向に傾斜した配向主軸が生じて、幅方向で配向主軸の角度が異なる傾向がある。 この結果、例えば縦方向の熱収縮率、熱膨張率、湿潤膨張率等の物性値がフィルムの幅方向で異なってくる。
【0006】
このボーイング現象によって、包装用途の一例として、印刷ラミネート加工、製袋工程等において印刷ピッチずれ、斑の発生、カーリング、蛇行などのトラブルの原因になっている。 また、工業用途の一例として、磁気ディスク等のベースフィルムでは面内異方性のため磁気記録特性低下などのトラブルの原因になっている。
【0007】
更に詳しく述べると、横延伸と熱固定間に冷却工程を設ける従来技術としては、特公昭35−11774号公報には横延伸と熱固定工程の間に20℃〜150℃の緩和工程を介在させ、実質冷却工程を設けた製造方法が提案されている。 しかし、この冷却工程の長さについては全く記載されていないばかりか、ボーイング現象の減少の効果も全く不明である。
【0008】
更に、ボーイング現象を減少ないし解消する技術として、特開昭50−73978号公報には延伸工程と熱固定工程との間にニップロール群を設置するフィルムの製造方法が提案されている。 しかし、この技術ではニップロールを設置する中間帯の温度がガラス転移点温度以上で、ニップ点でのフィルムの剛性が低いため改善策には効果が少ない。
【0009】
また、特公昭63−24459号公報には横延伸完了後のフィルムの両端部を把持しながら中央付近の狭い範囲のみをニップロールによって強制的な前進をもたらす工程が提案されている。 しかし、この技術ではニップロールをテンター内の高温領域に設置する必要があり、ロール及びその周辺装置を冷却する必要があり、またフィルムが高温であるためロールによる傷が発生するおそれがあり、実用面で制約される。
【0010】
また、特公昭62−43856号公報には、横延伸直後のフィルムをガラス転移点温度以下に冷却した後、多段に熱固定を行ない熱固定と同時に横方向に伸張する技術が提案されている。 しかし、この技術では冷却工程でボーイング減少が少ないためか、又は熱固定でボーイングが再発生しやすいためか冷却工程に加えて多段に熱固定する工程と再延伸との複雑な工程となっている。 そのためテンター内の雰囲気温度やフィルム温度を長時間にわたり安定して制御することが困難ではないかと懸念される。
【0011】
また、本提案も特公昭35−11774号公報と同様に冷却工程の長さなどは記載されていない。 また、特公平1−25694号公報、特公平1−25696号公報には、フィルムの走行方向を逆転させて横延伸、熱固定をする技術が提案されている。 しかし、この技術ではフィルムの走行方向を逆転させるのにフィルムを一旦巻き取る必要があり、オフラインでの製造方法であるため生産性の面で制約を受けるなどの問題点がある。
【0012】
【発明が解決しようとする課題】
かかる問題点に対し、ボーイング現象を減少せしめて幅方向に物性の均一なフィルムを得ることができる熱可塑性樹脂フィルムの製造方法を提供することにある。 更に詳しくは、縦延伸倍率を下げることなく、フィルム物性の幅方向分を低減する縦延伸方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題に鑑み、本発明者らは鋭意研究の結果ついに本発明に到達した。すなわち、本発明の課題は下記の達成手段により解決される。
【0014】
本発明の熱可塑性樹脂フィルムの製造方法は、実質的に未配向の熱可塑性樹脂シートを縦方向に延伸した後、引続きテンターを用いて、横方向に3.0倍以上延伸する熱可塑性樹脂フィルムの製造方法において、上記縦延伸を、第1段の縦延伸として、(Tg+30℃)以上、Tm未満の温度で1.1〜3.0倍に延伸した後、引続き(Tg+10)℃以上、Tm未満の温度の区間を0.1秒以上通過させ、引続き第2段の縦延伸として、(Tg+20)℃以上、(Tc+20)℃以下の温度で1.1〜3.0倍に延伸した後、引続き第3段の縦延伸として、(Tg+10)℃以上、(Tc+20)℃以下の温度で、総合縦延伸倍率が、3.1〜6.0倍となるように延伸し、引続き該テンターを用いて、該横延伸を(Tg+20)℃以上、(Tm−20)℃以下の温度で行い、かつ好ましくは各縦延伸の間をTg以下に冷却せずに縦延伸を行うことが好適である。
【0015】
この場合において、第1段の縦延伸後、Tg以下に冷却することなく引続き(Tg+10)℃以上、Tm未満の温度の区間で縦方向に20%以下の緩和処理を行うことが好適である。
【0016】
また、この場合において、縦延伸過程のフィルム進行方向が、下方向であることが好適である。
【0017】
【発明の実施の形態】
以下、本発明で規定する各種条件について詳細に説明するとともに、上記特性を定めた理由について詳述する。
【0018】
本発明に適用される熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリエチレン2,6−ナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン−6、ナイロン−66などのポリアミド系樹脂、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂、ポリフェニレンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエチレントリメリテッドイミド、その他多くの単体、共重合体、混合体、複合体等が挙げられる。
【0019】
また、ポリエステル系の共重合成分としては、酸成分あるいは多価アルコール成分を使用することが可能である。酸成分に関しては芳香族ジカルボン酸として、例えばイソフタル酸、ナフタレン−1,4−もしくは−2,6−ジカルボン酸、5−ナトリウムスルホイソフタル酸等が挙げられる。またこれらのエステル誘導体としては、ジアルキルエステル、ジアリールエステル等の誘導体が挙げられる。また脂肪族ジカルボン酸としては、ダイマー酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸、シュウ酸、コハク酸等が挙げられる。また、p−オキシ安息香酸などのオキシカルボン酸、無水トリメリット酸、無水ピロメリット酸等の多価のカルボン酸を、必要に応じて併用しても良い。多価アルコールの成分に関しては、ジエチレングリコール、ダイマージオール、プロピレングリコール、トリエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール、3−メチル1,5−ペンタンジオール、2−メチル−1,5−ペンタンジオール、2,2−ジエチル−1,3−プロパンジオール、1,9−ノナンジオール、1,10−デカンジオールなどのアルキレングリコール、ビスフェノール化合物又はその誘導体のエチレンオキサイド付加物、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリオキシテトラメチレングリコール、ポリエチレングリコール等が挙げられる。また、多価アルコールではないが、εカプロラクトンも同様に使用可能である。該ポリエステル樹脂は、単独でも良いし、2種以上を混合して用いても良い。2種以上を併用する場合は、ポリエチレンテレフタレートと共重合ポリエステルの混合系であってもよく、又、共重合ポリエステル同士の組み合わせでもかまわない。また、ポリブチレンテレフタレート、ポリシクロヘキシレンジメチルテレフタレート、ポリエチレンナフタレートなどのホモポリエステルとの組み合わせであってもよい。
【0020】
本発明における熱可塑性樹脂フィルムの製造方法の特徴は、実質的に未配向の熱可塑性樹脂シートを縦方向に延伸した後、引続きテンターを用いて、横延伸を(Tg+20)℃以上、(Tm−20)℃以下の温度で3.0倍以上延伸する方法において、前記縦延伸過程のフィルム進行方向が下方向であり、第1段の縦延伸として、(Tg+30)℃以上、Tm未満の温度で1.1〜3.0倍に延伸した後、Tg以下に冷却することなく引続き(Tg+10)℃以上、Tm未満の温度の区間で0.1秒以上、縦方向に20%以下の緩和処理を行い、Tg以下に冷却することなく引続き第2段の縦延伸として、(Tg+20)℃以上、(Tc+20)℃以下の温度で1.1〜3.0倍に延伸した後、Tg以下に冷却することなく引続き第3段の縦延伸として、(Tg+10)℃以上、(Tc+20)℃以下の温度で、総合縦延伸倍率が、3.1〜6.0倍で行うことである。
【0021】
前記効果が得られる理由として、下記のことが考えられる。
横延伸と熱固定を連続に同一のテンターで行う場合において、ボーイング現象は延伸工程終了後にも多少発生しており、その後の熱固定工程の直後で最大値をとることが確認されている。延伸工程と熱固定工程との間には延伸による延伸応力と熱固定による収縮応力が存在するが、熱固定工程のフィルムの温度が高いためフィルムの剛性が低くなりフィルムの中央部が延伸工程側へ変形し易くなり、ボーイング現象が発生すると考えられる。本発明では、縦延伸を特定の延伸温度と延伸倍率に制御し、かつ、特定の温度で緩和処理することにより、
縦延伸により発生する残留熱収縮応力を低減し、かつ横延伸時に発生する延伸応力を低減することができ、ボーイング現象を減少するものである。また同時に、横延伸時に発生する延伸応力を低減することができ、横延伸時に発現する配向の形成が容易になり延伸性が向上する。また、ボーイング現象の悪化のため増加できなかった縦延伸倍率を、残留熱収縮応力の低減に応じて、増加することが出来、生産性の向上にも寄与することが出来る。
【0022】
以上のような理由により、縦延伸倍率を下げることなく、横延伸性が向上し、操業トラブルの少ないボーイング現象を減少せしめて幅方向に物性の均一なフィルムを経済的に得ることができる。
【0023】
以下、本発明による熱可塑性樹脂フィルムの製造方法を詳細に説明する。まず、熱可塑性樹脂原料を乾燥したのち、押し出し機により溶融押出し、口金より回転ドラム上にキャストして急冷固化し熱可塑性樹脂シートを得る。この熱可塑性樹脂シートは、実質的に未配向状態である。
【0024】
このようにして得られた実質的に未配向の熱可塑性樹脂シートを、第1段の縦延伸として、縦方向に(Tg+30)℃以上、Tm未満の温度で、延伸倍率1.1〜3.0倍となるように延伸を行う。
延伸温度は、(Tg+30)℃未満では、延伸応力が増加しボーイング現象を低減する効果が現れず好ましくなく、Tm以上では厚み斑が著しく大きくなり、かつ安定した延伸が困難となり好ましくない。好ましくは、(Tg+40)℃〜(Tm−10)℃である。延伸倍率は、1.1倍未満であるとボーイング現象が低減するものの、生産速度が小さくなり、3.0倍を越えると配向結晶化が進行し、後述する第2段及び第3段の縦延伸時での延伸応力が高くなり、ボーイング現象の低減効果が低下し好ましくない。好ましくは、1.2〜2.5倍である。
【0025】
このようにして得られた第1段の縦延伸フィルムをTg以下に冷却することなく引続き(Tg+10)℃以上、Tm未満の温度の区間で0.1秒以上、縦方向に20%以下の緩和処理を行う。縦延伸フィルムを引続き緩和処理するわけであるが、その間のシート温度を如何にするかが本発明の特徴の1つである。すなわち、強制的に冷却するのではなく加熱保温し、しかも引続き行う緩和処理のための加熱を兼用することにある。強制的に冷却し、更に緩和処理のために再加熱すると熱結晶化が著しく進行し、引続き行う横延伸時の延伸応力が増大し、ボーイング現象を低減する効果が現れず好ましくない。この加熱保温の区間でも熱結晶化は進行するが、前述の強制冷却、再加熱に比べると甚だ遅く実用上問題とはならない。緩和処理温度は、(Tg+10)℃未満では緩和効果が現れず、横延伸時の延伸応力が増加し、ボーイング現象を低減する効果が十分でなく好ましくなく、Tm以上では安定したフィルム走行が困難となり好ましくない。好ましくは、(Tg+20)℃〜(Tm−10)℃である。緩和処理の通過時間は、0.1秒未満では緩和効果が現れず、横延伸時の延伸応力が増加し、ボーイング現象を低減する効果が十分でなく好ましくない。好ましくは、0.2秒以上である。緩和率は20%を越えると、縦方向に延伸した残留応力を緩和工程で吸収することが出来ずに、実質緩和効果が現れず、フィルムが弛み、蛇行等により安定したフィルム走行が困難となり、かつ、擦り傷を誘発させるため好ましくない。好ましくは、15%以下である。
【0026】
このようにして得られた緩和処理後の第1段の縦延伸フィルムをTg以下に冷却することなく、引続き第2段の縦延伸として、(Tg+20)℃以上、(Tc+20)℃以下の温度で1.1〜3.0倍に延伸を行う。
延伸温度は、(Tg+20)℃未満では、延伸応力が増加しボーイング現象を低減する効果が現れず好ましくなく、(Tc+20)℃以上では熱結晶化が進行し、横延伸で破断しやすくなり好ましくない。好ましくは、(Tg+30)℃〜(Tc+10)℃である。延伸倍率は、1.1倍未満であるとボーイング現象が低減するものの、生産速度が小さくなり、3.0倍を越えると配向結晶化が進行し、後述する第3段の縦延伸時での延伸応力が高くなり、ボーイング現象の低減効果が低下したり、横延伸で破断しやすくなり好ましくない。好ましくは、1.2〜2.5倍である。
【0027】
このようにして得られた第2段の縦延伸フィルムをTg以下に冷却することなく、引続き第3段の縦延伸として、(Tg+10)℃以上、(Tc+20)℃以下の温度で、総合縦延伸倍率が、3.1〜6.0倍になるように延伸を行う。
延伸温度は、(Tg+10)℃未満では、延伸応力が増加しボーイング現象を低減する効果が現れず好ましくなく、(Tc+20)℃以上では熱結晶化が進行し、横延伸で破断しやすくなり好ましくない。
好ましくは、(Tg+20)℃〜(Tc+10)℃である。総合縦延伸倍率は、3.1倍未満であるとボーイング現象が低減するものの、生産速度が小さくなり、かつ縦方向の強度が小さくなり、6.0倍を越えると配向結晶化が進行し、ボーイング現象の低減効果が低下したり、横延伸で破断しやすくなり好ましくない。好ましくは、3.5〜5.6倍である。
【0028】
また、延伸工程から緩和処理工程間、及び緩和処理工程において、フィルムの加熱手段は、表面にハードクロムメッキを施した金属系素材、セラミックス系素材、フッ素系素材やシリコン系素材等を用いた加熱ロール郡を用いることが出来る。この際、フィルムが軟化しロールに粘着するのを防止するため、フィルムとの離型性のよいシリコンゴムあるいは、セラミック系素材を用いるのが好ましい。また、別の加熱手段として、赤外線ヒータを用いることが出来る。赤外線ヒータにおいては、遠赤外線、近赤外線、集光型近赤外線等を用いることが出来、これらを組み合わせても良い。また、熱風を用いたオーブンを用いても良い。
【0029】
また、本発明において、前記縦延伸過程のフィルム進行方向が下方向であることが好ましい。その理由は、縦延伸温度の増加に伴い、フィルム剛性が低下し下方向に垂れるのを防止し、フィルムの安定製膜を確保するためである。
【0030】
このようにして得られた一軸延伸フィルムを、テンターを用いて引続き、(Tg+20)℃以上、(Tm−20)℃以下の温度で、延伸倍率3.0倍以上横延伸し、次いで熱固定し巻き取る。延伸温度は、(Tg+20)℃未満では延伸応力が著しく増加し破断が頻発し好ましくなく、(Tm−20)℃を越えると厚み斑が大きくなり、かつ熱結晶化が著しく進行し、延伸応力が増大し、破断が頻発し好ましくない。好ましくは、(Tg+40)℃〜(Tm−40)℃である。延伸倍率は、3.0倍未満であると強度が小さくなり、かつ厚み斑が増大しやすくなり好ましくなく、延伸倍率が高すぎると、延伸応力が増大し、破断が頻発し好ましくない。好ましくは、3.5倍〜5.0倍である。
【0031】
また、本発明の熱可塑性樹脂フィルムの厚みは特に限定するものではないが、10〜200μmが好ましく、15〜100μmが更に好ましい。
【0032】
このように、実質的に未配向の熱可塑性樹脂シートを、縦方向に延伸した後、引続きテンターを用いて、横延伸を(Tg−20)℃以上、(Tm−20)℃以下の温度で3.0倍以上延伸する方法において、前記縦延伸過程のフィルム進行方向が下方向であり、第1段の縦延伸として、(Tg+30)℃以上、Tm未満の温度で1.1〜3.0倍に延伸した後、Tg以下に冷却することなく引続き(Tg+10)℃以上、Tm未満の温度の区間で0.1秒以上、縦方向に20%以下の緩和処理を行い、Tg以下に冷却することなく引続き第2段の縦延伸として、(Tg+20)℃以上、(Tc+20)℃以下の温度で1.1〜3.0倍に延伸した後、Tg以下に冷却することなく引続き第3段の縦延伸として、(Tg+10)℃以上、(Tc+20)℃以下の温度で、総合縦延伸倍率が、3.1〜6.0倍で行うことにより、ボーイング現象を減少せしめて幅方向に物性の均一なフィルムを経済的に得ることができる。
【0033】
かくして得られる本発明の熱可塑性樹脂フィルムは、包装材料として味噌、漬物、惣菜、ベビーフード、佃煮、こんにゃく、ちくわ、蒲鉾、水産加工品、ミートボール、ハンバーグ、ジンギスカン、ハム、ソーセージ、その他の畜肉加工品、茶、コーヒー、紅茶、鰹節、昆布、ポテトチップス、バターピーナッツなどの油菓子、米菓、ビスケット、クッキー、ケーキ、饅頭、カステラ、チーズ、バター、切り餅、スープ、ソース、ラーメン、わさび、また、練り歯磨きなどの包装に有効に利用することができ、更にはペットフード、農薬、肥料、輸液パック、或は半導体や精密材料包装など医療、電子、化学、機械などの産業材料包装にも有効に活用することができる。 また包装材料の形態にも特に制限がなく、袋、フタ材、カップ、チューブ、ラベル、スタンディングパック等に幅広く適用できる。
【0034】
【実施例】
次に本発明を実施例により具体的に説明する。
本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明技術的範囲に包含される。また、下記実施例で採用した各種の性能試験は次の方法によって行った。
【0035】
(1)ガラス転移温度(Tg)、低温結晶化温度(Tc)及び融点(Tm):
未配向熱可塑性樹脂シートを液体窒素中で凍結し、減圧解凍後にセイコー電子製DSCを用い、昇温速度10℃/分で測定し、得られた吸熱発熱曲線より、未配向熱可塑性樹脂シートのTg、Tc及びTmを見積もった。
【0036】
(2)ボーイング歪:
テンターに入る前のフィルムの表面に直線を描き、最終的に得られた二軸延伸熱可塑性樹脂フィルム上で弓状に変形した状況を、
B=b/W×100 (%) によって算出した。
ここで、B=ボーイング歪(%)
W=フィルムの幅(mm)
b=ボーイング線の最大ふくらみ量(mm)
【0037】
(3)沸水収縮率斜め差:
二軸延伸熱可塑性樹脂フィルムを全幅の中央部および中央から左右に全幅の40%の位置(端部)から、それぞれ21cm角に切り出しサンプルとする。各々のサンプルの中央を中心とする直径20cmの円を描き、縦方向を0゜としたときの45゜及び135゜方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとする。
このサンプルを沸騰水中で30分間加熱処理したのち取り出して、表面に付着した水分を除去、風乾する。
風乾後、各方向の直径を測定し、処理後の長さとする。下記式を用い沸水収縮率を算出する。
沸水収縮率=(処理前の長さ−処理後の長さ)/処理前の長さ×100(%)
縦方向を0゜としたときの45゜と135゜方向の沸水収縮率差の絶対値を求め、両端部の平均値を沸水収縮斜め差とした。
【0038】
(4)乾熱収縮率斜め差:
二軸延伸熱可塑性樹脂フィルムを全幅の中央部および中央から左右に全幅の40%の位置(端部)から、それぞれ21cm角に切り出しサンプルとする。各々のサンプルの中央を中心とし、縦方向を0゜としたときの45゜及び135゜方向に平行な幅10mm×長さ150mmの短冊を作成し、100mm間隔で標線を引き、その長さをを測定し、処理前の長さとする。
ギアオーブンを用いて、このサンプルを無荷重で150℃×30分間加熱処理したのち取り出して、標線の長さを測定し、処理後の長さとする。下記式を用い沸水収縮率を算出する。
乾熱収縮率=((処理前の長さ−処理後の長さ)/処理前の長さ)×100(%)
縦方向を0°としたときの45゜と135゜方向の乾熱収縮率差の絶対値を求め、両端部の平均値を乾熱収縮率斜め差とした。
【0039】
(5)フィルム温度:縦延伸における温度は、ミノルタ(株)製放射温度計IR−004を用いフィルムの温度を測定した。
【0040】
(6)製膜状況:2時間、同一条件で二軸延伸し、破断回数を調べた。
【0041】
(実施例1)
ナイロン6ペレット(相対粘度2.8)を真空乾燥した後、これを押出し機に供給し270℃で溶融し、T型ダイよりシート状に押し出し、直流高電圧を印可して20℃の回転ドラム上に静電気的に密着させ、冷却固化せしめて厚さ260μmの未配向シートを得た。このシートのTgは40℃、Tcは67℃、Tmは220℃であった。
このシートを縦延伸機でシリコンゴム素材の加熱ロールを最終加熱ロールとし、フィルム進行方向を下方向とし、第1段の縦延伸を温度130℃で1.5倍延伸した後、セラミックロール上で100℃に保温しつつ、引続きセラミックロールの周速度制御により0.3秒間100℃で6%の縦方向緩和処理を行い、75℃に保温しつつ、温度75℃で1.5倍に第2段の縦延伸を行い、引続き70℃に保温しつつ、温度70℃で総合縦延伸倍率が4.2倍になるように第3段の縦延伸を行い、引続きテンターで、温度130℃で横方向に4.0倍延伸した後、213℃で横方向に4%の緩和処理を施した後に冷却し、両縁部を裁断除去して、厚み15μmの二軸延伸ポリアミドフィルムを得た。このときの製膜状況と特性を表1に示す。
【0042】
(実施例2)
第1段の縦延伸を集光型赤外線ヒータを用いて温度145℃で行う以外はすべて実施例1と同様にして二軸延伸ポリアミドフィルムを得た。
【0043】
(実施例3)
第1段の縦延伸後の緩和温度を集光型赤外線ヒータを用いて130℃で行う以外はすべて実施例2と同様にして二軸延伸ポリアミドフィルムを得た。
【0044】
(比較例1)
第1段の縦延伸を温度50℃で行い、縦延伸後35℃まで急冷し、縦緩和処理を行わず、引続き温度75℃で1.5倍に第2段の縦延伸を行い、引続き70℃に保温しつつ、温度70℃で総合縦延伸倍率が4.2倍になるように第3段の縦延伸を行い、引続きテンターで横延伸する以外はすべて実施例1と同様にして二軸延伸ポリアミドフィルムを得た。
【0045】
(比較例2)
第1段の縦延伸後35℃まで急冷し、縦緩和処理を行わず、引続き温度75℃で1.5倍に第2段の縦延伸を行い、引続き70℃に保温しつつ、温度70℃で総合縦延伸倍率が4.2倍になるように第3段の縦延伸を行い、引続きテンターで横延伸する以外はすべて実施例1と同様にして二軸延伸ポリアミドフィルムを得た。
【0046】
(比較例3)
第1段の縦延伸後の縦緩和処理を0.05秒間で行う以外はすべて実施例1と同様にして二軸延伸ポリアミドフィルムを得た。
【0047】
(実施例4)
ポリエチレンテレフタレートペレット(固有粘度0.65)を真空乾燥した後、これを押出し機に供給し285℃で溶融し、T型ダイよりシート状に押し出し、直流高電圧を印可して20℃の回転ドラム上に静電気的に密着させ、冷却固化せしめて厚さ220μmの未配向シートを得た。このシートのTgは79℃、Tcは128℃、Tmは265℃であった。
このシートを縦延伸機で集光型赤外線ヒータを用いて、フィルム進行方向を下方向とし、第1段の縦延伸を温度160℃で1.8倍延伸した後、セラミックロール上で140℃に保温しつつ、引続きセラミックロールの周速度制御により0.2秒間140℃で6%の縦方向緩和処理を行い、120℃に保温しつつ、温度120℃で1.6倍に第2段の縦延伸を行い、引続き115℃に保温しつつ、温度115℃で総合縦延伸倍率が4.6倍になるように第3段の縦延伸を行い、引続きテンターで、温度140℃で横方向に4.0倍延伸した後、225℃で横方向に7%の緩和処理を施した後に冷却し、両縁部を裁断除去して、厚み12μmの二軸延伸ポリエチレンテレフタレートフィルムを得た。このときの製膜状況と特性を表2に示す。
【0048】
(実施例5)
第1段の縦延伸温度を190℃で行う以外はすべて実施例4と同様にして二軸延伸ポリエチレンテレフタレートフィルムを得た。
【0049】
(比較例4)
第1段の縦延伸を温度80℃で行い、縦延伸後35℃まで急冷し、縦緩和処理を行わず、引続き延伸温度120℃で1.6倍に第2段の縦延伸を行い、引続き115℃に保温しつつ、延伸温度115℃で総合縦延伸倍率が4.6倍になるように第3段の縦延伸を行い、引続きテンターで横延伸する以外はすべて実施例4と同様にして二軸延伸ポリエチレンテレフタレートフィルムを得た。
【0050】
(比較例5)
第1段の縦延伸後の縦緩和処理を0.05秒間で行い、140℃に保温しつつ、温度140℃で1.6倍に第2段の縦延伸を行う以外はすべて実施例4と同様にして二軸延伸ポリエチレンテレフタレートフィルムを得た。
【0051】
【表1】

Figure 0004110465
【0052】
【表2】
Figure 0004110465
【0053】
本発明の製造方法によれば、破断なく、しかもボーイング歪を低減し、幅方向の物性差を小さくする事ができ、熱可塑性樹脂フィルムの製造方法には、きわめて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing uniform physical properties in the width direction of a thermoplastic resin film. More specifically, the present invention relates to a method for producing a film having physical, chemical and physicochemical properties that are uniform in the width direction by suppressing the bowing phenomenon that occurs during transverse stretching and heat setting.
[0002]
[Prior art]
Thermoplastic resin films, especially biaxially stretched polyester, polyamide, polyolefin, polyvinyl resin, polyphenylene sulfide, and other films are used for packaging and industrial applications, and other applications. It is desirable that the same physical property value be used for any part of the.
[0003]
However, it has been extremely difficult to make the physical properties in the width direction of the product film uniform by the conventional manufacturing method. The reason for this is that both ends of the film in the tenter are gripped by clips, and the longitudinal stretching stress generated by the stretching process and the shrinkage stress generated by the heat setting process are constrained by the clip as the gripping means. On the other hand, the central part of the film is less influenced by the gripping means and the restraining force becomes weak, and the central part of the film is delayed with respect to the end part gripped by the clip due to the influence of the stress.
[0004]
And in the case where transverse stretching and heat setting are continuously performed with the same tenter, if a straight line is drawn along the width direction on the surface of the film before entering the tenter, the straight line is deformed in the tenter and the film is deformed. It changes into a convex shape in the region at the beginning of the stretching process, returns to a straight line in the region immediately before the end of the stretching step, and deforms into a concave shape after the stretching step. Furthermore, the concave deformation reaches a maximum value at the beginning of the heat setting process region, and the concave deformation remains in the film that has exited the tenter.
[0005]
This phenomenon is called a bowing phenomenon. This bowing phenomenon causes non-uniform physical property values in the width direction of the film. Due to the bowing phenomenon, an orientation main axis inclined further in the vertical direction with respect to the bowing line is generated at the side edge portion of the film, and the angle of the orientation main axis tends to be different in the width direction. As a result, for example, physical property values such as thermal shrinkage rate, thermal expansion rate, and wet expansion rate in the vertical direction differ in the width direction of the film.
[0006]
As an example of packaging applications, this Boeing phenomenon causes troubles such as printing pitch deviation, occurrence of spots, curling, and meandering in a printing lamination process and a bag making process. Further, as an example of industrial use, a base film such as a magnetic disk causes inconveniences such as deterioration of magnetic recording characteristics due to in-plane anisotropy.
[0007]
More specifically, as a conventional technique for providing a cooling step between transverse stretching and heat setting, Japanese Patent Publication No. 35-11774 discloses a relaxation step of 20 ° C. to 150 ° C. between the transverse drawing and heat setting step. A manufacturing method provided with a substantial cooling step has been proposed. However, the length of the cooling process is not described at all, and the effect of reducing the bowing phenomenon is completely unknown.
[0008]
Further, as a technique for reducing or eliminating the bowing phenomenon, Japanese Patent Application Laid-Open No. 50-73978 proposes a film manufacturing method in which a nip roll group is installed between a stretching process and a heat setting process. However, in this technique, the temperature of the intermediate zone where the nip roll is installed is equal to or higher than the glass transition point temperature, and the rigidity of the film at the nip point is low.
[0009]
Japanese Examined Patent Publication No. 63-24459 proposes a process for forcibly advancing only a narrow range near the center by nip roll while gripping both ends of a film after transverse stretching. However, in this technique, it is necessary to install the nip roll in a high temperature region in the tenter, and it is necessary to cool the roll and its peripheral devices. Further, since the film is at a high temperature, there is a risk of scratches caused by the roll. Constrained by
[0010]
Japanese Examined Patent Publication No. 62-43856 proposes a technique in which a film immediately after transverse stretching is cooled below the glass transition temperature, and then heat-fixed in multiple stages and simultaneously stretched in the transverse direction. However, in this technology, the bowing reduction is small in the cooling process, or the bowing is likely to be regenerated due to heat setting, and in addition to the cooling process, it is a complicated process of heat fixing and redrawing in multiple stages. . Therefore, there is a concern that it may be difficult to stably control the atmospheric temperature and the film temperature in the tenter for a long time.
[0011]
In addition, the length of the cooling process is not described in this proposal as well as Japanese Patent Publication No. 35-11774. Japanese Patent Publication Nos. 1-256694 and 1-256696 propose a technique of reversing the running direction of the film to perform transverse stretching and heat fixing. However, in this technique, it is necessary to take up the film once in order to reverse the traveling direction of the film, and there is a problem that it is restricted in terms of productivity because it is an off-line manufacturing method.
[0012]
[Problems to be solved by the invention]
In order to solve this problem, an object of the present invention is to provide a method for producing a thermoplastic resin film capable of reducing the bowing phenomenon and obtaining a film having uniform physical properties in the width direction. More specifically, an object of the present invention is to provide a longitudinal stretching method that reduces the width direction of film properties without reducing the longitudinal stretching ratio.
[0013]
[Means for Solving the Problems]
In view of the above problems, the present inventors finally reached the present invention as a result of intensive studies. That is, the problem of the present invention is solved by the following means.
[0014]
The method for producing a thermoplastic resin film of the present invention is obtained by stretching a substantially unoriented thermoplastic resin sheet in the longitudinal direction, and subsequently stretching it by 3.0 times or more in the transverse direction using a tenter. In the production method, the above-mentioned longitudinal stretching is performed as a first-stage longitudinal stretching at a temperature of (Tg + 30 ° C.) or more and 1.1 to 3.0 times at a temperature of less than Tm, and then (Tg + 10) ° C. or more, Tm After passing through a temperature zone of less than 0.1 seconds, and continuously stretching as the second stage of longitudinal stretching at a temperature of (Tg + 20) ° C. or higher and (Tc + 20) ° C. or lower, 1.1 to 3.0 times, Subsequently, as the third stage of longitudinal stretching, stretching was performed at a temperature of (Tg + 10) ° C. or more and (Tc + 20) ° C. or less so that the overall longitudinal stretching ratio was 3.1 to 6.0 times, and the tenter was continuously used. The transverse stretching is (Tg + 20) ° C. or higher, It carried out at tm-20) ° C. below the temperature and is preferably is preferable to perform the longitudinal stretching without cooling between each longitudinal stretching below Tg.
[0015]
In this case, after the first stage of longitudinal stretching, it is preferable to perform a relaxation treatment of 20% or less in the longitudinal direction in a section where the temperature is (Tg + 10) ° C. or more and less than Tm without cooling to Tg or less.
[0016]
In this case, it is preferable that the film traveling direction in the longitudinal stretching process is a downward direction.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various conditions defined in the present invention will be described in detail, and the reasons for determining the above characteristics will be described in detail.
[0018]
Examples of the thermoplastic resin applied to the present invention include polyethylene resins such as polyethylene terephthalate, polyethylene 2,6-naphthalate, polyethylene isophthalate and polybutylene terephthalate, polyamide resins such as nylon-6 and nylon-66, polypropylene, Polyolefin resins such as polyethylene, polyphenylene sulfide, polyether sulfone, polysulfone, polyether ether ketone, polyether ketone ketone, polyethylene trimmed imide, and many other simple substances, copolymers, mixtures, composites, etc. It is done.
[0019]
As the polyester copolymer component, an acid component or a polyhydric alcohol component can be used. Regarding the acid component, examples of the aromatic dicarboxylic acid include isophthalic acid, naphthalene-1,4- or -2,6-dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Examples of these ester derivatives include derivatives such as dialkyl esters and diaryl esters. Examples of the aliphatic dicarboxylic acid include dimer acid, glutaric acid, adipic acid, sebacic acid, azelaic acid, oxalic acid, and succinic acid. Further, an oxycarboxylic acid such as p-oxybenzoic acid, and a polyvalent carboxylic acid such as trimellitic anhydride and pyromellitic anhydride may be used in combination as necessary. Regarding the components of the polyhydric alcohol, diethylene glycol, dimer diol, propylene glycol, triethylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 3-methyl 1 , 5-pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,9-nonanediol, alkylene glycol such as 1,10-decanediol, bisphenol compounds Alternatively, an ethylene oxide adduct of its derivative, trimethylolpropane, glycerin, pentaerythritol, polyoxytetramethylene glycol, polyethylene glycol and the like can be mentioned. Moreover, although it is not a polyhydric alcohol, epsilon caprolactone can be used similarly. The polyester resin may be used alone or in combination of two or more. When using 2 or more types together, a mixed system of polyethylene terephthalate and copolymerized polyester may be used, or a combination of copolymerized polyesters may be used. A combination with a homopolyester such as polybutylene terephthalate, polycyclohexylene dimethyl terephthalate, or polyethylene naphthalate may also be used.
[0020]
A feature of the method for producing a thermoplastic resin film in the present invention is that a substantially unoriented thermoplastic resin sheet is stretched in the machine direction and then stretched at a temperature of (Tg + 20) ° C. or higher using a tenter, (Tm− 20) In the method of stretching 3.0 times or more at a temperature of not higher than ° C., the film traveling direction in the longitudinal stretching process is downward, and as the first stage of longitudinal stretching, at a temperature not lower than (Tg + 30) ° C. and lower than Tm. After stretching to 1.1 to 3.0 times, the cooling treatment is continued for 0.1 seconds or more and 20% or less in the longitudinal direction at a temperature of (Tg + 10) ° C. or more and less than Tm without cooling to Tg or less. Without any cooling to Tg or lower, the film is stretched 1.1 to 3.0 times at a temperature of (Tg + 20) ° C. or higher and (Tc + 20) ° C. or lower as the second stage of longitudinal stretching, and then cooled to Tg or lower. Continued on the 3rd stage vertically As Shin, (Tg + 10) ℃ above, (Tc + 20) ℃ temperature below, total longitudinal stretching ratio is, is to perform at 3.1 to 6.0 times.
[0021]
The following can be considered as the reason why the effect is obtained.
In the case where the transverse stretching and heat setting are performed continuously with the same tenter, the bowing phenomenon occurs to some extent even after the stretching process is finished, and it has been confirmed that the maximum value is obtained immediately after the subsequent heat setting process. There are stretching stress due to stretching and shrinkage stress due to heat setting between the stretching process and heat setting process, but the film temperature becomes low due to the high temperature of the film in the heat setting process, and the central part of the film is on the drawing process side. It is considered that the bowing phenomenon occurs. In the present invention, the longitudinal stretching is controlled to a specific stretching temperature and a stretching ratio, and by relaxing treatment at a specific temperature,
Residual heat shrinkage stress generated by longitudinal stretching can be reduced, and stretching stress generated during transverse stretching can be reduced, thereby reducing the bowing phenomenon. At the same time, the stretching stress generated during transverse stretching can be reduced, and the orientation that is manifested during transverse stretching can be easily formed and the stretchability is improved. Moreover, the longitudinal draw ratio that could not be increased due to the worsening of the bowing phenomenon can be increased according to the reduction of the residual heat shrinkage stress, which can contribute to the improvement of productivity.
[0022]
For the reasons described above, it is possible to economically obtain a film having uniform physical properties in the width direction by improving the transverse stretchability without reducing the longitudinal stretch ratio and reducing the bowing phenomenon with less operational trouble.
[0023]
Hereafter, the manufacturing method of the thermoplastic resin film by this invention is demonstrated in detail. First, after the thermoplastic resin raw material is dried, it is melt-extruded by an extruder, cast on a rotating drum from a die, and rapidly cooled and solidified to obtain a thermoplastic resin sheet. This thermoplastic resin sheet is substantially unoriented.
[0024]
The substantially unoriented thermoplastic resin sheet thus obtained is subjected to a first stage of longitudinal stretching at a temperature of (Tg + 30) ° C. or more and less than Tm in the longitudinal direction at a draw ratio of 1.1 to 3. Stretching is performed so as to be 0 times.
If the stretching temperature is less than (Tg + 30) ° C., the stretching stress increases and the effect of reducing the bowing phenomenon does not appear, and this is not preferable, and if it is Tm or more, the thickness unevenness becomes remarkably large and stable stretching becomes difficult. Preferably, it is (Tg + 40) ° C. to (Tm−10) ° C. If the draw ratio is less than 1.1 times, the bowing phenomenon is reduced, but the production rate is reduced, and if it exceeds 3.0 times, orientation crystallization proceeds, and the second and third stages described later The stretching stress at the time of stretching becomes high, and the effect of reducing the bowing phenomenon is lowered, which is not preferable. Preferably, it is 1.2 to 2.5 times.
[0025]
The first-stage longitudinally stretched film thus obtained is continuously relaxed at a temperature of (Tg + 10) ° C. or more and less than Tm for 0.1 seconds or more and 20% or less in the longitudinal direction without cooling to Tg or less. Process. The longitudinally stretched film is subsequently subjected to relaxation treatment, and one of the features of the present invention is how to change the sheet temperature during that time. That is, it is not forcibly cooled but heated and kept warm and also used for heating for the subsequent relaxation treatment. When forced cooling and reheating for relaxation treatment, thermal crystallization proceeds remarkably, and the stretching stress during the subsequent transverse stretching increases, and the effect of reducing the bowing phenomenon does not appear. Thermal crystallization proceeds even during this heat insulation period, but it is much slower than the above-mentioned forced cooling and reheating, which is not a problem in practical use. When the relaxation treatment temperature is less than (Tg + 10) ° C., the relaxation effect does not appear, the stretching stress during transverse stretching increases, the effect of reducing the bowing phenomenon is not sufficient, and this is not preferable, and if it is Tm or more, stable film running becomes difficult. It is not preferable. Preferably, it is (Tg + 20) ° C. to (Tm−10) ° C. If the passing time of the relaxation treatment is less than 0.1 seconds, the relaxation effect does not appear, the stretching stress during transverse stretching increases, and the effect of reducing the bowing phenomenon is not sufficient, which is not preferable. Preferably, it is 0.2 seconds or more. When the relaxation rate exceeds 20%, the residual stress stretched in the longitudinal direction cannot be absorbed in the relaxation process, the substantial relaxation effect does not appear, the film is slack, and stable film running becomes difficult due to meandering, Moreover, it is not preferable because it induces scratches. Preferably, it is 15% or less.
[0026]
Without cooling the first-stage longitudinally stretched film after the relaxation treatment thus obtained to Tg or lower, the second-stage longitudinally stretched film was continuously stretched at a temperature of (Tg + 20) ° C. or higher and (Tc + 20) ° C. or lower. Stretching 1.1 to 3.0 times.
If the stretching temperature is less than (Tg + 20) ° C., the stretching stress increases and the effect of reducing the bowing phenomenon does not appear, which is not preferable, and if it is (Tc + 20) ° C. or more, thermal crystallization proceeds and breaks easily by transverse stretching. . Preferably, it is (Tg + 30) ° C. to (Tc + 10) ° C. When the draw ratio is less than 1.1 times, the bowing phenomenon is reduced, but the production rate becomes low, and when it exceeds 3.0 times, the orientation crystallization proceeds, and in the third stage of longitudinal stretching described later. The stretching stress is increased, and the effect of reducing the bowing phenomenon is reduced. Preferably, it is 1.2 to 2.5 times.
[0027]
Without cooling the second-stage longitudinally stretched film thus obtained to Tg or less, as the third-stage longitudinal stretch, the total longitudinal stretch was performed at a temperature of (Tg + 10) ° C. or higher and (Tc + 20) ° C. or lower. Stretching is performed so that the magnification is 3.1 to 6.0 times.
If the stretching temperature is less than (Tg + 10) ° C., the stretching stress increases and the effect of reducing the bowing phenomenon does not appear, which is not preferable. .
Preferably, it is (Tg + 20) ° C. to (Tc + 10) ° C. When the overall longitudinal draw ratio is less than 3.1 times, the bowing phenomenon is reduced, but the production speed is reduced and the strength in the machine direction is reduced. When the overall draw ratio exceeds 6.0 times, oriented crystallization proceeds. It is not preferable because the effect of reducing the bowing phenomenon is reduced, and it tends to break by transverse stretching. Preferably, it is 3.5 to 5.6 times.
[0028]
In addition, between the stretching process and the relaxation treatment process, and in the relaxation treatment process, the film is heated by using a metal material, ceramic material, fluorine material, silicon material, etc. with hard chrome plating on the surface. Roll County can be used. At this time, in order to prevent the film from softening and sticking to the roll, it is preferable to use silicon rubber or a ceramic material having good releasability from the film. An infrared heater can be used as another heating means. In the infrared heater, far-infrared rays, near-infrared rays, condensing near-infrared rays, or the like can be used, and these may be combined. Further, an oven using hot air may be used.
[0029]
Moreover, in this invention, it is preferable that the film advancing direction of the said longitudinal stretch process is a downward direction. The reason for this is to prevent the film rigidity from decreasing and drooping downward as the longitudinal stretching temperature increases, and to ensure stable film formation of the film.
[0030]
The uniaxially stretched film thus obtained was continuously stretched by using a tenter, and at the temperature of (Tg + 20) ° C. or higher and (Tm−20) ° C. or lower, the stretch ratio was 3.0 times or more and then heat-set. Wind up. When the stretching temperature is less than (Tg + 20) ° C., the stretching stress is remarkably increased and breakage occurs frequently, which is not preferable. When the stretching temperature exceeds (Tm−20) ° C., thickness unevenness increases, and thermal crystallization progresses remarkably. It is unfavorable because it increases and breaks frequently. Preferably, it is (Tg + 40) ° C. to (Tm−40) ° C. If the draw ratio is less than 3.0 times, the strength decreases and thickness spots tend to increase, which is not preferable. If the draw ratio is too high, the stretching stress increases and breakage frequently occurs, which is not preferable. Preferably, it is 3.5 times to 5.0 times.
[0031]
Moreover, although the thickness of the thermoplastic resin film of this invention does not specifically limit, 10-200 micrometers is preferable and 15-100 micrometers is still more preferable.
[0032]
As described above, the substantially unoriented thermoplastic resin sheet is stretched in the longitudinal direction, and subsequently stretched at a temperature of (Tg-20) ° C. or higher and (Tm-20) ° C. or lower using a tenter. In the method of stretching 3.0 times or more, the film advancing direction in the longitudinal stretching process is downward, and the first stage longitudinal stretching is 1.1 to 3.0 at a temperature of (Tg + 30) ° C. or more and less than Tm. After stretching twice, it is continuously cooled to (Tg + 10) ° C. or more and less than Tm without cooling to Tg or less, and subjected to a relaxation treatment of 20% or less in the longitudinal direction for 0.1 seconds or more and cooled to Tg or less. Without any cooling, the film was stretched 1.1 to 3.0 times at a temperature of (Tg + 20) ° C. or more and (Tc + 20) ° C. or less, and then continued to the third stage without cooling to Tg or less. As longitudinal stretching, (Tg + 10) ° C. or higher, (Tc At a temperature of 20) ° C. or less, total longitudinal stretching ratio is, by performing at 3.1 to 6.0 times, it is possible to obtain a uniform film properties in the width direction caused to reduce bowing economically.
[0033]
The thermoplastic resin film of the present invention thus obtained can be used as a packaging material for miso, pickles, prepared dishes, baby food, boiled, konjac, chikuwa, rice cake, processed fishery products, meatballs, hamburger, Genghis Khan, ham, sausage, and other livestock meat. Processed products, tea, coffee, tea, bonito, kelp, potato chips, butter peanuts and other oil confectionery, rice confectionery, biscuits, cookies, cakes, buns, castella, cheese, butter, cut rice, soup, sauce, ramen, wasabi, In addition, it can be used effectively for packaging such as toothpaste, and also for pet food, pesticides, fertilizers, infusion packs, and packaging for industrial materials such as medical, electronic, chemical and mechanical products such as semiconductor and precision material packaging. It can be used effectively. The form of the packaging material is not particularly limited, and can be widely applied to bags, lid materials, cups, tubes, labels, standing packs, and the like.
[0034]
【Example】
Next, the present invention will be specifically described with reference to examples.
The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions, all of which fall within the technical scope of the present invention. Is included. Moreover, the various performance tests employ | adopted by the following Example were done with the following method.
[0035]
(1) Glass transition temperature (Tg), low temperature crystallization temperature (Tc) and melting point (Tm):
The unoriented thermoplastic resin sheet was frozen in liquid nitrogen, measured at a temperature increase rate of 10 ° C./min using a Seiko DSC after thawing under reduced pressure, and from the obtained endothermic exothermic curve, the unoriented thermoplastic resin sheet Tg, Tc and Tm were estimated.
[0036]
(2) Boeing distortion:
Draw a straight line on the surface of the film before entering the tenter, and finally deformed into a bow shape on the biaxially stretched thermoplastic resin film,
B = b / W × 100 (%).
Where B = Boeing distortion (%)
W = film width (mm)
b = Maximum swell amount of Boeing line (mm)
[0037]
(3) Oblique difference in boiling water shrinkage:
A biaxially stretched thermoplastic resin film is cut into 21 cm squares from the center part of the full width and from the position (end part) of 40% of the full width from the center to the left and right to obtain samples. Draw a 20cm diameter circle centered on the center of each sample, draw straight lines passing through the center of the circle in the 45 ° and 135 ° directions when the vertical direction is 0 °, measure the diameter in each direction, and process The previous length.
The sample is heated in boiling water for 30 minutes and then taken out to remove moisture adhering to the surface and air-dried.
After air-drying, the diameter in each direction is measured and set as the length after treatment. The boiling water shrinkage is calculated using the following formula.
Boiling water shrinkage rate = (length before treatment−length after treatment) / length before treatment × 100 (%)
The absolute value of the difference in boiling water shrinkage between 45 ° and 135 ° when the vertical direction was 0 ° was determined, and the average value at both ends was defined as the oblique difference in boiling water shrinkage.
[0038]
(4) Diagonal difference in dry heat shrinkage:
A biaxially stretched thermoplastic resin film is cut into 21 cm squares from the center part of the full width and from the position (end part) of 40% of the full width from the center to the left and right to obtain samples. Create a strip with a width of 10 mm and a length of 150 mm parallel to the 45 ° and 135 ° directions, centered on the center of each sample and 45 ° and 135 ° when the vertical direction is 0 °. Is measured and taken as the length before processing.
Using a gear oven, this sample is heat-treated at 150 ° C. for 30 minutes under no load and then taken out, and the length of the marked line is measured to obtain the length after treatment. The boiling water shrinkage is calculated using the following formula.
Dry heat shrinkage rate = ((length before treatment−length after treatment) / length before treatment) × 100 (%)
The absolute value of the difference in dry heat shrinkage between 45 ° and 135 ° when the vertical direction was 0 ° was determined, and the average value at both ends was defined as the oblique difference in dry heat shrinkage.
[0039]
(5) Film temperature: The temperature in the longitudinal stretching was measured using a radiation thermometer IR-004 manufactured by Minolta Co., Ltd.
[0040]
(6) Film formation situation: Biaxial stretching was performed under the same conditions for 2 hours, and the number of breaks was examined.
[0041]
(Example 1)
Nylon 6 pellets (relative viscosity 2.8) are vacuum-dried, then fed to an extruder, melted at 270 ° C, extruded into a sheet form from a T-die, applied with DC high voltage, and a 20 ° C rotating drum A non-oriented sheet with a thickness of 260 μm was obtained by electrostatically adhering to the top and solidifying by cooling. Tg of this sheet was 40 ° C., Tc was 67 ° C., and Tm was 220 ° C.
This sheet is stretched by a longitudinal stretching machine, the heating roll of the silicon rubber material is the final heating roll, the film traveling direction is the downward direction, and the first stage longitudinal stretching is stretched 1.5 times at a temperature of 130 ° C. While maintaining the temperature at 100 ° C., the ceramic roll is continuously controlled by the peripheral speed control of the ceramic roll for 6 seconds at 100 ° C. for 6% in the longitudinal direction. Stepwise longitudinal stretching was performed, and while maintaining the temperature at 70 ° C, the third stage longitudinal stretching was performed at a temperature of 70 ° C so that the overall longitudinal stretching ratio was 4.2 times. The film was stretched 4.0 times in the direction, subjected to 4% relaxation treatment in the lateral direction at 213 ° C., and then cooled, and both edges were cut and removed to obtain a biaxially stretched polyamide film having a thickness of 15 μm. Table 1 shows the film forming conditions and characteristics at this time.
[0042]
(Example 2)
A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the first-stage longitudinal stretching was performed at a temperature of 145 ° C. using a condensing infrared heater.
[0043]
(Example 3)
A biaxially stretched polyamide film was obtained in the same manner as in Example 2 except that the relaxation temperature after the first-stage longitudinal stretching was performed at 130 ° C. using a condensing infrared heater.
[0044]
(Comparative Example 1)
First-stage longitudinal stretching is performed at a temperature of 50 ° C., followed by rapid cooling to 35 ° C. after the longitudinal stretching. Without longitudinal relaxation treatment, the second-stage longitudinal stretching is performed 1.5 times at a temperature of 75 ° C. Biaxially in the same manner as in Example 1 except that the third stage of longitudinal stretching was performed at a temperature of 70 ° C. while maintaining the temperature at 70 ° C. so that the overall longitudinal stretching ratio was 4.2 times, and then transverse stretching was performed with a tenter. A stretched polyamide film was obtained.
[0045]
(Comparative Example 2)
After the first stage of longitudinal stretching, it is rapidly cooled to 35 ° C., and is not subjected to longitudinal relaxation treatment. Subsequently, the second stage of longitudinal stretching is performed 1.5 times at a temperature of 75 ° C., and the temperature is maintained at 70 ° C. A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the third longitudinal stretching was carried out so that the overall longitudinal stretching ratio was 4.2, and the transverse stretching was continued with a tenter.
[0046]
(Comparative Example 3)
A biaxially stretched polyamide film was obtained in the same manner as in Example 1 except that the longitudinal relaxation treatment after the first-stage longitudinal stretching was performed for 0.05 seconds.
[0047]
Example 4
Polyethylene terephthalate pellets (intrinsic viscosity 0.65) are vacuum-dried, then supplied to an extruder, melted at 285 ° C., extruded into a sheet form from a T-die, applied with DC high voltage, and a rotating drum at 20 ° C. A non-oriented sheet with a thickness of 220 μm was obtained by electrostatically adhering to the top and cooling and solidifying. The sheet had a Tg of 79 ° C., a Tc of 128 ° C., and a Tm of 265 ° C.
This sheet was stretched 1.8 times at a temperature of 160 ° C. using a concentrating infrared heater with a concentrating infrared heater in a longitudinal stretching machine, and the first stage of longitudinal stretching at a temperature of 160 ° C. While maintaining the temperature, 6% longitudinal relaxation treatment was performed at 140 ° C. for 0.2 seconds by controlling the peripheral speed of the ceramic roll. The film was stretched and maintained at 115 ° C., while the third stage of longitudinal stretching was performed at a temperature of 115 ° C. so that the total longitudinal stretching ratio was 4.6 times. The film was stretched 0.0 times, then subjected to a 7% relaxation treatment in the transverse direction at 225 ° C. and then cooled, and both edges were cut and removed to obtain a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm. Table 2 shows the film forming situation and characteristics at this time.
[0048]
(Example 5)
A biaxially stretched polyethylene terephthalate film was obtained in the same manner as in Example 4 except that the first stage longitudinal stretching temperature was 190 ° C.
[0049]
(Comparative Example 4)
The first stage of longitudinal stretching is performed at a temperature of 80 ° C., and after the longitudinal stretching, the film is rapidly cooled to 35 ° C., and the longitudinal relaxation treatment is not performed, and then the second stage of longitudinal stretching is performed 1.6 times at a stretching temperature of 120 ° C. While maintaining the temperature at 115 ° C., the third stage of longitudinal stretching was carried out at a stretching temperature of 115 ° C. so that the total longitudinal stretching ratio was 4.6 times, and then the same as in Example 4 except that the stretching was continued with a tenter. A biaxially stretched polyethylene terephthalate film was obtained.
[0050]
(Comparative Example 5)
Example 4 is the same as Example 4 except that the longitudinal relaxation treatment after the first stage of longitudinal stretching is carried out in 0.05 seconds and kept at 140 ° C., and the second stage of longitudinal stretching is performed 1.6 times at a temperature of 140 ° C. Similarly, a biaxially stretched polyethylene terephthalate film was obtained.
[0051]
[Table 1]
Figure 0004110465
[0052]
[Table 2]
Figure 0004110465
[0053]
According to the production method of the present invention, it is possible to reduce the bowing distortion and reduce the physical property difference in the width direction without breaking, which is very effective for the production method of the thermoplastic resin film.

Claims (7)

実質的に未配向の熱可塑性樹脂シートを縦方向に延伸した後、引続きテンターを用いて、横方向に3.0倍以上延伸する熱可塑性樹脂フィルムの製造方法において、上記縦延伸を、第1段の縦延伸として、ガラス転移温度(Tg)+30℃以上、融点(Tm)未満の温度で1.1〜3.0倍に延伸した後、引続き(Tg+10)℃以上、Tm未満の温度の区間を0.1秒以上通過させ、引続き第2段の縦延伸として、(Tg+20)℃以上、低温結晶化温度(Tc)+20℃以下の温度で1.1〜3.0倍に延伸した後、引続き第3段の縦延伸として、(Tg+10)℃以上、(Tc+20)℃以下の温度で、総合縦延伸倍率が、3.1〜6.0倍となるように延伸し、引続き該テンターを用いて、該横延伸を(Tg+20)℃以上、(Tm−20)℃以下の温度で行うことを特徴とする熱可塑性樹脂フィルムの製造方法。In the method for producing a thermoplastic resin film in which a substantially unoriented thermoplastic resin sheet is stretched in the machine direction and then stretched 3.0 times or more in the transverse direction using a tenter, As the longitudinal stretching of the stage, after stretching 1.1 to 3.0 times at a temperature of glass transition temperature (Tg) + 30 ° C. or higher and lower than the melting point (Tm), a section of temperature of (Tg + 10) ° C. or higher and lower than Tm For 0.1 second or more, and subsequently, as the second stage of longitudinal stretching, (Tg + 20) ° C. or higher, low temperature crystallization temperature (Tc) + 20 ° C. or lower at a temperature of 1.1 to 3.0 times, Subsequently, as the third stage of longitudinal stretching, stretching was performed at a temperature of (Tg + 10) ° C. or more and (Tc + 20) ° C. or less so that the overall longitudinal stretching ratio was 3.1 to 6.0 times, and the tenter was continuously used. The transverse stretching is (Tg + 20) ° C. or higher, (Tm Method for producing a thermoplastic resin film, characterized in that at a temperature of 20) ° C. or less. 請求項1記載の熱可塑性樹脂フィルムの製造方法であって、第1段の縦延伸後、Tg以下に冷却することなく引続き(Tg+10)℃以上、Tm未満の温度の区間で縦方向に20%以下の緩和処理を行うことを特徴とする請求項1記載の熱可塑性樹脂フィルムの製造方法。It is a manufacturing method of the thermoplastic resin film of Claim 1, Comprising: After longitudinal stretch of the 1st step | paragraph, without cooling to below Tg, it continues 20% in the longitudinal direction in the area of (Tg + 10) degreeC or more and less than Tm. The method for producing a thermoplastic resin film according to claim 1, wherein the following relaxation treatment is performed. 請求項1あるいは2記載の熱可塑性樹脂フィルムの製造方法であって、各縦延伸の間をTg以下に冷却しないことを特徴とする請求項1または2記載の熱可塑性樹脂フィルムの製造方法。The method for producing a thermoplastic resin film according to claim 1 or 2, wherein the thermoplastic resin film is not cooled to Tg or less between each longitudinal stretching. 請求項1、2、3のいずれかに記載の熱可塑性樹脂フィルムの製造方法であって、縦延伸過程のフィルム進行方向が、下方向であることを特徴とする請求項1、2または3記載の熱可塑性樹脂フィルムの製造方法。The method for producing a thermoplastic resin film according to any one of claims 1, 2, and 3, wherein the film traveling direction in the longitudinal stretching process is a downward direction. Manufacturing method of thermoplastic resin film. 第1段の縦延伸として、ガラス転移温度(Tg)+40℃以上の温度で延伸することを特徴とする請求項1、2、3、4のいずれかに記載の熱可塑性樹脂フィルムの製造方法。5. The method for producing a thermoplastic resin film according to claim 1, wherein the first stage of longitudinal stretching is performed at a temperature of glass transition temperature (Tg) + 40 ° C. or more. 第1段の縦延伸として、130℃以上の温度で延伸することを特徴とする請求項1、2、3、4、5のいずれかに記載の熱可塑性樹脂フィルムの製造方法。The method for producing a thermoplastic resin film according to any one of claims 1, 2, 3, 4, and 5, wherein the first-stage longitudinal stretching is performed at a temperature of 130 ° C or higher. 請求項1、2、3、4、5、6のいずれかに記載の方法で製造された熱可塑性樹脂フィルム。The thermoplastic resin film manufactured by the method in any one of Claim 1, 2 , 3 , 4 , 5, 6 .
JP2002256954A 2002-09-02 2002-09-02 Thermoplastic resin film and method for producing the same Expired - Lifetime JP4110465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256954A JP4110465B2 (en) 2002-09-02 2002-09-02 Thermoplastic resin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256954A JP4110465B2 (en) 2002-09-02 2002-09-02 Thermoplastic resin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004090527A JP2004090527A (en) 2004-03-25
JP4110465B2 true JP4110465B2 (en) 2008-07-02

Family

ID=32062025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256954A Expired - Lifetime JP4110465B2 (en) 2002-09-02 2002-09-02 Thermoplastic resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4110465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208189B (en) * 2005-06-10 2011-01-26 富士胶片株式会社 Cellulose acylate film, process for producing the same and application of the same
TWI803697B (en) * 2018-10-05 2023-06-01 日商東洋紡股份有限公司 Biaxially oriented polyamide film and roll of polyamide film
TWI822929B (en) * 2019-01-28 2023-11-21 日商東洋紡股份有限公司 Biaxially oriented polyamide film and polyamide film mill roll

Also Published As

Publication number Publication date
JP2004090527A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP6724447B2 (en) Polyester films, laminates and packages for sealants
KR20160002852A (en) Polyester film for sealant use, laminate, and packaging bag
KR20170128363A (en) Heat-shrinkable polyester film and packaging material
KR20190125958A (en) Polyester film and method for reproducing polyester container using same
TWI492837B (en) Polyester film and manufacturing method thereof
KR102409402B1 (en) Polyester film, laminate, and packaging body
JP6797279B2 (en) Method for manufacturing thermoplastic resin film and thermoplastic resin film
KR20160138545A (en) Heat-shrinkable polyester film and package
KR20200138255A (en) Laminate and package using the same
JP6724448B2 (en) Laminated film, laminate and package
JP4110465B2 (en) Thermoplastic resin film and method for producing the same
JP4250920B2 (en) Method for producing thermoplastic resin film and thermoplastic resin film produced by such production method
JP6880758B2 (en) Lid material and packaging using it
JP2018001422A (en) Laminated film, laminated body, and package
JP2006088690A (en) Biaxially orientated polyamide-based resin film and its manufacturing method
JP3915025B2 (en) Method for producing biaxially oriented polyamide film
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JP3569989B2 (en) Method for producing biaxially oriented polyamide film
JP5153463B2 (en) Stretched polyester film for molding
KR102286584B1 (en) Polyester-based film, laminated article, and packaging bag
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JP4524858B2 (en) Laminating polyester film, laminated metal plate and metal container
WO2020246420A1 (en) Heat-shrinkable polyester film having longitudinal (lengthwise) direction as main shrinkage direction
JP2001341198A (en) Biaxially stretched polyamide film and method for manufacturing the same
JP4623265B2 (en) Biaxially stretched polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080326

R151 Written notification of patent or utility model registration

Ref document number: 4110465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term