JP4651228B2 - Method for producing simultaneous biaxially stretched film - Google Patents

Method for producing simultaneous biaxially stretched film Download PDF

Info

Publication number
JP4651228B2
JP4651228B2 JP2001180235A JP2001180235A JP4651228B2 JP 4651228 B2 JP4651228 B2 JP 4651228B2 JP 2001180235 A JP2001180235 A JP 2001180235A JP 2001180235 A JP2001180235 A JP 2001180235A JP 4651228 B2 JP4651228 B2 JP 4651228B2
Authority
JP
Japan
Prior art keywords
film
stretching
draw ratio
biaxially stretched
locus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001180235A
Other languages
Japanese (ja)
Other versions
JP2002370278A (en
Inventor
健二 坪内
文彦 細川
健一 山岸
彰 氈受
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001180235A priority Critical patent/JP4651228B2/en
Publication of JP2002370278A publication Critical patent/JP2002370278A/en
Application granted granted Critical
Publication of JP4651228B2 publication Critical patent/JP4651228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高品質の同時二軸延伸フィルムの製造方法に関する。更に詳しくは、延伸応力及び応力緩和歪みに起因する物性ムラを抑え、巾方向の物性均一性、特に機械的特性・熱寸法安定性・光学特性に優れた品質・性能を有する同時二軸延伸フィルムの製造方法に関するものである。
【0002】
【従来の技術】
二軸延伸フィルムは、主に包装用途及び工業用途に用いられているが、これらの用途では近年特にフィルム巾方向の物性均一性が厳しく要求されるようになってきた。
【0003】
一般に、二軸延伸フィルムは、押出機により溶融樹脂フィルムを押出し、冷却ロール上でシート状に冷却成型し、実質的に無配向のこの未延伸フィルムを縦横二軸方向に引き延ばすことによって製造され、これにより充分に分子配向された高強度の二軸延伸フィルムが得られる。二軸延伸法には、縦延伸に引き続き横延伸する逐次二軸延伸法と、縦横同時に延伸する同時二軸延伸延伸法とがある。同時二軸延伸法では、未延伸フィルム端部をクリップで把持して二軸方向に機械的に同時に引き延ばす機構、つまり、縦方向はクリップ間隔を広げ、横方向はクリップ走行レールの巾を広げる機構により延伸が行なわれる。
【0004】
この同時二軸延伸法では、機械的に漸広する縦延伸倍率軌跡×横延伸倍率軌跡の面倍率変化と実際のフィルムの延伸変形が同調しないという問題があった。すなわち、予熱ゾーンのフィルムが延伸ゾーン側に湾曲変形されて、中央部が先行変形する現象(逆ボーイング現象と称される)が起き、更に、熱処理ゾーンの応力緩和に伴い延伸ゾーン側にフィルムが湾曲変形されて、中央部が遅延変形する現象(ボーイング現象と称される)が起きるということがあった。
【0005】
これらの現象は、フィルムの同時二軸延伸において縦(又は横)一軸方向の延伸変形が行われると、その直角方向である横(又は縦)に収縮力が作用するため、つまり、一軸方向の延伸応力に加え、直角方向の収縮力が相互に且つ同時に作用するため、これら加重された力がフィルム面に作用して発生すると考えられる。
【0006】
逆ボーイング及びボーイング現象で引き起こされるフィルム変形の歪みが巾方向に起きると、巾方向の分子配向分布が不均一になり、巾方向にフィルムの物性ムラが生じる。このフィルムの物性ムラは、フィルム生産工程において直接弊害を及ぼさなくても、フィルムを包装用途に使用する場合、フィルム製品の印刷ラミネート加工・製袋充填加工といった加工工程において、印刷ピッチずれ・蛇行・シール不良などのトラブルや製袋カールなどのフィルム加工製品の品質悪化を招くことがあった。したがって、フィルムの全巾にわたって同一物性を持つものとして製品扱いできず、物性バランスを厳しく要求される用途には、巾方向の中央部のみが製品として出荷され、フィルムの端部分は在庫として残ってしまうという生産上の問題を抱えていた。
【0007】
【発明が解決しようとする課題】
本発明は、上記問題を解決し、同時二軸延伸法で起きる面倍率軌跡の巾方向の歪みを極力抑え、均一で優れた品質安定性を有する同時二軸延伸フィルムの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、機械的面倍率軌跡と実際のフィルムの延伸変形について解析し、本発明に到達した。
すなわち、本発明は、未延伸フィルム端部をクリップで把持して縦横同時に二軸延伸するテンター法同時二軸延伸方法において、縦延伸倍率軌跡の起点及び終点を横延伸倍率軌跡の起点及び終点より先行させ、縦延伸倍率軌跡を横延伸倍率軌跡より先行させる先行率を5〜20%とすることを特徴とする同時二軸延伸フィルムの製造方法である。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明における縦延伸倍率軌跡と横延伸倍率軌跡の関係を表した概念図を図1に示す。本発明では、縦延伸倍率軌跡の起点及び終点を横延伸倍率軌跡の起点及び終点より先行させることが必要である。本発明でいう延伸倍率軌跡とは、延伸開始点(起点)から最大延伸倍率到達点(終点)に至る延伸倍率変化をいう。
【0010】
延伸ゾーン入口付近では、予熱ゾーンのフィルムは延伸ゾーン側に引っ張られフィルムが湾曲変形する逆ボーイング現象が起きる。この逆ボーイング現象は中央部を著しく縦方向に先行変形させる歪みであるが、縦延伸倍率軌跡の起点を横延伸倍率軌跡の起点より先行させることで、中央部と端部の面倍率変化を近似させ、この逆ボーイング現象を小さく抑えることができる。
【0011】
一方、延伸ゾーン出口付近では、熱処理ゾーンの応力緩和により延伸ゾーン側に引っ張られ延伸フィルムが湾曲変形するボーイング現象が起きる。このボーイング現象は中央部の縦変形が遅くなることによって生じる歪みであるが、縦延伸倍率軌跡の終点を横延伸倍率軌跡の終点より先行して到達させることで、このボーイング現象も小さく抑えることができる。
【0012】
この縦延伸倍率軌跡を横延伸倍率軌跡より先行させる先行率は、延伸温度条件や延伸軌跡の形状によっても異なるが、5〜20%であることが好ましい。本発明でいう先行率とは、縦及び横延伸倍率軌跡の起点を0とし、終点を1とする延伸倍率の進行率をいう。先行率が5%以下では本発明の効果が薄く、20%以上では二軸延伸応力降伏点付近でネックが発生する危険性がある。延伸途中でネックが起きても一応同時二軸延伸フィルムは得られるが、厚みムラが悪化し、更に物性も著しく乱れるので好ましくない。
【0013】
なお、逆ボーイング及びボーインク現象は、走行する未延伸フィルム全巾に一時的に升目を印刷することで、二軸延伸過程の升目の拡張変化をもって観察することができる。逆ボーイング及びボーイング変形の計測は、予め所定の位置にフィルム巾方向直線上の中央部と左右端部にレーザー透過式光センサーを配置し、升目がセンサー光を遮断して通過するタイミングの時間差とセンサー配置位置のクリップ速度から湾曲変形量を求めることができる。この左右センサー間距離に対する湾曲変形量の比率を逆ボーイング変形及びボーイング変形として評価することができる。
【0014】
また、連続生産中にも均一延伸されているか否かの解析は、クリップに掛かるフィルム延伸応力を計測することで実現できる。本発明でいう延伸応力成分及びベクトル合成応力とその傾きの関係を図2に示す。クリップ走行移動の接線方向に掛かる応力成分FRDと、法線方向に掛かる応力成分FVDは実測することが可能であり、そのベクトル合成応力FCPが求められる。更にクリップ走行移動角αから、縦進行方向の応力成分FMDと横方向の応力成分FTDが求められ、FTDに対するFCPの傾きφが±角度で求められる。延伸応力成分FRD、FVDは、フィルム端部を把持する固定クリップの台座、又はレール走行ベアリング装置とクリップユニットを連結しているアームに、例えば、ストレインゲージや圧電素子などのセンサーを張り付けることにより、曲げ荷重及び引張荷重として測定することができる。そのセンサー信号をFMテレメータ装置で伝送・遠隔受信して、応力信号としてコンピュター入力する。クリップ走行移動の機械的角度α変化は予め入力して置き、FMD、FTD及びベクトル合成応力FCPとその傾きφを演算して得ることができる。
【0015】
本発明では、FTDに対するFCPの傾きφが±45°以内に、さらに好ましくは±35°以内になるように縦延伸倍率軌跡を選定することが好ましい。この範囲を外れFCPの傾きφが大きくなると、逆ボーイング現象やボーイング現象が増加し、つまりフィルム中央部と端部の面倍率軌跡が大きく異なり、分子配向バランスに異方性が生じて、巾方向に不均一な物性となるので好ましくない。本発明で選択される縦延伸倍率軌跡のカーブは、特に限定するものではないが、二次あるいは三次関数、三角関数、円弧と直線、曲線などの組み合わせで設定できる。
【0016】
また、本発明では、同時二軸延伸の縦延伸倍率が2.5〜4.5倍であり、且つ、縦延伸倍率に対する横延伸倍率の比率が0.5〜1.5であることが好ましい。上記範囲は、充分な配向を与えるために実用化されている同時二軸延伸フィルムの二軸延伸倍率範囲であり、この範囲において、本発明の焦点である縦延伸倍率軌跡を横延伸倍率軌跡より先行させる効果、特に逆ボーイング及びボーイング現象を抑制し均一延伸させるための効果が顕著に発現でき、本発明は有用なものとなる。
【0017】
本発明における同時二軸延伸は、パンタグラフ方式テンター、スクリュー方式テンター、リニアモータ方式テンターなどを用いて行うことができる。個々のクリップがリニアモータ方式で単独に駆動されているリニアモータ方式テンターは、可変周波数ドライバを制御することで延伸倍率変化を任意に制御できるという柔軟性があるため、最も好ましい。すなわち、この方式では、縦延伸倍率軌跡の起点及び終点などの調整が容易であり、又、縦横延伸倍率及び軌跡のカーブを微妙にしかも自由に選定できるという利点がある。
【0018】
本発明に用いるフィルムとしては、ポリアミド、ポリエステル、ポリオレフィンフィルムなどが挙げられるが、中でも特にポリアミドフィルムに有効である。ポリアミドフィルムとしては、ナイロン6、ナイロン66の他、ナイロン11、ナイロン12などの単独重合体や、これらの混合物、共重合体のフィルムなどが挙げられる。なお、フィルムには公知の添加剤、たとえば安定剤、酸化防止剤、充填剤、滑剤、帯電防止剤、ブロッキング防止剤、着色剤などを含有させてもよい。
【0019】
【実施例】
本発明において用いたフィルム物性の異方性を表現する特性値は、次の方法により測定した。
(1)熱水収縮率
熱水収縮率は、油性マジックで測定長110mmの間隔に平行線を引き、巾10mmの試料片にスリットする。この試料片を20℃、相対湿度65%雰囲気下で調湿し、平行線間寸法を正確に測定しLBAとする。次にこの試料片を100℃の熱水中で5分問ボイル処理し、再度前記雰囲気下で調湿した後、平行線間寸法を測定しLTRとし、下記式にて熱水収縮率を算出する。
熱水収縮率SHW(%)={(LBA−LTR)/LBA}×100
(2)熱水収縮率斜め差
二軸延伸フィルムの巾方向に中央位置、及び中央から左右に全巾に対して35%位置について、巾方向を起線に角度45°方向の熱水収縮率と、135°方向の熱水収縮率を求め、角度45°の収縮率S(∠45°)と角度135°の収縮率S(∠135°)の差の絶対値を熱水収縮率斜め差とした。
熱水収縮率斜め差ΔS=|S(∠45°)−S(∠135°)|
次に、本発明を実施例によって具体的に説明する。
【0020】
実施例1
ナイロン6樹脂を巾600mmT型ダイより溶融押出し、冷却ロール上でシート状に冷却固化させ、厚さ150μmの未延伸ポリアミドフィルムを成形し、続いて50℃に温調された温水槽で吸水処理させた。次に、このフィルムをリニアモータ駆動の同時二軸延伸テンターに供給し、両端をクリップで把持して、縦延伸倍率3.0倍、横延伸倍率3.3倍に同時二軸延伸を行った。尚この際、縦延伸倍率軌跡を横延伸倍率軌跡より横延伸倍率軌跡の起点で10%、縦延伸倍率軌跡の終点で20%先行させ、縦延伸倍率軌跡はFCPの傾きφが±20°以内になるように選定した。更にテンターオーブンで215℃の熱処理を施し、縦横2%リラックス処理をして冷却後、フィルムの両端部をトリミングして巻取機で巻取った。厚さ15μmの同時二軸延伸ポリアミドフィルム製品ロールを得た。速度は、120m/minで行った。
【0021】
得られたフィルムの最大逆ボーイング変形は5%、最大ボーイング変形は0%、熱水収縮率斜め差は、中央位置も35%位置も共に、0.8%以下であり、巾方向に均一にバランスしており、ほぼフィルム全巾が製品として実用可能であった。
【0022】
比較例1
実施例1と同様の条件で製造したが、縦延伸倍率軌跡を横延伸倍率軌跡より先行させず、又、縦延伸倍率軌跡は、横延伸倍率軌跡にほぼ近似させた。縦延伸倍率軌跡はFCPの傾きφは、±45°の範囲を外れており、得られたフィルムの最大逆ボーイング変形は30%、最大ボーイング変形は10%であった。また、熱水収縮率斜め差は、中央位置は0.8%以下であったが、35%位置では1.8%であり、著しい異方性を示したため、実用可能なフィルム製品巾が狭巾となり、大きく製品収率が悪化した。
【0023】
【発明の効果】
本発明によれば、同時二軸延伸法で起きる面倍率軌跡の巾方向の歪みを極力抑えることで、巾方向に物性が均一化され、特に機械的特性・熱寸法安定性・光学特性に優れた品質・性能を備えた同時二軸延伸フィルムが高収率に生産できる。
【図面の簡単な説明】
【図1】本発明における縦延伸倍率軌跡と横延伸倍率軌跡の関係を説明する概念図である。
【図2】本発明における延伸応力成分及びベクトル合成応力とその傾きの関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-quality simultaneous biaxially stretched film. More specifically, a simultaneous biaxially stretched film that suppresses unevenness in physical properties due to stretching stress and stress relaxation strain, and has uniform physical properties in the width direction, in particular, excellent mechanical properties, thermal dimensional stability, and optical properties. It is related with the manufacturing method.
[0002]
[Prior art]
Biaxially stretched films are mainly used for packaging and industrial applications. In these applications, however, uniformity of physical properties in the film width direction has been particularly demanded in recent years.
[0003]
In general, a biaxially stretched film is produced by extruding a molten resin film with an extruder, cooling and forming into a sheet on a cooling roll, and stretching the substantially unoriented unstretched film in the longitudinal and transverse biaxial directions, Thereby, a high-strength biaxially stretched film with sufficient molecular orientation can be obtained. The biaxial stretching method includes a sequential biaxial stretching method in which transverse stretching is performed subsequent to longitudinal stretching, and a simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal and transverse directions. In the simultaneous biaxial stretching method, the end of the unstretched film is gripped with a clip and mechanically stretched in the biaxial direction at the same time, that is, the clip interval is widened in the vertical direction and the width of the clip running rail is widened in the horizontal direction. The stretching is performed by
[0004]
In this simultaneous biaxial stretching method, there is a problem that the change in the surface magnification of the longitudinal stretching magnification locus x lateral stretching magnification locus that is gradually widened mechanically does not synchronize with the actual film stretching deformation. That is, a phenomenon occurs in which the film in the preheating zone is curved and deformed toward the stretching zone, and the central portion undergoes preceding deformation (referred to as reverse bowing phenomenon). There has been a case where a phenomenon (called a bowing phenomenon) occurs in which the central portion is deformed in a delayed manner due to bending deformation.
[0005]
These phenomena are caused by the contraction force acting on the transverse (or longitudinal), which is the perpendicular direction, when the film is deformed in the longitudinal (or transverse) uniaxial direction in simultaneous biaxial stretching of the film, that is, in the uniaxial direction. In addition to the stretching stress, the contraction force in the perpendicular direction acts on each other and simultaneously, so it is considered that these weighted forces act on the film surface.
[0006]
When the distortion of the film deformation caused by reverse bowing and the bowing phenomenon occurs in the width direction, the molecular orientation distribution in the width direction becomes non-uniform, resulting in uneven physical properties of the film in the width direction. Even if the film physical properties do not have a direct adverse effect on the film production process, when the film is used for packaging applications, the printing pitch shift, meandering, Troubles such as poor sealing and quality deterioration of film processed products such as bag-making curls may be caused. Therefore, the product cannot be handled as having the same physical properties over the entire width of the film, and only the central portion in the width direction is shipped as a product, and the end portion of the film remains in stock for applications that require a strict balance of physical properties. I had a production problem.
[0007]
[Problems to be solved by the invention]
The present invention solves the above problems, and provides a method for producing a simultaneous biaxially stretched film having uniform and excellent quality stability by minimizing distortion in the width direction of the surface magnification locus caused by the simultaneous biaxial stretching method. With the goal.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have analyzed the mechanical surface magnification locus and the actual film stretching deformation, and have reached the present invention.
That is, the present invention, the unstretched film edge is gripped by clips Oite the tenter simultaneous biaxial stretching method of aspect simultaneously biaxial stretching, the origin and end point of the longitudinal stretching ratio trajectory of the lateral draw ratio trace origin and It is a manufacturing method of the simultaneous biaxially stretched film characterized by making the advance rate which makes it precede from an end point, and makes a longitudinal draw ratio locus | trajectory precede a transverse draw ratio locus | trajectory 5 to 20% .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The conceptual diagram showing the relationship between the longitudinal draw ratio locus and the transverse draw ratio locus in the present invention is shown in FIG. In the present invention, it is necessary that the start point and end point of the longitudinal draw ratio locus precede the start point and end point of the transverse draw ratio locus. The stretch ratio locus in the present invention refers to a change in stretch ratio from the stretch start point (start point) to the maximum stretch ratio reach point (end point).
[0010]
Near the entrance of the stretching zone, the film in the preheating zone is pulled toward the stretching zone, and a reverse bowing phenomenon occurs in which the film is curved and deformed. This reverse bowing phenomenon is a distortion that significantly deforms the center part in the vertical direction, but approximates the change in the surface magnification between the center part and the end part by making the origin of the longitudinal draw ratio locus precede the origin of the transverse draw ratio locus. This reverse bowing phenomenon can be suppressed to a small level.
[0011]
On the other hand, in the vicinity of the exit of the stretching zone, a bowing phenomenon occurs in which the stretched film is curved and deformed due to the stress relaxation in the heat treatment zone. This bowing phenomenon is a distortion caused by slowing down the vertical deformation at the center, but by making the end point of the longitudinal draw ratio locus reach before the end point of the transverse draw ratio locus, this bowing phenomenon can be kept small. it can.
[0012]
The leading rate that causes the longitudinal draw ratio locus to precede the transverse draw ratio locus varies depending on the stretching temperature condition and the shape of the stretching locus, but is preferably 5 to 20%. The preceding rate in the present invention refers to the rate of progress of the draw ratio, where the starting point of the longitudinal and transverse draw ratio locus is 0 and the end point is 1. When the leading ratio is 5% or less, the effect of the present invention is small, and when it is 20% or more, there is a risk that a neck is generated in the vicinity of the biaxially stretched stress yield point. Even if a neck occurs during stretching, a simultaneous biaxially stretched film can be obtained, but this is not preferable because thickness unevenness deteriorates and physical properties are significantly disturbed.
[0013]
The reverse bowing and bow ink phenomenon can be observed with an expansion change of the meshes in the biaxial stretching process by temporarily printing the meshes on the entire width of the unstretched film that travels. The measurement of reverse bowing and deformation is preliminarily arranged at a predetermined position with a laser transmission type optical sensor at the center and left and right ends on the straight line in the film width direction, and the time difference between the timing when the squares block the sensor light and pass The amount of bending deformation can be obtained from the clip speed at the sensor arrangement position. The ratio of the amount of bending deformation to the distance between the left and right sensors can be evaluated as reverse bowing deformation and bowing deformation.
[0014]
Further, the analysis of whether or not the film is uniformly stretched even during continuous production can be realized by measuring the film stretching stress applied to the clip. FIG. 2 shows the relationship between the stretching stress component and vector combined stress in the present invention and the inclination thereof. The stress component F RD applied in the tangential direction of the clip traveling movement and the stress component F VD applied in the normal direction can be actually measured, and the vector composite stress F CP is obtained. Further from the clip traveling movement angle alpha, the longitudinal traveling direction of the stress component F MD and horizontal stress component F TD is obtained, the slope of the F CP for F TD phi is determined by ± angle. Stretching stress components F RD and F VD attach a sensor such as a strain gauge or a piezoelectric element to the base of the fixed clip that holds the film end or the arm that connects the rail running bearing device and the clip unit. Thus, it can be measured as a bending load and a tensile load. The sensor signal is transmitted / remotely received by the FM telemeter device and input to the computer as a stress signal. The change in mechanical angle α of the clip traveling movement can be input in advance, and can be obtained by calculating F MD , F TD, vector composite stress F CP and its inclination φ.
[0015]
In the present invention, within the gradient φ is ± 45 ° of the F CP for F TD, it is preferable that further preferably selected the longitudinal stretching ratio trace to be within ± 35 °. The inclination φ of the F CP outside this range increases, an increase in reverse bowing phenomenon and bowing phenomenon, i.e. significantly different area magnification trajectory of the film center and the ends are caused anisotropy in the molecular orientation balance, width Undesirable physical properties in the direction are not preferable. The longitudinal stretch ratio locus curve selected in the present invention is not particularly limited, but can be set by a combination of a quadratic or cubic function, a trigonometric function, an arc and a straight line, a curve, and the like.
[0016]
In the present invention, it is preferable that the longitudinal stretching ratio of simultaneous biaxial stretching is 2.5 to 4.5 times, and the ratio of the transverse stretching ratio to the longitudinal stretching ratio is 0.5 to 1.5. . The above range is a biaxial stretching ratio range of a simultaneous biaxially stretched film that has been put into practical use in order to give sufficient orientation. In this range, the longitudinal stretching ratio locus that is the focus of the present invention is compared with the transverse stretching magnification locus. The effect of leading, in particular, the effect of suppressing reverse bowing and the bowing phenomenon and uniform stretching can be remarkably exhibited, and the present invention is useful.
[0017]
Simultaneous biaxial stretching in the present invention can be performed using a pantograph type tenter, a screw type tenter, a linear motor type tenter, or the like. A linear motor type tenter in which each clip is driven independently by a linear motor type is most preferable because it has flexibility in that the change in the draw ratio can be arbitrarily controlled by controlling the variable frequency driver. That is, this method has advantages that it is easy to adjust the starting point and end point of the longitudinal draw ratio locus, and that the curve of the longitudinal and transverse draw ratio and locus can be selected delicately and freely.
[0018]
Examples of the film used in the present invention include polyamides, polyesters, polyolefin films and the like, but particularly effective for polyamide films. Examples of the polyamide film include nylon 6, nylon 66, homopolymers such as nylon 11 and nylon 12, mixtures thereof, and copolymers. The film may contain known additives such as stabilizers, antioxidants, fillers, lubricants, antistatic agents, antiblocking agents, colorants and the like.
[0019]
【Example】
The characteristic value expressing the anisotropy of the film physical properties used in the present invention was measured by the following method.
(1) Hot water shrinkage rate The hot water shrinkage rate is obtained by drawing parallel lines at intervals of a measurement length of 110 mm with an oil-based magic and slitting it into a sample piece having a width of 10 mm. The sample piece is conditioned under an atmosphere of 20 ° C. and a relative humidity of 65%, and the dimension between the parallel lines is accurately measured to obtain LBA . Next, this sample piece was boiled for 5 minutes in hot water at 100 ° C., conditioned again in the above atmosphere, and then the dimension between parallel lines was measured to be LTR. calculate.
Hot water shrinkage S HW (%) = {(L BA −L TR ) / L BA } × 100
(2) Hot water shrinkage rate Hot water shrinkage rate at an angle of 45 ° with the width direction as the starting line for the central position in the width direction of the obliquely biaxially stretched film and 35% of the total width from the center to the left and right. Then, the hot water shrinkage rate in the 135 ° direction is obtained, and the absolute value of the difference between the shrinkage rate S (∠45 °) at an angle of 45 ° and the shrinkage rate S (∠135 °) at an angle of 135 ° is calculated as an oblique difference in hot water shrinkage rate. It was.
Hydrothermal shrinkage oblique difference ΔS = | S (∠45 °) −S (∠135 °) |
Next, the present invention will be specifically described with reference to examples.
[0020]
Example 1
Nylon 6 resin is melt-extruded from a 600 mm wide T-type die, cooled and solidified into a sheet on a cooling roll, an unstretched polyamide film with a thickness of 150 μm is formed, and then water-absorbed in a hot water tank adjusted to 50 ° C. It was. Next, this film was supplied to a simultaneous biaxial stretching tenter driven by a linear motor , both ends were gripped by clips, and simultaneous biaxial stretching was performed at a longitudinal stretching ratio of 3.0 times and a transverse stretching ratio of 3.3 times. . Note this time, 10% longitudinal stretching ratio trace than the transverse stretching magnification trace the origin of the transverse stretching ratio trajectory at the end of the longitudinal draw ratio trace was preceded 20%, longitudinal stretching ratio trajectory inclination of F CP phi is ± 20 ° Selected to be within. Further, the film was heat treated at 215 ° C. in a tenter oven, relaxed by 2% in length and width, cooled, trimmed at both ends of the film, and wound up with a winder. A simultaneously biaxially stretched polyamide film product roll having a thickness of 15 μm was obtained. The speed was 120 m / min.
[0021]
The maximum reverse bowing deformation of the obtained film is 5%, the maximum bowing deformation is 0%, and the diagonal difference in hot water shrinkage is 0.8% or less in both the central position and the 35% position, and is uniform in the width direction. It was balanced and almost the entire film width was practical as a product.
[0022]
Comparative Example 1
Although manufactured under the same conditions as in Example 1, the longitudinal draw ratio locus was not preceded by the transverse draw ratio locus, and the longitudinal draw ratio locus was approximately approximated to the transverse draw ratio locus. The inclination φ of the longitudinal draw ratio trajectory F CP, which is outside the scope of ± 45 °, the maximum reverse bowing deformation 30% of the resulting film, the maximum bowing deformation was 10%. In addition, the diagonal difference in hot water shrinkage was 0.8% or less at the center position, but 1.8% at the 35% position, showing a remarkable anisotropy, and the practical film product width was narrow. The product yield greatly deteriorated.
[0023]
【The invention's effect】
According to the present invention, by suppressing as much as possible the distortion in the width direction of the surface magnification locus caused by the simultaneous biaxial stretching method, the physical properties are made uniform in the width direction, and particularly excellent in mechanical characteristics, thermal dimensional stability, and optical characteristics. Simultaneously biaxially stretched film with high quality and performance can be produced in high yield.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating the relationship between a longitudinal draw ratio locus and a transverse draw ratio locus in the present invention.
FIG. 2 is a diagram showing the relationship between the stretching stress component and vector composite stress and the inclination in the present invention.

Claims (5)

未延伸フィルム端部をクリップで把持して縦横同時に二軸延伸するテンター法同時二軸延伸方法において、縦延伸倍率軌跡の起点及び終点を横延伸倍率軌跡の起点及び終点より先行させ、縦延伸倍率軌跡を横延伸倍率軌跡より先行させる先行率を5〜20%とすることを特徴とする同時二軸延伸フィルムの製造方法。 Oite the tenter simultaneous biaxial stretching method by grasping the unstretched film edges by clips to the aspect simultaneously biaxial stretching, the origin and end point of the longitudinal draw ratio trace is preceded origin and end point of the transverse stretching ratio trajectory vertical A method for producing a simultaneous biaxially stretched film, characterized in that a leading ratio for causing the draw ratio locus to precede the transverse draw ratio locus is 5 to 20% . 縦延伸倍率が2.5〜4.5倍であり、且つ、縦延伸倍率に対する横延伸倍率の比率が0.5〜1.5であることを特徴とする請求項1に記載の同時二軸延伸フィルムの製造方法。The simultaneous biaxial according to claim 1, wherein the longitudinal draw ratio is 2.5 to 4.5 times, and the ratio of the transverse draw ratio to the longitudinal draw ratio is 0.5 to 1.5. A method for producing a stretched film. クリップに掛かるフィルム延伸応力において、縦(長手)方向に掛かる応力成分をFMD、横(巾)方向に掛かる応力成分をFTDとし、FMD及びFTDから得られるベクトル合成応力をFCPとするとき、FTDに対するFCPの傾きφが、横延伸倍率軌跡の起点から終点に至る範囲で、±45°以内であることを特徴とする請求項1又は2に記載の同時二軸延伸フィルムの製造方法。In the film stretching stress exerted on the clip, the stress component acting vertically (lengthwise) direction F MD, a lateral (width) across the direction stress component and F TD, the vector synthesis stress resulting from F MD and F TD and F CP 3. The simultaneous biaxially stretched film according to claim 1 , wherein the slope φ of F CP with respect to F TD is within ± 45 ° in a range from the start point to the end point of the transverse stretch magnification locus. Manufacturing method. テンターをリニアモータ方式で駆動することを特徴とする請求項1〜3のいずれかに記載の同時二軸延伸フィルムの製造方法。The method for producing a simultaneous biaxially stretched film according to any one of claims 1 to 3 , wherein the tenter is driven by a linear motor system. フィルムがポリアミドフィルムであることを特徴とする請求項1〜4のいずれかに記載の同時二軸延伸フィルムの製造方法。The method for producing a simultaneous biaxially stretched film according to claim 1 , wherein the film is a polyamide film.
JP2001180235A 2001-06-14 2001-06-14 Method for producing simultaneous biaxially stretched film Expired - Fee Related JP4651228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001180235A JP4651228B2 (en) 2001-06-14 2001-06-14 Method for producing simultaneous biaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001180235A JP4651228B2 (en) 2001-06-14 2001-06-14 Method for producing simultaneous biaxially stretched film

Publications (2)

Publication Number Publication Date
JP2002370278A JP2002370278A (en) 2002-12-24
JP4651228B2 true JP4651228B2 (en) 2011-03-16

Family

ID=19020685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180235A Expired - Fee Related JP4651228B2 (en) 2001-06-14 2001-06-14 Method for producing simultaneous biaxially stretched film

Country Status (1)

Country Link
JP (1) JP4651228B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105295A (en) * 2008-10-31 2010-05-13 Unitika Ltd Laminate polyamide resin film and method of manufacturing the same
EP2223791B1 (en) * 2007-11-08 2017-08-23 Unitika Ltd. Process for producing polyamide resin film and polyamide resin film obtained by the process
JP5665267B2 (en) * 2008-11-05 2015-02-04 ユニチカ株式会社 Method for producing laminated polyamide resin film
JP5561923B2 (en) * 2008-09-25 2014-07-30 ユニチカ株式会社 Polyamide resin film
JP5599214B2 (en) * 2010-03-31 2014-10-01 ユニチカ株式会社 Method for producing simultaneous biaxially stretched film
JP2017061035A (en) * 2014-01-30 2017-03-30 ユニチカ株式会社 Biaxially-oriented polyamide film and method for producing the same
KR102189429B1 (en) * 2014-03-26 2020-12-11 유니띠까 가부시키가이샤 Biaxially stretched polyamide film and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105131A (en) * 1997-10-07 1999-04-20 Toray Ind Inc Manufacture of simultaneously biaxially oriented film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105131A (en) * 1997-10-07 1999-04-20 Toray Ind Inc Manufacture of simultaneously biaxially oriented film

Also Published As

Publication number Publication date
JP2002370278A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP3763844B2 (en) Method for producing biaxially stretched thermoplastic film
JPH0334456B2 (en)
US20130123459A1 (en) Heat setting optical films
JP4651228B2 (en) Method for producing simultaneous biaxially stretched film
JP4195072B1 (en) Method for producing simultaneously biaxially stretched polyamide film
US4753842A (en) Heat-shrinkable biaxially drawn polyamide film and process for preparation thereof
JPH0455377B2 (en)
JP2841755B2 (en) Polyamide film and method for producing the same
JP5599214B2 (en) Method for producing simultaneous biaxially stretched film
JPH0125694B2 (en)
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JP2004358742A (en) Method for manufacturing plastic film
JP2841816B2 (en) Method for producing thermoplastic resin film
JPH04142918A (en) Manufacture of thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JP3367129B2 (en) Method for producing polyester film
JP4068249B2 (en) Method for producing biaxially stretched polyamide film
JPS61244527A (en) Manufacture of biaxially oriented polyamide film
JP2936699B2 (en) Method for producing polyamide film
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JP3503708B2 (en) Method for producing polyamide film
JP3988228B2 (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Ref document number: 4651228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees