JPH0125695B2 - - Google Patents
Info
- Publication number
- JPH0125695B2 JPH0125695B2 JP12182881A JP12182881A JPH0125695B2 JP H0125695 B2 JPH0125695 B2 JP H0125695B2 JP 12182881 A JP12182881 A JP 12182881A JP 12182881 A JP12182881 A JP 12182881A JP H0125695 B2 JPH0125695 B2 JP H0125695B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- temperature
- heat treatment
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 20
- 230000009477 glass transition Effects 0.000 claims description 8
- 229920006267 polyester film Polymers 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は逐次二軸延伸と多段熱処理とによるポ
リエステルフイルムの製造方法に関する。更に詳
細にはポリエチレンテレフタレート、ポリエチレ
ン2−6ナフタレート等の熱可塑性ポリエステル
からなる二軸延伸フイルムの幅方向の物性が均一
となる改良された製造方法に関する。
ポリエステル二軸延伸フイルムは種々の工業用
途に供せられているが、なかでも写真・製図・磁
気デイスク等の用途では縦横両方向の物性、殊に
線膨張率湿度膨張率、熱収縮率がバランスしてい
ることが望まれる。また製品フイルムのいかなる
部分も均質であることが望まれる。
しかるに、通常の逐次二軸延伸方法、すなわち
縦延伸に続いてテンター法横延伸を施す方法にお
いて、製品フイルムの幅方向の物性を均一にする
ことは極めて困難であつた。この理由はテンター
内においてフイルムの両側端は把持されており、
横延伸に伴う縦方向の収縮応力はクリツプによつ
て拘束されているものの、フイルム中央部は比較
的拘束力が弱い。この結果として、上記収縮応力
によつて中央部分の延伸配向が時間的、位置的に
遅れてくる。横延伸の前にフイルム面上に幅方向
に直線を仮想的に描いたとすると、横延伸の際に
はこの直線はフイルム進行方向に向つて凹形の曲
線となる。この現象はボーイングと称されるもの
であつて、このボーイングによつて、フイルムは
幅方向において、中央部分と両側部とに物性差
(不均一性:殊に線膨張率、湿度膨張率、熱収縮
率の不均一性)を生ずる原因となつている。フイ
ルム中央部の諸物性を縦横方向にバランスさせた
場合、フイルム側端部ではボーイング線に対して
更に縦方向に傾斜した配向主軸ができ、この主軸
方向の温度膨張率、湿度膨張率は小さくなり、主
軸と直角方向の各々の値は大きくなる。
このような幅方向の物性差を解消するためいく
つかの方法が提案されている。しかし、いずれも
満足できる段階に到らない。例えば、特公昭37−
1588号公報には横延伸−縦延伸の方法を開示して
いるが本質的な対策とはなつていない。特開昭56
−73978号公報には横延伸工程と熱処理工程との
間にニツプロールを用いる方法が提案されている
が、フイルムに表面傷が発生する傾向があるの
で、別な問題が新たに生じている。同時二軸延伸
では、このボーイング現象は解消できるものの
(特開昭54−137076号公報)、逐次二軸延伸法には
適用できない。
本発明者は、二軸延伸の条件と熱処理の条件と
を組合せることによつて、ボーイング現象が実害
がない程度にまで減少できることを見い出し、本
発明に到達できたものである。
即ち、本発明は、熱可塑性ポリエステルフイル
ムに逐次二軸延伸と熱処理とを施すに際し、
(a) 実質的に非晶性のポリエステル未延伸フイル
ムをその長手方向に3.0〜4.0倍の範囲の延伸倍
率で一軸延伸し、一軸延伸後のフイルムの結晶
化度を0.2〜0.3の範囲となし、
(b) 該一軸延伸フイルムをガラス転移温度以上の
温度域で3.0〜4.0倍の延伸倍率であつてかつ長
手方向の延伸倍率に対し0.83〜1.43倍となるよ
うな延伸倍率を選んで幅方向に延伸を施し、
(c) 次いで二軸延伸フイルムをガラス転移温度以
下に冷却し、
(d) 該フイルムを200〜240℃の範囲の温度T1で
第一段熱処理し、
(e) 引続いて第二段熱処理域において該フイルム
を温度T2において1〜20%幅方向に伸張させ
(但しT1≧T2>T3の条件の温度T2を選択す
る)、
(f) 更に第三段熱処理域において該フイルムを
100〜200℃の温度範囲の温度T3に保持する
ことからなる熱可塑性ポリエステルフイルムの製
造法である。
本発明を説明する。
実質的に非晶性のポリエステルとは、製膜キヤ
ステングによつて結晶化度が0.2未満、好ましく
は0.05以下の未延伸シートが得られる状態のもの
を指す。本発明では、熱可塑性ポリエステルとし
て、ポリエチレンテレフタレート、ポリブチレン
テレフタレート、ポリエチレン−2,6−ナフタ
レンジカルボキシレート等が適用できる。勿論結
晶性がやや低い共重合ポリエステルも包含され、
上記のポリエステルには15重量%以下の有機又は
無機化合物や他の重合体を添加したものであつて
も、本発明の主旨であるボーイング現象を抑制で
きる組成物フイルムを包含する。
長手方向の延伸条件として、延伸倍率は3.0〜
4.0倍の範囲であることが必須であり、延伸温度
と延伸速度とは、分子の配向性に伴う結晶化度が
0.2〜0.3の範囲となる条件を選択する必要があ
る。
ここに、結晶化度は(1)式で示される。
0.30>ρx−ρmin/ρmax−ρmin>0.20……(1)
式
(但し、ρx:縦延伸後の密度
ρmax:完全結晶化したときの理論密度
ρmin:完全アモルフアスのときの密度)
縦延伸においては(1)式の範囲を守るべきであ
り、縦延伸後の密度が大きくて(1)式から逸脱する
と横延伸工程で切断しやすく、縦延伸後の密度が
小となつて(1)式を逸脱すると、前記ボーイグの減
少効果は小さくなる。ポリエチレンテレフタレー
トの場合、縦延伸後の好適な密度範囲はρmax=
1.457、ρmin=1.335として1.372>ρx>1.359であ
る。無機添加剤を含む場合、それを除いて比重計
算するべきことは当然である。吸熱性顔料を含む
樹脂は該好適範囲を容易に得ることができる。
次に横方向(幅方向)の延伸倍率は3.0〜4.0の
範囲であつて、かつ縦延伸倍率/横延伸倍率の比
率が0.7〜1.2の範囲(横延伸倍率/縦延伸倍率の
比率は1.43〜0.83となる)とする。この延伸倍率
の比率の範囲にあると、フイルムは縦横方向にバ
ランスした機械的、熱的性質を呈するとともに、
その絶対値も高く優れた特性が発現できる。そし
て、フイルム幅方向における均質性も維持でき
る。二軸延伸が完了したフイルムは直ちにガラス
転移温度以下に一旦冷却される。二軸配向された
状態が凍結されことは、本発明の場合重要とな
る。もしガラス転移温度以上の温度域でフイルム
を放置するとその段階でボーイングが発生して不
均質化が避けられない。
フイルムの熱処理は少くとも三段階の熱処理区
間において施される。
熱処理区間については3区間について各条件が
特定されなければならない。4区間以上の熱処理
区間を有するテンターであつても、本発明の順序
に従つて熱処理と幅方向の再伸長が施される限
り、本発明の範囲を逸脱するものではない。すな
はち横延伸後一旦使用樹脂のガラス転移温度以下
に雰囲気温度を下げた区間を好ましくは0.2秒以
上かかつて通過する工程と、その後1%〜20%の
範囲で再び横方向に伸長する工程と、その後の温
度をそれまでの最高温度を超えないようにする工
程を含むこと等が肝要である。それらの工程の間
に、別に規制した条件を挿入しても前記幅方向物
性差を減ずる効果(均質化効果)を損わない限
り、本発明の範囲に含まれる。本発明の工程の後
に更にトーイン(テンターレール幅の先を狭くす
ること;弛緩処理)あるいはクリツプから離した
後縦方向にフイルムを弛緩処理することが必要に
応じて可能である。
本発明にいう横延伸後のガラス転移温度以下へ
の冷却は横延伸段階におけるボーイングを防止す
る。横延伸において発生する縦方向の収縮応力に
よつて発生するボーイングを阻止するためには延
伸後のフイルム温度を低くし、移動度、変形性を
小さくしておくのが効果的である。
次にクリツプでフイルムを把持したまま熱処理
するとき凍結されていた縦方向の収縮応力の作用
でボーイングが発生し易いが、本発明の如く、ト
ーアウト区間の前段階の温度を高くすることによ
つてその部分のフイルムが緩和されやすく、トー
アウトで付加される縦方向の収縮応力によつてボ
ーイング量は逆に小さくなる傾向がある。このト
ーアウト処理により横方向の熱収縮率は幾分大き
くなる傾向があるが、必要に応じてその後の熱処
理区間でトーイン(横方向のクリツプレール幅の
先狭り;横弛緩処理)を加える等の手段によつて
解決することができる。
次に実施例によつて更に説明する。
実施例 1
ポリエチレンテレフタレートを溶融し、ダイス
リツトから押出して急冷ドラム上にフイルム状に
成形した後、周速度の異なるロール間にあるフイ
ルムを炭化珪素発熱体で強熱し、延伸後密度を
1.362に保持しつつ3.6倍に縦方向に延伸し、90℃
の温度で横方向に3.5倍延伸して二軸延伸フイル
ムとした。先ずフイルムに冷風を吹きつけて横延
伸直後のフイルム表面温度を一旦60℃とし、次に
230℃(T1)の雰囲気下で熱処理し、更に215℃
(T2)の雰囲気下に導き、10%横方向に再延伸処
理をしたのち100℃(T3)の雰囲気下で3%横方
向に収縮させながら第三段熱処理を施して、フイ
ルムからクリツプをはずして75μの二軸延伸フイ
ルムを得た。
比較例 1
実施例1において、縦延伸後の密度が1−357
となるように赤外線ヒーター強度を低下させる以
外は実施例1と同様にして75μの二軸延伸フイル
ムを得た。
比較例 2
実施例1において横延伸後の冷却をやめ、T2
の雰囲気下における横再延伸を施すことなく横延
伸倍率を3.8倍として二軸延伸フイルムを得た。
比較例 3
比較例1の縦延伸条件で縦延伸したフイルムを
比較例2の條件で横延伸熱処理して75μの二軸延
伸フイルムを得た。
これらの物性を比較すると下表の通りであつ
た。
The present invention relates to a method for producing a polyester film by sequential biaxial stretching and multistage heat treatment. More specifically, the present invention relates to an improved manufacturing method that makes the physical properties of a biaxially stretched film made of thermoplastic polyester such as polyethylene terephthalate and polyethylene 2-6 naphthalate uniform in the width direction. Polyester biaxially stretched films are used for a variety of industrial applications, and among them, for applications such as photography, drafting, and magnetic disks, physical properties in both vertical and horizontal directions, especially linear expansion coefficient, humidity expansion coefficient, and thermal contraction coefficient, must be balanced. It is desirable that the It is also desirable that every part of the product film be homogeneous. However, it has been extremely difficult to make the physical properties of the product film uniform in the width direction using the usual sequential biaxial stretching method, that is, longitudinal stretching followed by tenter transverse stretching. The reason for this is that both ends of the film are gripped inside the tenter,
Although the shrinkage stress in the longitudinal direction due to lateral stretching is restrained by the clip, the restraining force is relatively weak in the center of the film. As a result, the stretching orientation of the central portion is delayed in time and position due to the shrinkage stress. If a straight line is virtually drawn in the width direction on the film surface before lateral stretching, this straight line becomes a concave curve in the film traveling direction during lateral stretching. This phenomenon is called bowing, and due to this bowing, the film has differences in physical properties (heterogeneity: especially linear expansion coefficient, humidity expansion coefficient, thermal expansion coefficient, etc.) between the center and both sides in the width direction. This is the cause of non-uniform shrinkage rate. When the physical properties at the center of the film are balanced vertically and horizontally, a main axis of orientation is formed at the edge of the film that is tilted further vertically with respect to the bowing line, and the coefficient of temperature expansion and coefficient of humidity expansion in the direction of this main axis becomes smaller. , each value in the direction perpendicular to the principal axis becomes larger. Several methods have been proposed to eliminate such differences in physical properties in the width direction. However, none of them have reached a satisfactory stage. For example,
Although Japanese Patent No. 1588 discloses a method of transverse stretching and longitudinal stretching, it is not an essential countermeasure. Unexamined Japanese Patent Publication 1986
Japanese Patent No. 73978 proposes a method of using a nip roll between the transverse stretching step and the heat treatment step, but this method tends to cause surface scratches on the film, creating another problem. Although simultaneous biaxial stretching can eliminate this bowing phenomenon (Japanese Unexamined Patent Publication No. 137076/1983), it cannot be applied to sequential biaxial stretching. The present inventors have discovered that the bowing phenomenon can be reduced to the extent that there is no actual damage by combining the biaxial stretching conditions and the heat treatment conditions, and have thus arrived at the present invention. That is, in the present invention, when subjecting a thermoplastic polyester film to sequential biaxial stretching and heat treatment, (a) a substantially amorphous polyester unstretched film is stretched at a stretching ratio of 3.0 to 4.0 times in its longitudinal direction; (b) The uniaxially stretched film is uniaxially stretched at a stretching ratio of 3.0 to 4.0 times in a temperature range equal to or higher than the glass transition temperature, and Stretching is carried out in the width direction by selecting a stretching ratio that is 0.83 to 1.43 times the stretching ratio in the longitudinal direction, (c) the biaxially stretched film is then cooled to below the glass transition temperature, and (d) the film is A first heat treatment is performed at a temperature T 1 in the range of 200 to 240°C, and (e) the film is then stretched in the width direction by 1 to 20% at a temperature T 2 in a second heat treatment zone (provided that T 1 ≧ ( f ) Further, the film is heated in the third heat treatment zone.
A method for producing a thermoplastic polyester film comprising maintaining the temperature at T3 in the temperature range of 100-200°C. The present invention will be explained. Substantially amorphous polyester refers to one in which an unstretched sheet having a crystallinity of less than 0.2, preferably 0.05 or less can be obtained by film casting. In the present invention, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, etc. can be used as the thermoplastic polyester. Of course, copolyesters with slightly low crystallinity are also included,
The above-mentioned polyester includes a composition film capable of suppressing the bowing phenomenon, which is the gist of the present invention, even if 15% by weight or less of an organic or inorganic compound or other polymer is added thereto. As for stretching conditions in the longitudinal direction, the stretching ratio is 3.0~
It is essential that the stretching temperature and speed be within the range of 4.0 times.
It is necessary to select conditions that fall within the range of 0.2 to 0.3. Here, the crystallinity is expressed by equation (1). 0.30>ρx−ρmin/ρmax−ρmin>0.20……(1)
Equation (where ρx: Density after longitudinal stretching ρmax: Theoretical density when completely crystallized ρmin: Density when completely amorphous) In longitudinal stretching, the range of formula (1) should be observed, and the If the density is large and deviates from formula (1), it will be easy to break during the transverse stretching process, and if the density after longitudinal stretching is small and deviates from formula (1), the Boig reduction effect will be reduced. In the case of polyethylene terephthalate, the preferred density range after longitudinal stretching is ρmax=
1.457, ρmin=1.335, 1.372>ρx>1.359. If inorganic additives are included, it is natural that the specific gravity should be calculated excluding them. Resins containing endothermic pigments can easily achieve this preferred range. Next, the stretch ratio in the transverse direction (width direction) is in the range of 3.0 to 4.0, and the ratio of longitudinal stretch ratio/horizontal stretch ratio is in the range of 0.7 to 1.2 (the ratio of transverse stretch ratio/longitudinal stretch ratio is 1.43 to 4.0). 0.83). When the stretching ratio is within this range, the film exhibits mechanical and thermal properties that are well-balanced in the vertical and horizontal directions, and
Its absolute value is also high and excellent properties can be expressed. Further, uniformity in the width direction of the film can also be maintained. The film that has been biaxially stretched is immediately cooled to below its glass transition temperature. It is important in the present invention that the biaxially oriented state is frozen. If the film is left in a temperature range above the glass transition temperature, bowing will occur at that stage and non-uniformity will inevitably occur. The heat treatment of the film is performed in at least three heat treatment stages. Regarding the heat treatment section, each condition must be specified for three sections. Even if the tenter has four or more heat treatment sections, it does not depart from the scope of the present invention as long as the heat treatment and re-stretching in the width direction are performed in accordance with the order of the present invention. In other words, after the transverse stretching, the resin passes through a section in which the ambient temperature is lowered to below the glass transition temperature of the resin used, preferably for at least 0.2 seconds, and then the process of transversely stretching again in the range of 1% to 20%. It is important to include a step in which the subsequent temperature does not exceed the maximum temperature up to that point. Even if separately regulated conditions are inserted between these steps, it is within the scope of the present invention as long as the effect of reducing the widthwise physical property difference (homogenization effect) is not impaired. After the process of the present invention, it is possible to further toe-in (narrowing the tip of the tenter rail width; loosening treatment) or to loosen the film in the longitudinal direction after it is released from the clip, if necessary. Cooling to below the glass transition temperature after lateral stretching according to the present invention prevents bowing in the lateral stretching stage. In order to prevent bowing caused by shrinkage stress in the longitudinal direction that occurs during lateral stretching, it is effective to lower the temperature of the film after stretching and to keep its mobility and deformability low. Next, when the film is heat-treated while being held in the clip, bowing is likely to occur due to the action of the frozen longitudinal shrinkage stress. The film in that part tends to be relaxed, and the amount of bowing tends to become smaller due to the longitudinal shrinkage stress added during toe-out. This toe-out treatment tends to increase the heat shrinkage rate in the lateral direction, but if necessary, it may be necessary to add toe-in (narrowing of the width of the clip rail in the lateral direction; lateral relaxation treatment) in the subsequent heat treatment section. This can be solved by means. Next, the invention will be further explained with reference to examples. Example 1 After melting polyethylene terephthalate and extruding it through a die slit and forming it into a film on a quenching drum, the film between rolls having different circumferential speeds was ignited with a silicon carbide heating element, and the density after stretching was
1.362 and stretched 3.6 times in the longitudinal direction at 90℃
A biaxially stretched film was obtained by stretching 3.5 times in the transverse direction at a temperature of . First, blow cold air onto the film to bring the surface temperature of the film to 60°C immediately after horizontal stretching, and then
Heat treated in an atmosphere of 230℃ (T 1 ) and then further heated to 215℃
(T 2 ), re-stretched by 10% in the transverse direction, and then subjected to a third heat treatment in an atmosphere of 100°C (T 3 ) while shrinking by 3% in the transverse direction, and the film was removed from the clip. was removed to obtain a 75μ biaxially stretched film. Comparative Example 1 In Example 1, the density after longitudinal stretching was 1-357
A 75μ biaxially stretched film was obtained in the same manner as in Example 1, except that the infrared heater strength was lowered so that Comparative Example 2 In Example 1, cooling after lateral stretching was stopped and T 2
A biaxially stretched film was obtained at a lateral stretching ratio of 3.8 times without performing lateral re-stretching in an atmosphere of . Comparative Example 3 A film longitudinally stretched under the longitudinal stretching conditions of Comparative Example 1 was subjected to transverse stretching heat treatment under the conditions of Comparative Example 2 to obtain a 75μ biaxially stretched film. A comparison of these physical properties is shown in the table below.
【表】
この結果から本発明の方法はボーイング防止効
と物性の均一性を示すことが明かとなつた。[Table] From the results, it is clear that the method of the present invention exhibits a bowing prevention effect and uniformity of physical properties.
Claims (1)
ステルフイルムを製造するに際し、 実質的に非晶性のポリエステル未延伸フイルム
をその長手方向に3.0〜4.0倍の範囲の延伸倍率で
一軸延伸し、一軸延伸後のフイルムの結晶化度を
0.2〜0.3の範囲となし、該一軸延伸フイルムをガ
ラス転移温度以上の温度域で3.0〜4.0倍の延伸倍
率であつてかつ長手方向の延伸倍率に対し0.83〜
1.43倍となるような延伸倍率を選んで幅方向に延
伸を施し、次いで二軸延伸フイルムをガラス転移
温度以下に冷却し、該フイルムを200〜240℃の範
囲の温度T1で第一段熱処理し、引続いて第二段
熱処理域において該フイルムを温度T2において
1〜20%幅方向に伸張させ(但しT1≧T2>T3の
条件の温度T2を選択する)、更に第三段熱処理域
において該フイルムを100〜200℃の温度範囲の温
度T3に保持することからなる熱可塑性ポリエス
テルフイルムの製造法。[Claims] 1. When producing a thermoplastic polyester film by biaxial stretching and heat treatment, a substantially amorphous unstretched polyester film is stretched in the longitudinal direction at a stretching ratio of 3.0 to 4.0 times. Uniaxially stretched and the crystallinity of the film after uniaxially stretched
The uniaxially stretched film has a stretching ratio of 3.0 to 4.0 times in the temperature range above the glass transition temperature, and a stretching ratio of 0.83 to 0.3 in the longitudinal direction.
Stretching is performed in the width direction by selecting a stretching ratio of 1.43 times, and then the biaxially stretched film is cooled to below the glass transition temperature, and the film is subjected to a first heat treatment at a temperature T 1 in the range of 200 to 240°C. Subsequently, in the second heat treatment zone, the film is stretched in the width direction by 1 to 20% at a temperature T 2 (however, the temperature T 2 is selected under the condition of T 1 ≧T 2 >T 3 ), and further A method for producing a thermoplastic polyester film, which comprises maintaining the film at a temperature T3 in the temperature range of 100 to 200°C in a three-stage heat treatment zone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12182881A JPS5824418A (en) | 1981-08-05 | 1981-08-05 | Preparation of thermoplastic polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12182881A JPS5824418A (en) | 1981-08-05 | 1981-08-05 | Preparation of thermoplastic polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5824418A JPS5824418A (en) | 1983-02-14 |
JPH0125695B2 true JPH0125695B2 (en) | 1989-05-18 |
Family
ID=14820927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12182881A Granted JPS5824418A (en) | 1981-08-05 | 1981-08-05 | Preparation of thermoplastic polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5824418A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172694A (en) * | 2000-12-05 | 2002-06-18 | Toray Ind Inc | Biaxially oriented polyester film and manufacturing method therefor |
WO2005023521A1 (en) * | 2003-09-02 | 2005-03-17 | Toyo Boseki Kabushiki Kaisha | Polyester film for forming |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771821B2 (en) * | 1988-11-11 | 1995-08-02 | ダイアホイルヘキスト株式会社 | Method for producing polyester film |
KR960013068B1 (en) * | 1989-10-16 | 1996-09-30 | 도오요오 보오세끼 가부시끼가이샤 | Thermoplastic resin film & a method for producing the same |
JP2841755B2 (en) * | 1990-06-29 | 1998-12-24 | 東洋紡績株式会社 | Polyamide film and method for producing the same |
EP0960718A4 (en) * | 1997-12-11 | 2002-01-09 | Teijin Ltd | Biaxially oriented polyester film |
JP3765681B2 (en) | 1998-12-18 | 2006-04-12 | 富士写真フイルム株式会社 | Production method of polyester film |
JP2005254812A (en) * | 2004-02-12 | 2005-09-22 | Nippon Zeon Co Ltd | Method for manufacturing stretched film composed of thermoplastic norbornene and phase difference film |
JP5021453B2 (en) * | 2007-12-28 | 2012-09-05 | 三菱樹脂株式会社 | Method for producing uniaxially oriented polyester film |
-
1981
- 1981-08-05 JP JP12182881A patent/JPS5824418A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002172694A (en) * | 2000-12-05 | 2002-06-18 | Toray Ind Inc | Biaxially oriented polyester film and manufacturing method therefor |
WO2005023521A1 (en) * | 2003-09-02 | 2005-03-17 | Toyo Boseki Kabushiki Kaisha | Polyester film for forming |
Also Published As
Publication number | Publication date |
---|---|
JPS5824418A (en) | 1983-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07106597B2 (en) | Method for manufacturing high modulus film | |
JPH0125695B2 (en) | ||
JP2000177002A (en) | Manufacture of polyester film | |
JPS631174B2 (en) | ||
JPS5936851B2 (en) | Manufacturing method of polyester film | |
JPS6243856B2 (en) | ||
JPH0455377B2 (en) | ||
JPH01275031A (en) | Method of heat treating biaxially oriented polyester film | |
JPS6243857B2 (en) | ||
JPH0125694B2 (en) | ||
JPH0552253B2 (en) | ||
JP3852671B2 (en) | Method for producing biaxially stretched polyester film | |
JPH0117857B2 (en) | ||
JP3367129B2 (en) | Method for producing polyester film | |
JPH0125696B2 (en) | ||
JP3020723B2 (en) | Method for producing biaxially stretched polyester film | |
JPH06166102A (en) | Manufacture of polyester film | |
JPH0542592A (en) | Manufacture of polyvinylidene fluoride resin oriented film | |
JPH04142918A (en) | Manufacture of thermoplastic resin film | |
JPS60187530A (en) | Preparation of heat resistant polyether ketone film or sheet | |
JP2001328159A (en) | Method for producing biaxially oriented film | |
JPH06305016A (en) | Manufacture of polyester film | |
JPS62183327A (en) | Manufacture of biaxially oriented film | |
JPH01188322A (en) | Stretching molding method of polyester film | |
KR100235565B1 (en) | Method for producing sequentially biaxially oriented plastic film |