JPS6243857B2 - - Google Patents
Info
- Publication number
- JPS6243857B2 JPS6243857B2 JP55132260A JP13226080A JPS6243857B2 JP S6243857 B2 JPS6243857 B2 JP S6243857B2 JP 55132260 A JP55132260 A JP 55132260A JP 13226080 A JP13226080 A JP 13226080A JP S6243857 B2 JPS6243857 B2 JP S6243857B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- temperature
- heat treatment
- stretching
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000009477 glass transition Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229920006267 polyester film Polymers 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 13
- 230000000704 physical effect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は二軸延伸ポリエステルフイルムの製造
方法に関するものであり、更に詳細には縦横方向
の物性バランスに優れ、フイルム幅方向に沿つた
物性差が殆どない、均一性に優れたフイルムの製
造方法に係わる。
二軸延伸ポリエステルフイルムは、工業用途に
供せられているが、特に写真、製図、磁気デイス
ク等の用途では縦横両方向の物性、とりわけ温度
膨張率、湿度膨張率、熱収縮率等がバランスして
いることが望まれる。また製品フイルムのどの部
分においても同じ性質であることが望ましい。
しかし、通常の二軸延伸方法、すなわち縦延伸
つづいて横延伸を施す方法において製品フイルム
の幅方向の物性を均一にすることは極めて困難で
あつた。この理由はテンター内においてフイルム
の両側端は把持されていて、横延伸に伴う縦方向
のフイルムの収縮応力は、把持手段であるクリツ
プ等によつて拘束されているのに対し、フイルム
中央部分は拘束力が比較的弱くなり、上記収縮応
力によつてフイルムの中央部分の延展が遅れる。
もし横延伸以前にフイルム面上に横方向に沿つて
直線を描くと、この直線は変形してフイルム進行
方向に向つて凹形に曲るようになる。この現象は
ボーイングと称されている。このボーイング現象
がフイルム幅方向の物性、特に湿度膨張率、温度
膨張率を不均一にする原因となつている。ボーイ
ング現象によつて、フイルムの両側端部分ではボ
ーイング線に対して更に縦方向に傾斜した配向主
軸が生じ、この主軸方向の湿度膨張率、温度膨張
率は低くなり、主軸方向に対して直角な方向での
物性値は高くなる傾向がある。
幅方向の物性差を解消するため幾つかの方法が
提案されている。例えば特公昭37−1588号では横
―縦延伸方法を開示しているが本質的な対策とは
なつていない。特開昭50−73978号では横延伸工
程と熱処理工程の間にニツプロールを用いる技術
が提案されているが表面傷が生じる惧れがあり実
用性に乏しい。また特開昭51−80372号と特開昭
54−137076号ともにボーイング減少対策を示すも
のであるが、これらは同時二軸延伸に関するもの
であつて逐次延伸には適用できない。
本発明者等はボーイングの発生過程を解明し、
ボーイング現象を減殺する手段を種々検討した結
果、本発明に到達した。
即ち、本発明は、縦方向に一軸延伸した熱可塑
性ポリエステルフイルムをガラス転移温度以上で
横方向に延伸したのち熱処理するに際し、(a)横延
伸後のフイルム温度を一旦ガラス転移温度以下と
し、(b)〔融点−160℃〕〜〔融点−80℃〕の温度
範囲でフイルム両端を把持したまま熱処理し、(c)
両端を把持しない状態で縦方向に0.1%〜10%の
弛緩を与え、(d)次に〔上記熱処理温度〕〜〔上記
熱処理温度−20℃〕の表面温度をもつ平滑ロール
に該フイルムを接触させる;ことを特徴とする二
軸延伸ポリエステルフイルムの製造方法である。
本発明を説明すると、本発明に用いるポリエス
テルはポリエチレンテレフタレート、ポリプチレ
ンテレフタレート、ポリエチレン―2,6―ナフ
タレートなど二軸延伸して供する線状ポリエステ
ルなどが選ばれ、これらは無機添加物を含んでも
よく、部分的に変性された共重合体や他の重合体
を少量含有する混合物であつてもよい。
製膜方法、一軸延伸の方法については特に規定
するものではない。
(a) 横延伸はガラス転移温度以上で3.0〜4.5倍延
伸するのが望ましい。延伸が完了したのちなる
べく急速にガラス転移温度以下に冷却する。実
際にはテンターのニユートラルゾーンを室温程
度の空気により冷却することになるが冷却ロー
ルを使用してもよい。
この冷却は、横延伸に際し、ボーイングを生
じさせないため必要である。
(b) 次いで両側端を把持したまま熱処理を施すの
であるが、このとき通常の熱処理より相当低い
温度である〔融点−160℃〕乃至〔融点−80
℃〕を選ぶことが肝要である。この温度より高
い温度では、この工程でボーイングが発生し、
幅方向に沿つた物性差が発生する。また上記の
下限温度より低い温度を選ぶとボーイングは発
生しないものの、フイルムの平面性が損なわれ
る。
しかし、このままでは熱固定が不充分である
ので熱収縮率が大きい。そこで
(c) クリツプを離脱したあと、縦方向に若干の弛
緩処理を施すことが必須である。弛緩の大きさ
は弛緩区間への送り出しロール周速度と引取り
ロール周速度差%で表示すると0.1〜10%の範
囲で引取りロール側を遅くするのが好ましい。
(d) 弛緩に際しては或る程度の加熱が必要である
が、この温度は前記熱固定温度とそれより20℃
低い温度の間の範囲が望ましい。温度が高過ぎ
ると物性の劣化を起しやすくなり生産効率が低
下する。加熱方式はロールによるのが最も工業
的には簡便でしかも所望の結果が得られるので
適している。弛緩処理に際して加熱ロールへの
ニツプロール、張力を安定化させるためのダン
サーロールを用いることができる。
横方向の熱収縮改良については上記テンター
内の熱固定において、レール幅を先せばめにす
るトーインによつて対応することができる。
次に実施例をあげて更に説明する。
実施例 1
ポリエチレンテレフタレート〔固有粘度0.62〕
を溶融してTダイより押出し、急冷ドラム上でフ
イルム状に成形したのち縦方向に3.4倍延伸し、
次いでテンターによつて横方向に3.6倍延伸して
73μmの二軸延伸フイルムとし、更に該フイルム
の両端を把持したまま55℃に保つた1mの区間
(冷却区間)を20m/分の速度で通過させ、次い
で150℃に保つた長さ1.5mの区間を3区間通過さ
せ第3区間で2%トーイン(レール間隔の先せば
め)をつけた。その後クリツプから離脱させ3%
縦弛緩させながら140℃の表面温度をもつ平滑ロ
ールに接触させてから捲取つた。このときフイル
ムが加熱ロールと接触開始する位置をニツプロー
ルでニツプした。
比較例 1
実施例1において、縦弛緩処理を省略する以外
は全く同様にして二軸延伸フイルムを得た。
比較例 2
実施例1においてテンター内熱固定温度を230
℃にした以外は全く同様の製造方法によつて75μ
の二軸延伸フイルムとした。
比較例 3
実施例1においてテンター内熱固定温度を80℃
とした以外は全く同様の方法で二軸延伸フイルム
を製造したが、該フイルムの平面性が悪く、外観
のよいフイルムを得ることができなかつた。
比較例 4
実施例1においてテンター内熱処理までの工程
は全く同様とし、縦弛緩におけるロール温度を
180℃としたところフイルムが波状になり、外観
のよいフイルムを得ることができなかつた。
以上のうち実施例1のフイルムと外観のよいフ
イルムが得られた比較例1および2のフイルムの
物性を比較すると次のようであつた。
The present invention relates to a method for producing a biaxially oriented polyester film, and more specifically, to a method for producing a film with excellent uniformity that has excellent balance of physical properties in the longitudinal and lateral directions, with almost no difference in physical properties along the width direction of the film. Involved. Biaxially oriented polyester films are used for industrial purposes, but especially for applications such as photography, drafting, and magnetic disks, physical properties in both the vertical and horizontal directions, especially thermal expansion coefficient, humidity expansion coefficient, and thermal contraction coefficient, are well balanced. It is hoped that there will be. It is also desirable that the properties be the same in all parts of the product film. However, it has been extremely difficult to make the physical properties of the product film uniform in the width direction using the usual biaxial stretching method, that is, a method in which longitudinal stretching is followed by transverse stretching. The reason for this is that both ends of the film are held in the tenter, and the shrinkage stress of the film in the longitudinal direction due to lateral stretching is restrained by the holding means such as clips. The restraining force becomes relatively weak, and the expansion of the central portion of the film is delayed due to the shrinkage stress.
If a straight line is drawn along the lateral direction on the film surface before lateral stretching, this straight line will be deformed and curved into a concave shape in the film traveling direction. This phenomenon is called boeing. This bowing phenomenon causes the physical properties of the film in the width direction, particularly the humidity expansion coefficient and the temperature expansion coefficient, to become non-uniform. Due to the bowing phenomenon, a main axis of orientation is created at both end portions of the film that is further inclined vertically with respect to the bowing line, and the coefficient of humidity expansion and temperature expansion in the direction of this main axis is low, and the coefficient of expansion perpendicular to the direction of the main axis is lower. The physical property values tend to be higher in the direction. Several methods have been proposed to eliminate differences in physical properties in the width direction. For example, Japanese Patent Publication No. 37-1588 discloses a transverse-longitudinal stretching method, but it is not an essential countermeasure. JP-A-50-73978 proposes a technique of using nip rolls between the lateral stretching process and the heat treatment process, but this is impractical due to the risk of surface scratches. Also, JP-A-51-80372 and JP-A-Sho.
No. 54-137076 both show measures to reduce bowing, but these are related to simultaneous biaxial stretching and cannot be applied to sequential stretching. The inventors elucidated the process by which Boeing occurs, and
As a result of various studies on ways to reduce the bowing phenomenon, the present invention was arrived at. That is, in the present invention, when a thermoplastic polyester film that has been uniaxially stretched in the longitudinal direction is stretched in the transverse direction at a temperature higher than the glass transition temperature and then heat-treated, (a) the temperature of the film after the transverse stretching is once lowered to below the glass transition temperature; b) Heat-treat the film while holding both ends in a temperature range of [melting point -160℃] to [melting point -80℃], (c)
Give the film 0.1% to 10% relaxation in the longitudinal direction without gripping both ends, and then (d) contact the film with a smooth roll having a surface temperature of [the above heat treatment temperature] to [the above heat treatment temperature -20°C]. A method for producing a biaxially oriented polyester film is characterized in that: To explain the present invention, the polyester used in the present invention is selected from linear polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, etc., which are provided by biaxial stretching, and these may contain inorganic additives. , a partially modified copolymer, or a mixture containing small amounts of other polymers. The film forming method and the uniaxial stretching method are not particularly specified. (a) It is desirable that the transverse stretching is carried out by 3.0 to 4.5 times at a temperature higher than the glass transition temperature. After the stretching is completed, the film is cooled to below the glass transition temperature as quickly as possible. In reality, the neutral zone of the tenter is cooled with air at about room temperature, but a cooling roll may also be used. This cooling is necessary to prevent bowing during lateral stretching. (b) Next, heat treatment is performed while holding both ends, but at this time, the temperature is considerably lower than that of normal heat treatment [melting point -160°C] to [melting point -80°C].
℃] is important. At temperatures higher than this, bowing occurs in this process,
Differences in physical properties occur along the width direction. Further, if a temperature lower than the above-mentioned lower limit temperature is selected, bowing will not occur, but the flatness of the film will be impaired. However, as it is, heat fixation is insufficient and the heat shrinkage rate is large. Therefore, (c) after removing the clip, it is essential to perform some relaxation treatment in the longitudinal direction. When the magnitude of relaxation is expressed as a percentage difference between the circumferential speed of the delivery roll to the relaxation zone and the circumferential speed of the take-up roll, it is preferable to slow down the take-up roll side within a range of 0.1 to 10%. (d) A certain degree of heating is required for relaxation, but this temperature is 20°C higher than the heat setting temperature.
A range between lower temperatures is desirable. If the temperature is too high, physical properties tend to deteriorate and production efficiency decreases. As for the heating method, it is most suitable to use a roll because it is industrially simple and provides the desired result. During the relaxation treatment, a nip roll for the heating roll and a dancer roll for stabilizing the tension can be used. Improving lateral heat shrinkage can be achieved by toe-in in which the rail width is fitted first in the heat fixing in the tenter. Next, further explanation will be given by giving examples. Example 1 Polyethylene terephthalate [intrinsic viscosity 0.62]
was melted and extruded through a T-die, formed into a film on a quenching drum, and then stretched 3.4 times in the longitudinal direction.
Then, it was stretched 3.6 times in the transverse direction using a tenter.
A biaxially stretched film of 73 μm in diameter was passed through a 1 m section (cooling section) held at 55°C while holding both ends of the film, and then passed through a 1.5 m long section held at 150°C at a speed of 20 m/min. The train passed through three sections and applied 2% toe-in (adjustment of the rail spacing) in the third section. After that, it is removed from the clip and 3%
The film was brought into contact with a smooth roll having a surface temperature of 140°C while being vertically relaxed, and then rolled up. At this time, a nip roll was used to nip the film at the position where it started to come into contact with the heating roll. Comparative Example 1 A biaxially stretched film was obtained in exactly the same manner as in Example 1 except that the longitudinal relaxation treatment was omitted. Comparative Example 2 In Example 1, the heat fixing temperature inside the tenter was set to 230
75μ by the same manufacturing method except that the temperature was changed to ℃.
It was made into a biaxially stretched film. Comparative Example 3 In Example 1, the heat fixing temperature inside the tenter was set to 80°C.
A biaxially stretched film was produced in exactly the same manner except that the film had poor flatness and it was not possible to obtain a film with a good appearance. Comparative Example 4 The steps up to the heat treatment in the tenter were exactly the same as in Example 1, and the roll temperature during longitudinal relaxation was changed.
When the temperature was set at 180°C, the film became wavy and it was not possible to obtain a film with good appearance. Among the above, the physical properties of the film of Example 1 and the films of Comparative Examples 1 and 2, which produced films with good appearance, were compared as follows.
【表】
実施例1はいずれの項目も満足できる値を得て
いるが、比較例1では縦方向の熱収縮率が大き
い。比較例2ではフイルム中央は良好であるが端
部では線膨張率の方向による差が大きく中央しか
使えない。
比較例 5
実施例1において二軸延伸フイルムの冷却区間
の温度を55℃から80℃に変更する以外は全く同様
に行つた。得られた二軸延伸フイルムの特性は次
の通りである。
ボーイング量:60mm
140℃30分の熱収縮率
縦方向:0.3%
横方向:0.2%
フイルム中央部の温度膨脹率の最大値と最小値
の差:0.40×10-5/℃
フイルム端部の温度膨脹率の最大値と最小値の
差:1.00×10-5/℃[Table] Although Example 1 obtained satisfactory values for all items, Comparative Example 1 had a large longitudinal heat shrinkage rate. In Comparative Example 2, the center of the film is good, but at the edges, the linear expansion coefficient differs greatly depending on the direction, so only the center can be used. Comparative Example 5 The same procedure as in Example 1 was carried out except that the temperature in the cooling section of the biaxially stretched film was changed from 55°C to 80°C. The properties of the obtained biaxially stretched film are as follows. Bowing amount: 60mm Heat shrinkage rate at 140℃ for 30 minutes Longitudinal direction: 0.3% Lateral direction: 0.2% Difference between maximum and minimum thermal expansion coefficient at the center of the film: 0.40×10 -5 /℃ Temperature at the edge of the film Difference between maximum and minimum expansion rate: 1.00×10 -5 /℃
Claims (1)
フイルムをガラス転移温度以上で横方向に延伸
し、次いで熱処理を施すに際し、 横延伸直後のフイルムをガラス転移温度以下に
冷却し、しかる後フイルムの両側端を把持したま
まTm―160℃乃至Tm―80℃(但し、Tmはフイ
ルムの融点)の範囲の温度T1で熱処理を施し、
該フイルム両側端の把持手段を解き縦方向に0.1
〜10%の範囲の弛緩を与え、T1≧T2≧T1―20℃
の条件を満す温度T2に表面温度が保たれた平滑
ロールに該フイルムを接触させることを特徴とす
る二軸延伸ポリエステルフイルムの製造方法。[Claims] 1. When a thermoplastic polyester film uniaxially stretched in the longitudinal direction is stretched in the transverse direction at a temperature higher than the glass transition temperature and then subjected to heat treatment, the film immediately after the horizontal stretching is cooled to a temperature lower than the glass transition temperature, and then After holding both ends of the film, heat treatment is performed at a temperature T 1 in the range of Tm - 160℃ to Tm - 80℃ (where Tm is the melting point of the film),
Release the gripping means on both sides of the film and twist it vertically by 0.1
Give relaxation in the range of ~10%, T 1 ≧T 2 ≧T 1 -20℃
A method for producing a biaxially stretched polyester film, which comprises bringing the film into contact with a smooth roll whose surface temperature is maintained at a temperature T2 that satisfies the following conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13226080A JPS5757630A (en) | 1980-09-25 | 1980-09-25 | Manufacture of biaxially drawn polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13226080A JPS5757630A (en) | 1980-09-25 | 1980-09-25 | Manufacture of biaxially drawn polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5757630A JPS5757630A (en) | 1982-04-06 |
JPS6243857B2 true JPS6243857B2 (en) | 1987-09-17 |
Family
ID=15077111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13226080A Granted JPS5757630A (en) | 1980-09-25 | 1980-09-25 | Manufacture of biaxially drawn polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5757630A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125648U (en) * | 1987-02-09 | 1988-08-16 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59139131A (en) * | 1983-01-12 | 1984-08-09 | Diafoil Co Ltd | Polyester film for magnetic disk |
JPH03216326A (en) * | 1990-01-22 | 1991-09-24 | Toyobo Co Ltd | Manufacture of thermoplastic resin film |
JPH0637079B2 (en) * | 1989-10-16 | 1994-05-18 | 東洋紡績株式会社 | Method for producing thermoplastic resin film |
JP2841755B2 (en) * | 1990-06-29 | 1998-12-24 | 東洋紡績株式会社 | Polyamide film and method for producing the same |
JP2002067141A (en) * | 2000-08-29 | 2002-03-05 | Unitika Ltd | Method for manufacturing sequentially biaxially stretched film |
US20070132155A1 (en) * | 2005-12-13 | 2007-06-14 | Robert Burgermeister | Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break |
JP6297379B2 (en) * | 2014-03-26 | 2018-03-20 | 富士フイルム株式会社 | Polyester resin film, method for producing polyester resin film, polarizing plate, image display device, hard coat film, sensor film for touch panel, glass scattering prevention film, and touch panel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51146573A (en) * | 1975-06-10 | 1976-12-16 | Asahi Chemical Ind | Method of producing film excellent in dimensional stability |
JPS5396072A (en) * | 1977-02-02 | 1978-08-22 | Teijin Ltd | Preparation of polyester film with excellent dimensional stability |
-
1980
- 1980-09-25 JP JP13226080A patent/JPS5757630A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51146573A (en) * | 1975-06-10 | 1976-12-16 | Asahi Chemical Ind | Method of producing film excellent in dimensional stability |
JPS5396072A (en) * | 1977-02-02 | 1978-08-22 | Teijin Ltd | Preparation of polyester film with excellent dimensional stability |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63125648U (en) * | 1987-02-09 | 1988-08-16 |
Also Published As
Publication number | Publication date |
---|---|
JPS5757630A (en) | 1982-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07106597B2 (en) | Method for manufacturing high modulus film | |
JP2000177002A (en) | Manufacture of polyester film | |
JPS6243857B2 (en) | ||
JPS631174B2 (en) | ||
JPH0125695B2 (en) | ||
JPS5936851B2 (en) | Manufacturing method of polyester film | |
JPH0455377B2 (en) | ||
JPH0617065B2 (en) | Heat treatment method for biaxially stretched polyester film | |
JPS58160122A (en) | Manufacture of film having uniform physical properties | |
JP2002210818A (en) | Method for manufacturing thermoplastic resin oriented sheet | |
JPS6243856B2 (en) | ||
JP3852671B2 (en) | Method for producing biaxially stretched polyester film | |
JPS60262624A (en) | Stretching method of polyester film | |
JPH0117857B2 (en) | ||
JPH0380620B2 (en) | ||
JPH0125696B2 (en) | ||
JPH06166102A (en) | Manufacture of polyester film | |
JP3020723B2 (en) | Method for producing biaxially stretched polyester film | |
JPS62183327A (en) | Manufacture of biaxially oriented film | |
JPH0773877B2 (en) | Method for producing biaxially oriented polyester film | |
JPH01165423A (en) | Preparation of biaxially oriented polyester film | |
KR100235565B1 (en) | Method for producing sequentially biaxially oriented plastic film | |
JP2002301762A (en) | Manufacturing method for biaxially oriented polyester film | |
JPH06305016A (en) | Manufacture of polyester film | |
JPS61242824A (en) | Manufacturing method for biaxially oriented polyethylene terephthalate film |