JPS6243857B2 - - Google Patents

Info

Publication number
JPS6243857B2
JPS6243857B2 JP55132260A JP13226080A JPS6243857B2 JP S6243857 B2 JPS6243857 B2 JP S6243857B2 JP 55132260 A JP55132260 A JP 55132260A JP 13226080 A JP13226080 A JP 13226080A JP S6243857 B2 JPS6243857 B2 JP S6243857B2
Authority
JP
Japan
Prior art keywords
film
temperature
heat treatment
stretching
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55132260A
Other languages
Japanese (ja)
Other versions
JPS5757630A (en
Inventor
Hiroshi Noda
Hisashi Hamano
Hideaki Watanabe
Koichiro Arita
Haruhiko Mizumori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13226080A priority Critical patent/JPS5757630A/en
Publication of JPS5757630A publication Critical patent/JPS5757630A/en
Publication of JPS6243857B2 publication Critical patent/JPS6243857B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は二軸延伸ポリエステルフイルムの製造
方法に関するものであり、更に詳細には縦横方向
の物性バランスに優れ、フイルム幅方向に沿つた
物性差が殆どない、均一性に優れたフイルムの製
造方法に係わる。 二軸延伸ポリエステルフイルムは、工業用途に
供せられているが、特に写真、製図、磁気デイス
ク等の用途では縦横両方向の物性、とりわけ温度
膨張率、湿度膨張率、熱収縮率等がバランスして
いることが望まれる。また製品フイルムのどの部
分においても同じ性質であることが望ましい。 しかし、通常の二軸延伸方法、すなわち縦延伸
つづいて横延伸を施す方法において製品フイルム
の幅方向の物性を均一にすることは極めて困難で
あつた。この理由はテンター内においてフイルム
の両側端は把持されていて、横延伸に伴う縦方向
のフイルムの収縮応力は、把持手段であるクリツ
プ等によつて拘束されているのに対し、フイルム
中央部分は拘束力が比較的弱くなり、上記収縮応
力によつてフイルムの中央部分の延展が遅れる。
もし横延伸以前にフイルム面上に横方向に沿つて
直線を描くと、この直線は変形してフイルム進行
方向に向つて凹形に曲るようになる。この現象は
ボーイングと称されている。このボーイング現象
がフイルム幅方向の物性、特に湿度膨張率、温度
膨張率を不均一にする原因となつている。ボーイ
ング現象によつて、フイルムの両側端部分ではボ
ーイング線に対して更に縦方向に傾斜した配向主
軸が生じ、この主軸方向の湿度膨張率、温度膨張
率は低くなり、主軸方向に対して直角な方向での
物性値は高くなる傾向がある。 幅方向の物性差を解消するため幾つかの方法が
提案されている。例えば特公昭37−1588号では横
―縦延伸方法を開示しているが本質的な対策とは
なつていない。特開昭50−73978号では横延伸工
程と熱処理工程の間にニツプロールを用いる技術
が提案されているが表面傷が生じる惧れがあり実
用性に乏しい。また特開昭51−80372号と特開昭
54−137076号ともにボーイング減少対策を示すも
のであるが、これらは同時二軸延伸に関するもの
であつて逐次延伸には適用できない。 本発明者等はボーイングの発生過程を解明し、
ボーイング現象を減殺する手段を種々検討した結
果、本発明に到達した。 即ち、本発明は、縦方向に一軸延伸した熱可塑
性ポリエステルフイルムをガラス転移温度以上で
横方向に延伸したのち熱処理するに際し、(a)横延
伸後のフイルム温度を一旦ガラス転移温度以下と
し、(b)〔融点−160℃〕〜〔融点−80℃〕の温度
範囲でフイルム両端を把持したまま熱処理し、(c)
両端を把持しない状態で縦方向に0.1%〜10%の
弛緩を与え、(d)次に〔上記熱処理温度〕〜〔上記
熱処理温度−20℃〕の表面温度をもつ平滑ロール
に該フイルムを接触させる;ことを特徴とする二
軸延伸ポリエステルフイルムの製造方法である。 本発明を説明すると、本発明に用いるポリエス
テルはポリエチレンテレフタレート、ポリプチレ
ンテレフタレート、ポリエチレン―2,6―ナフ
タレートなど二軸延伸して供する線状ポリエステ
ルなどが選ばれ、これらは無機添加物を含んでも
よく、部分的に変性された共重合体や他の重合体
を少量含有する混合物であつてもよい。 製膜方法、一軸延伸の方法については特に規定
するものではない。 (a) 横延伸はガラス転移温度以上で3.0〜4.5倍延
伸するのが望ましい。延伸が完了したのちなる
べく急速にガラス転移温度以下に冷却する。実
際にはテンターのニユートラルゾーンを室温程
度の空気により冷却することになるが冷却ロー
ルを使用してもよい。 この冷却は、横延伸に際し、ボーイングを生
じさせないため必要である。 (b) 次いで両側端を把持したまま熱処理を施すの
であるが、このとき通常の熱処理より相当低い
温度である〔融点−160℃〕乃至〔融点−80
℃〕を選ぶことが肝要である。この温度より高
い温度では、この工程でボーイングが発生し、
幅方向に沿つた物性差が発生する。また上記の
下限温度より低い温度を選ぶとボーイングは発
生しないものの、フイルムの平面性が損なわれ
る。 しかし、このままでは熱固定が不充分である
ので熱収縮率が大きい。そこで (c) クリツプを離脱したあと、縦方向に若干の弛
緩処理を施すことが必須である。弛緩の大きさ
は弛緩区間への送り出しロール周速度と引取り
ロール周速度差%で表示すると0.1〜10%の範
囲で引取りロール側を遅くするのが好ましい。 (d) 弛緩に際しては或る程度の加熱が必要である
が、この温度は前記熱固定温度とそれより20℃
低い温度の間の範囲が望ましい。温度が高過ぎ
ると物性の劣化を起しやすくなり生産効率が低
下する。加熱方式はロールによるのが最も工業
的には簡便でしかも所望の結果が得られるので
適している。弛緩処理に際して加熱ロールへの
ニツプロール、張力を安定化させるためのダン
サーロールを用いることができる。 横方向の熱収縮改良については上記テンター
内の熱固定において、レール幅を先せばめにす
るトーインによつて対応することができる。 次に実施例をあげて更に説明する。 実施例 1 ポリエチレンテレフタレート〔固有粘度0.62〕
を溶融してTダイより押出し、急冷ドラム上でフ
イルム状に成形したのち縦方向に3.4倍延伸し、
次いでテンターによつて横方向に3.6倍延伸して
73μmの二軸延伸フイルムとし、更に該フイルム
の両端を把持したまま55℃に保つた1mの区間
(冷却区間)を20m/分の速度で通過させ、次い
で150℃に保つた長さ1.5mの区間を3区間通過さ
せ第3区間で2%トーイン(レール間隔の先せば
め)をつけた。その後クリツプから離脱させ3%
縦弛緩させながら140℃の表面温度をもつ平滑ロ
ールに接触させてから捲取つた。このときフイル
ムが加熱ロールと接触開始する位置をニツプロー
ルでニツプした。 比較例 1 実施例1において、縦弛緩処理を省略する以外
は全く同様にして二軸延伸フイルムを得た。 比較例 2 実施例1においてテンター内熱固定温度を230
℃にした以外は全く同様の製造方法によつて75μ
の二軸延伸フイルムとした。 比較例 3 実施例1においてテンター内熱固定温度を80℃
とした以外は全く同様の方法で二軸延伸フイルム
を製造したが、該フイルムの平面性が悪く、外観
のよいフイルムを得ることができなかつた。 比較例 4 実施例1においてテンター内熱処理までの工程
は全く同様とし、縦弛緩におけるロール温度を
180℃としたところフイルムが波状になり、外観
のよいフイルムを得ることができなかつた。 以上のうち実施例1のフイルムと外観のよいフ
イルムが得られた比較例1および2のフイルムの
物性を比較すると次のようであつた。
The present invention relates to a method for producing a biaxially oriented polyester film, and more specifically, to a method for producing a film with excellent uniformity that has excellent balance of physical properties in the longitudinal and lateral directions, with almost no difference in physical properties along the width direction of the film. Involved. Biaxially oriented polyester films are used for industrial purposes, but especially for applications such as photography, drafting, and magnetic disks, physical properties in both the vertical and horizontal directions, especially thermal expansion coefficient, humidity expansion coefficient, and thermal contraction coefficient, are well balanced. It is hoped that there will be. It is also desirable that the properties be the same in all parts of the product film. However, it has been extremely difficult to make the physical properties of the product film uniform in the width direction using the usual biaxial stretching method, that is, a method in which longitudinal stretching is followed by transverse stretching. The reason for this is that both ends of the film are held in the tenter, and the shrinkage stress of the film in the longitudinal direction due to lateral stretching is restrained by the holding means such as clips. The restraining force becomes relatively weak, and the expansion of the central portion of the film is delayed due to the shrinkage stress.
If a straight line is drawn along the lateral direction on the film surface before lateral stretching, this straight line will be deformed and curved into a concave shape in the film traveling direction. This phenomenon is called boeing. This bowing phenomenon causes the physical properties of the film in the width direction, particularly the humidity expansion coefficient and the temperature expansion coefficient, to become non-uniform. Due to the bowing phenomenon, a main axis of orientation is created at both end portions of the film that is further inclined vertically with respect to the bowing line, and the coefficient of humidity expansion and temperature expansion in the direction of this main axis is low, and the coefficient of expansion perpendicular to the direction of the main axis is lower. The physical property values tend to be higher in the direction. Several methods have been proposed to eliminate differences in physical properties in the width direction. For example, Japanese Patent Publication No. 37-1588 discloses a transverse-longitudinal stretching method, but it is not an essential countermeasure. JP-A-50-73978 proposes a technique of using nip rolls between the lateral stretching process and the heat treatment process, but this is impractical due to the risk of surface scratches. Also, JP-A-51-80372 and JP-A-Sho.
No. 54-137076 both show measures to reduce bowing, but these are related to simultaneous biaxial stretching and cannot be applied to sequential stretching. The inventors elucidated the process by which Boeing occurs, and
As a result of various studies on ways to reduce the bowing phenomenon, the present invention was arrived at. That is, in the present invention, when a thermoplastic polyester film that has been uniaxially stretched in the longitudinal direction is stretched in the transverse direction at a temperature higher than the glass transition temperature and then heat-treated, (a) the temperature of the film after the transverse stretching is once lowered to below the glass transition temperature; b) Heat-treat the film while holding both ends in a temperature range of [melting point -160℃] to [melting point -80℃], (c)
Give the film 0.1% to 10% relaxation in the longitudinal direction without gripping both ends, and then (d) contact the film with a smooth roll having a surface temperature of [the above heat treatment temperature] to [the above heat treatment temperature -20°C]. A method for producing a biaxially oriented polyester film is characterized in that: To explain the present invention, the polyester used in the present invention is selected from linear polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, etc., which are provided by biaxial stretching, and these may contain inorganic additives. , a partially modified copolymer, or a mixture containing small amounts of other polymers. The film forming method and the uniaxial stretching method are not particularly specified. (a) It is desirable that the transverse stretching is carried out by 3.0 to 4.5 times at a temperature higher than the glass transition temperature. After the stretching is completed, the film is cooled to below the glass transition temperature as quickly as possible. In reality, the neutral zone of the tenter is cooled with air at about room temperature, but a cooling roll may also be used. This cooling is necessary to prevent bowing during lateral stretching. (b) Next, heat treatment is performed while holding both ends, but at this time, the temperature is considerably lower than that of normal heat treatment [melting point -160°C] to [melting point -80°C].
℃] is important. At temperatures higher than this, bowing occurs in this process,
Differences in physical properties occur along the width direction. Further, if a temperature lower than the above-mentioned lower limit temperature is selected, bowing will not occur, but the flatness of the film will be impaired. However, as it is, heat fixation is insufficient and the heat shrinkage rate is large. Therefore, (c) after removing the clip, it is essential to perform some relaxation treatment in the longitudinal direction. When the magnitude of relaxation is expressed as a percentage difference between the circumferential speed of the delivery roll to the relaxation zone and the circumferential speed of the take-up roll, it is preferable to slow down the take-up roll side within a range of 0.1 to 10%. (d) A certain degree of heating is required for relaxation, but this temperature is 20°C higher than the heat setting temperature.
A range between lower temperatures is desirable. If the temperature is too high, physical properties tend to deteriorate and production efficiency decreases. As for the heating method, it is most suitable to use a roll because it is industrially simple and provides the desired result. During the relaxation treatment, a nip roll for the heating roll and a dancer roll for stabilizing the tension can be used. Improving lateral heat shrinkage can be achieved by toe-in in which the rail width is fitted first in the heat fixing in the tenter. Next, further explanation will be given by giving examples. Example 1 Polyethylene terephthalate [intrinsic viscosity 0.62]
was melted and extruded through a T-die, formed into a film on a quenching drum, and then stretched 3.4 times in the longitudinal direction.
Then, it was stretched 3.6 times in the transverse direction using a tenter.
A biaxially stretched film of 73 μm in diameter was passed through a 1 m section (cooling section) held at 55°C while holding both ends of the film, and then passed through a 1.5 m long section held at 150°C at a speed of 20 m/min. The train passed through three sections and applied 2% toe-in (adjustment of the rail spacing) in the third section. After that, it is removed from the clip and 3%
The film was brought into contact with a smooth roll having a surface temperature of 140°C while being vertically relaxed, and then rolled up. At this time, a nip roll was used to nip the film at the position where it started to come into contact with the heating roll. Comparative Example 1 A biaxially stretched film was obtained in exactly the same manner as in Example 1 except that the longitudinal relaxation treatment was omitted. Comparative Example 2 In Example 1, the heat fixing temperature inside the tenter was set to 230
75μ by the same manufacturing method except that the temperature was changed to ℃.
It was made into a biaxially stretched film. Comparative Example 3 In Example 1, the heat fixing temperature inside the tenter was set to 80°C.
A biaxially stretched film was produced in exactly the same manner except that the film had poor flatness and it was not possible to obtain a film with a good appearance. Comparative Example 4 The steps up to the heat treatment in the tenter were exactly the same as in Example 1, and the roll temperature during longitudinal relaxation was changed.
When the temperature was set at 180°C, the film became wavy and it was not possible to obtain a film with good appearance. Among the above, the physical properties of the film of Example 1 and the films of Comparative Examples 1 and 2, which produced films with good appearance, were compared as follows.

【表】 実施例1はいずれの項目も満足できる値を得て
いるが、比較例1では縦方向の熱収縮率が大き
い。比較例2ではフイルム中央は良好であるが端
部では線膨張率の方向による差が大きく中央しか
使えない。 比較例 5 実施例1において二軸延伸フイルムの冷却区間
の温度を55℃から80℃に変更する以外は全く同様
に行つた。得られた二軸延伸フイルムの特性は次
の通りである。 ボーイング量:60mm 140℃30分の熱収縮率 縦方向:0.3% 横方向:0.2% フイルム中央部の温度膨脹率の最大値と最小値
の差:0.40×10-5/℃ フイルム端部の温度膨脹率の最大値と最小値の
差:1.00×10-5/℃
[Table] Although Example 1 obtained satisfactory values for all items, Comparative Example 1 had a large longitudinal heat shrinkage rate. In Comparative Example 2, the center of the film is good, but at the edges, the linear expansion coefficient differs greatly depending on the direction, so only the center can be used. Comparative Example 5 The same procedure as in Example 1 was carried out except that the temperature in the cooling section of the biaxially stretched film was changed from 55°C to 80°C. The properties of the obtained biaxially stretched film are as follows. Bowing amount: 60mm Heat shrinkage rate at 140℃ for 30 minutes Longitudinal direction: 0.3% Lateral direction: 0.2% Difference between maximum and minimum thermal expansion coefficient at the center of the film: 0.40×10 -5 /℃ Temperature at the edge of the film Difference between maximum and minimum expansion rate: 1.00×10 -5 /℃

Claims (1)

【特許請求の範囲】 1 縦方向に一軸延伸した熱可塑性ポリエステル
フイルムをガラス転移温度以上で横方向に延伸
し、次いで熱処理を施すに際し、 横延伸直後のフイルムをガラス転移温度以下に
冷却し、しかる後フイルムの両側端を把持したま
まTm―160℃乃至Tm―80℃(但し、Tmはフイ
ルムの融点)の範囲の温度T1で熱処理を施し、
該フイルム両側端の把持手段を解き縦方向に0.1
〜10%の範囲の弛緩を与え、T1≧T2≧T1―20℃
の条件を満す温度T2に表面温度が保たれた平滑
ロールに該フイルムを接触させることを特徴とす
る二軸延伸ポリエステルフイルムの製造方法。
[Claims] 1. When a thermoplastic polyester film uniaxially stretched in the longitudinal direction is stretched in the transverse direction at a temperature higher than the glass transition temperature and then subjected to heat treatment, the film immediately after the horizontal stretching is cooled to a temperature lower than the glass transition temperature, and then After holding both ends of the film, heat treatment is performed at a temperature T 1 in the range of Tm - 160℃ to Tm - 80℃ (where Tm is the melting point of the film),
Release the gripping means on both sides of the film and twist it vertically by 0.1
Give relaxation in the range of ~10%, T 1 ≧T 2 ≧T 1 -20℃
A method for producing a biaxially stretched polyester film, which comprises bringing the film into contact with a smooth roll whose surface temperature is maintained at a temperature T2 that satisfies the following conditions.
JP13226080A 1980-09-25 1980-09-25 Manufacture of biaxially drawn polyester film Granted JPS5757630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13226080A JPS5757630A (en) 1980-09-25 1980-09-25 Manufacture of biaxially drawn polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13226080A JPS5757630A (en) 1980-09-25 1980-09-25 Manufacture of biaxially drawn polyester film

Publications (2)

Publication Number Publication Date
JPS5757630A JPS5757630A (en) 1982-04-06
JPS6243857B2 true JPS6243857B2 (en) 1987-09-17

Family

ID=15077111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13226080A Granted JPS5757630A (en) 1980-09-25 1980-09-25 Manufacture of biaxially drawn polyester film

Country Status (1)

Country Link
JP (1) JPS5757630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125648U (en) * 1987-02-09 1988-08-16

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139131A (en) * 1983-01-12 1984-08-09 Diafoil Co Ltd Polyester film for magnetic disk
JPH03216326A (en) * 1990-01-22 1991-09-24 Toyobo Co Ltd Manufacture of thermoplastic resin film
JPH0637079B2 (en) * 1989-10-16 1994-05-18 東洋紡績株式会社 Method for producing thermoplastic resin film
JP2841755B2 (en) * 1990-06-29 1998-12-24 東洋紡績株式会社 Polyamide film and method for producing the same
JP2002067141A (en) * 2000-08-29 2002-03-05 Unitika Ltd Method for manufacturing sequentially biaxially stretched film
US20070132155A1 (en) * 2005-12-13 2007-06-14 Robert Burgermeister Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break
JP6297379B2 (en) * 2014-03-26 2018-03-20 富士フイルム株式会社 Polyester resin film, method for producing polyester resin film, polarizing plate, image display device, hard coat film, sensor film for touch panel, glass scattering prevention film, and touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146573A (en) * 1975-06-10 1976-12-16 Asahi Chemical Ind Method of producing film excellent in dimensional stability
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146573A (en) * 1975-06-10 1976-12-16 Asahi Chemical Ind Method of producing film excellent in dimensional stability
JPS5396072A (en) * 1977-02-02 1978-08-22 Teijin Ltd Preparation of polyester film with excellent dimensional stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125648U (en) * 1987-02-09 1988-08-16

Also Published As

Publication number Publication date
JPS5757630A (en) 1982-04-06

Similar Documents

Publication Publication Date Title
JPH07106597B2 (en) Method for manufacturing high modulus film
JP2000177002A (en) Manufacture of polyester film
JPS6243857B2 (en)
JPS631174B2 (en)
JPH0125695B2 (en)
JPS5936851B2 (en) Manufacturing method of polyester film
JPH0455377B2 (en)
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPS58160122A (en) Manufacture of film having uniform physical properties
JP2002210818A (en) Method for manufacturing thermoplastic resin oriented sheet
JPS6243856B2 (en)
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JPS60262624A (en) Stretching method of polyester film
JPH0117857B2 (en)
JPH0380620B2 (en)
JPH0125696B2 (en)
JPH06166102A (en) Manufacture of polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPS62183327A (en) Manufacture of biaxially oriented film
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
JPH01165423A (en) Preparation of biaxially oriented polyester film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JP2002301762A (en) Manufacturing method for biaxially oriented polyester film
JPH06305016A (en) Manufacture of polyester film
JPS61242824A (en) Manufacturing method for biaxially oriented polyethylene terephthalate film