JP2002301762A - Manufacturing method for biaxially oriented polyester film - Google Patents

Manufacturing method for biaxially oriented polyester film

Info

Publication number
JP2002301762A
JP2002301762A JP2001107268A JP2001107268A JP2002301762A JP 2002301762 A JP2002301762 A JP 2002301762A JP 2001107268 A JP2001107268 A JP 2001107268A JP 2001107268 A JP2001107268 A JP 2001107268A JP 2002301762 A JP2002301762 A JP 2002301762A
Authority
JP
Japan
Prior art keywords
film
width direction
temperature
stretching
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001107268A
Other languages
Japanese (ja)
Inventor
Masayuki Haruta
雅幸 春田
Masanori Sugimoto
正規 杉本
Osamu Furuta
修 古田
Akito Hamano
明人 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001107268A priority Critical patent/JP2002301762A/en
Publication of JP2002301762A publication Critical patent/JP2002301762A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which relates to an effective orientation of a polyester film in a width direction in obtaining a biaxially oriented polyester film with a uniformity of physical property in the width direction by inhibiting a bowing phenomenon when the film is oriented in the width direction. SOLUTION: In the method for manufacturing the biaxially oriented polyester film which is obtained by orienting a substantially non-oriented polyester film in a longer direction and then orienting it in the width direction, the film to be oriented in the width direction is oriented by making its temperature higher at the end part than that in the center in the width direction of the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二軸延伸熱可塑性フ
ィルムの均一な製造方法に係わる。さらに詳しくは、横
延伸装置によって幅方向延伸、熱固定される際に生じる
ボーイング現象を抑制し、幅方向に均一な性質を有する
二軸延伸ポリエステルフィルムの製造方法に関する。
The present invention relates to a method for producing a biaxially stretched thermoplastic film uniformly. More specifically, the present invention relates to a method for producing a biaxially stretched polyester film that suppresses a bowing phenomenon that occurs when the film is stretched in the width direction and thermally fixed by a transverse stretching device and has uniform properties in the width direction.

【0002】[0002]

【従来の技術】ポリエステルフィルム、特に二軸延伸さ
れたポリエステルフィルムは、機械的強度や熱寸法安定
性などが優れていることから磁気記録用の基材、電子・
電気材料、各種包装材料などに広く使用されており、フ
ィルムの幅方向のどの部分でも同じ物性値である事が望
ましい。
2. Description of the Related Art Polyester films, especially biaxially stretched polyester films, are excellent in mechanical strength and thermal dimensional stability, and are therefore excellent in magnetic recording base materials, electronic and
It is widely used in electrical materials, various packaging materials, and the like, and it is desirable that the same physical property value be used in any portion of the film in the width direction.

【0003】しかし、従来の製造方法では製品フィルム
の幅方向の物性を均一にすることは極めて困難であっ
た。この理由は、延伸工程の横延伸装置内においてフィ
ルムの両端はクリップに把持されていて、幅方向延伸に
よって生じる長手方向の延伸応力と熱によって生じる収
縮応力、そして、熱固定工程によって発生する収縮応力
は、フィルムの端部においては把持手段であるクリップ
によって拘束されているに対し、フィルムの中央部は把
持手段の影響が低く拘束力が弱くなり、上記の応力の影
響によってクリップで把持されている端部に対してフィ
ルムの中央部分は遅れが生じるためである。
However, it is extremely difficult to make the physical properties of the product film uniform in the width direction by the conventional manufacturing method. The reason is that both ends of the film are gripped by clips in the transverse stretching device in the stretching process, and the longitudinal stretching stress generated by the widthwise stretching and the shrinkage stress generated by heat, and the shrinkage stress generated by the heat fixing process Is constrained by a clip that is a gripping means at the edge of the film, whereas the central part of the film is less affected by the gripping means, the binding force is weak, and the film is gripped by the clip due to the above-described stress. This is because the center portion of the film is delayed with respect to the edge.

【0004】そして、幅方向延伸と熱固定を連続に同一
の横延伸装置で行う場合において、横延伸装置に入る前
のフィルムの面上に幅方向に沿って直線を描いておく
と、この直線は横延伸装置内で変形してフイルムの進行
方向に対して延伸工程の始めの領域で凸型に変形し、延
伸工程の終わり直前の領域で直線に戻り、延伸工程終了
後には凹型に変形する。さらに熱固定工程の領域で凹形
の変形は最大値に達し、このまま曲線は変化しないでそ
の後の横延伸装置を通過し、横延伸装置を出たフィルム
には凹形の変形が残る。この現象はボーイング現象と称
されているものであるが、このボーイング現象はフィル
ムの物性値を幅方向に不均一にする原因となっている。
ボーイング現象によって、幅方向両端部のフィルムには
長手方向に対して傾斜した配向主軸が生じ、その配向主
軸の角度は幅方向で異なる傾向がある。
In the case where the stretching in the width direction and the heat setting are continuously performed by the same transverse stretching apparatus, if a straight line is drawn along the width direction on the surface of the film before entering the transverse stretching apparatus, the straight line is drawn. Is deformed in the horizontal stretching apparatus and deforms into a convex shape in the area at the beginning of the stretching step with respect to the traveling direction of the film, returns to a straight line in the area immediately before the end of the stretching step, and becomes concave after the stretching step. . Furthermore, in the region of the heat-setting step, the concave deformation reaches a maximum value, and the curve passes through the subsequent transverse stretching device without changing the curve, and the concave deformation remains in the film exiting the transverse stretching device. This phenomenon is called a bowing phenomenon, which causes the physical properties of the film to be non-uniform in the width direction.
Due to the bowing phenomenon, an orientation main axis inclined with respect to the longitudinal direction occurs in the film at both ends in the width direction, and the angle of the orientation main axis tends to be different in the width direction.

【0005】この結果、例えば熱収縮率の縦方向から±
45°方向の物性値の差がフィルムの幅方向で異なって
くる。このボーイング現象は、包装用途を一例とする
と、印刷ラミネート加工、製袋工程等において印刷ピッ
チずれ、斑の発生、カーリング、蛇行などのトラブルの
原因になっている。さらに詳しく述べると、幅方向延伸
と熱固定間に冷却工程を設ける従来技術としては、特公
昭35−11774号公報には幅方向延伸と熱固定工程
の間に20℃〜150℃の弛緩工程を介在させ、実質冷
却工程を設けた製造方法が提案されている。しかし、こ
の冷却工程の長さについては全く記載されていないばか
りか、ボーイング現象の抑制の効果も全く不明である。
As a result, for example, the heat shrinkage ratio is ±
The difference in the physical property values in the 45 ° direction differs in the width direction of the film. The bowing phenomenon causes troubles such as printing pitch deviation, unevenness, curling, meandering, and the like in a printing laminating process, a bag making process, and the like, for example, in packaging applications. More specifically, as a conventional technique for providing a cooling step between the width direction stretching and the heat setting, Japanese Patent Publication No. 35-11774 discloses a relaxation step at 20 ° C. to 150 ° C. between the width direction stretching and the heat setting step. A manufacturing method has been proposed in which an intervening and substantial cooling step is provided. However, the length of the cooling step is not described at all, and the effect of suppressing the bowing phenomenon is not completely known.

【0006】さらに、ボーイング現象を抑制ないし解消
する技術として、特開昭50−73978号公報には延
伸工程と熱固定工程との間にニップロール群を設置する
フィルムの製造方法が提案されている。しかし、この技
術ではニップロールを設置する中間帯の温度がガラス転
移点以上なので、ニップ点でのフイルムの剛性が低いた
め改良効果が少ない。また、特公昭63−24459号
公報には横延伸完了後のフイルムの両端部を把持しなが
ら中央付近の狭い範囲のみをニップロールによって強制
的な前進をもたらす工程が提案されている。しかし、こ
の技術ではニップロールを横延伸装置内の高温領域に設
置する必要があり、ロール及びその周辺装置を冷却する
必要があり、またフィルムが高温であるためロールによ
る傷が発生するおそれあり、実用面で制約される。
Further, as a technique for suppressing or eliminating the bowing phenomenon, Japanese Patent Application Laid-Open No. 50-73978 proposes a method for producing a film in which a nip roll group is provided between a stretching step and a heat fixing step. However, in this technique, since the temperature of the intermediate zone where the nip roll is installed is equal to or higher than the glass transition point, the rigidity of the film at the nip point is low, so that the improvement effect is small. Japanese Patent Publication No. Sho 63-24459 proposes a process in which a nip roll is used to forcibly advance only a narrow area near the center while gripping both ends of the film after the transverse stretching. However, in this technique, it is necessary to install the nip roll in a high-temperature region in the horizontal stretching device, it is necessary to cool the roll and its peripheral devices, and since the film is at a high temperature, there is a possibility that the roll may be damaged, so that practical use is not possible. In terms of size.

【0007】また、特公昭62−43856号公報に
は、横延伸直後のフイルムをガラス転移点以下に冷却し
た後、多段に熱固定を行ない熱固定と同時に幅方向に伸
張する技術が提案されている。しかし、この技術では冷
却工程でボーイング現象の抑制が少ないためか、又は熱
固定でボーイング現象が再発生しやすいためか冷却工程
に加えて多段に熱固定する工程と再延伸との複雑な工程
となっている。そのため横延伸装置内の雰囲気湿度やフ
ィルム温度を長時間にわたり安定して制御することが困
難ではないかと懸念される。また、この技術も特公昭3
5−11774号公報と同様に冷却工程の長さなどは記
載されていない。
Japanese Patent Publication No. Sho 63-43856 proposes a technique in which a film immediately after transverse stretching is cooled below the glass transition temperature, and then heat-fixed in multiple stages to simultaneously stretch in the width direction with heat fixing. I have. However, in this technique, the bowing phenomenon is less likely to be suppressed in the cooling step, or the bowing phenomenon is likely to occur again in the heat setting, or in addition to the cooling step, the heat fixing step in multiple stages and the complicated step of re-stretching Has become. Therefore, there is a concern that it may be difficult to stably control the atmospheric humidity and the film temperature in the horizontal stretching apparatus for a long time. In addition, this technology is also
As in JP-A-5-11774, the length of the cooling step is not described.

【0008】また、特開平1−165423号公報には
幅方向延伸後のフィルムを幅方向延伸温度以下に冷却し
た後、多段に昇温しながら幅方向に再度伸張する技術が
提案されている。しかし、この技術では、特公昭62−
43856号公報の場合と同様に冷却工程でのボーイン
グ現象の抑制効果が少ないためか、また、熱固定工程で
ボーイングが発生しやすいためか、冷却工程に加えて多
段に熱固定する工程と再延伸する工程との複雑な工程と
なっている。そのため横延伸装置内の雰囲気温度やフィ
ルム温度を長時間にわたり安定して制御することが困難
ではないかと懸念される。また、冷却温度はガラス転移
点以上延伸温度以下が好ましいとの記載がある。しか
し、この程度の冷却工程の長さや冷却工程の温度がガラ
ス転移点以上では、ボーイング現象の抑制効果が少ない
ことが危惧され、上記のような複雑な工程を採用せざる
を得なかったと推測される。
Japanese Patent Application Laid-Open No. 1-165423 proposes a technique in which a film after stretching in the width direction is cooled to a temperature not higher than the stretching temperature in the width direction, and then stretched again in the width direction while increasing the temperature in multiple stages. However, with this technology,
As in the case of JP-A-43856, it may be because the effect of suppressing the bowing phenomenon in the cooling step is small, or because the bowing is likely to occur in the heat fixing step, or in addition to the cooling step, the step of performing heat fixing in multiple stages and re-stretching. And a complicated process. Therefore, there is a concern that it may be difficult to stably control the ambient temperature and the film temperature in the horizontal stretching apparatus for a long time. Further, it is described that the cooling temperature is preferably equal to or higher than the glass transition point and equal to or lower than the stretching temperature. However, when the length of the cooling step or the temperature of the cooling step is equal to or higher than the glass transition point, it is feared that the effect of suppressing the bowing phenomenon is small, and it is presumed that the complicated steps as described above had to be employed. You.

【0009】また、特公平1−25694号公報、特公
平1−25696号公報には、フィルムの走行方向を逆
転させて横延伸、熱固定をする技術が提案されている。
しかし、この技術ではフィルムの走行方向を逆転させる
のにフィルムを一旦巻き取る必要があり、オンラインで
の製造方法であるため生産性の面で制約を受けるなどの
問題点がある。さらに、特開昭32−183327号公
報には縦延伸後、横延伸装置で横延伸、熱固定する際
に、横延伸工程と熱固定工程との間に側端部分のみガラ
ス転移点以上熱固定温度以下の温度の予熱工程を設置す
る技術が提案されている。しかし、この技術では、予熱
工程の温度を幅方向に温度勾配を持たせながら制御しな
ければならないため、フィルム温度を長時間にわたり制
御することが困難ではないかと懸念される。なお、この
技術の実施例ではこの予熱工程の長さがフイルム幅の半
分と短いことからボーイング現象の抑制の効果が少ない
と推測される。
Japanese Patent Publication Nos. 1-26944 and 1-26966 propose a technique in which the running direction of a film is reversed to perform transverse stretching and heat fixing.
However, in this technique, it is necessary to wind the film once in order to reverse the running direction of the film, and there is a problem in that the production method is an online method, so that productivity is limited. Further, Japanese Patent Application Laid-Open No. 32-183327 discloses that, after longitudinal stretching, when transverse stretching and heat fixing are performed by a transverse stretching apparatus, only the side end portions are heat-set at a glass transition point or higher between the transverse stretching step and the heat fixing step. A technique for installing a preheating step at a temperature lower than the temperature has been proposed. However, in this technique, it is necessary to control the temperature of the preheating step while providing a temperature gradient in the width direction, and therefore, there is a concern that it may be difficult to control the film temperature for a long time. In the embodiment of this technique, since the length of the preheating step is as short as half the film width, it is presumed that the effect of suppressing the bowing phenomenon is small.

【0010】また、特公平2−45976号公報には、
熱固定工程を2段階に分けて、第2段階目でフイルム幅
方向に温度分布を付与する熱処理方法が提案されてい
る。しかし、この技術では熱処理工程で発現するボーイ
ング現象の抑制に効果があるものの、延伸工程で発現す
るボーイング現象の抑制効果がなく、最終的に得られる
ボーイング現象の抑制効果が少ないことが推測される。
[0010] Also, Japanese Patent Publication No. 2-45776 discloses that
A heat treatment method has been proposed in which the heat setting step is divided into two stages, and a temperature distribution is imparted in the film width direction in the second stage. However, although this technique is effective in suppressing the bowing phenomenon that appears in the heat treatment step, it does not have the effect of suppressing the bowing phenomenon that appears in the stretching step, and it is presumed that the effect of suppressing the bowing phenomenon finally obtained is small. .

【0011】[0011]

【発明が解決しようとする課題】かかる課題に対し、ボ
ーイング現象を抑制せしめて幅方向に物性の均一なポリ
エステルフイルムを得ることができる効果的な幅方向延
伸にかかわる製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method relating to an effective stretching in the width direction in which a bowing phenomenon can be suppressed and a polyester film having uniform properties in the width direction can be obtained. .

【0012】[0012]

【課題を解決するための手段】本発明者らは、横延伸装
置内におけるボーイング線の変化を観察し、種々の研究
からボーイング現象の発生過程を解明し、このボーイン
グ現象を抑制する手段を検討して本発明に到達した。す
なわち本発明は実質的に無配向のポリエステルフイルム
を長手方向に延伸し、ついで幅方向に延伸する二軸延伸
ポリエステルフイルムを製造する方法であって、幅方向
に延伸する際のフイルム温度をフイルム幅方向に変化さ
せることを特徴とする二軸延伸ポリエステルフイルムの
製造方法である。この場合において、幅方向に延伸する
際、フィルム幅方向のフイルム端部の温度をフィルム中
央部より1℃〜30℃高くして幅方向に延伸することが
好適である。またこの場合において、幅方向に延伸する
際のフィルム温度をフイルム幅方向に変化させる手段と
して、熱風ファンを設置することが好適である。、幅方
向に延伸する際のフィルム温度をフイルム幅方向に変化
させる手段として、遠赤外線ヒーター、近赤外線ヒータ
ーを使用することガ好適である。さらにまた、この場合
において、幅方向に延伸直後、幅方向にフィルム温度を
測定することができる非接触赤外線式の放射温度計が設
置され、自動的に幅方向フィルム温度差を設けるように
端部加熱手段の出力が変化する装置を備えていることが
好適である。
Means for Solving the Problems The present inventors have observed changes in the bowing line in the horizontal stretching apparatus, clarified the process of the occurrence of the bowing phenomenon from various studies, and studied means for suppressing the bowing phenomenon. As a result, the present invention has been reached. That is, the present invention is a method for producing a biaxially oriented polyester film in which a substantially non-oriented polyester film is stretched in the longitudinal direction and then stretched in the width direction. This is a method for producing a biaxially stretched polyester film, characterized by changing the direction. In this case, when stretching in the width direction, it is preferable to stretch the film in the width direction by raising the temperature of the film end in the film width direction by 1 ° C. to 30 ° C. from the center of the film. In this case, it is preferable to install a hot air fan as a means for changing the film temperature in the film width direction when the film is stretched in the width direction. It is preferable to use a far-infrared heater or a near-infrared heater as a means for changing the film temperature in the film width direction when stretching in the width direction. Furthermore, in this case, immediately after stretching in the width direction, a non-contact infrared radiation thermometer capable of measuring the film temperature in the width direction is installed, and the end portion is automatically provided with the width direction film temperature difference. It is preferable to provide a device for changing the output of the heating means.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0014】本発明に使用されるポリエステルとは、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリエチレンナフタレートなどのポリエステル類で
あり、これらの混合物あるいは共重合ポリエステルでも
構わない。該ポリエステルは、上記ポリエステル以外に
本発明の効果を損なわない範囲で、有機もしくは無機の
滑剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止
剤などの添加物を含むポリエステル組成物を用いること
ができる。
The polyester used in the present invention is a polyester such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and may be a mixture or a copolymerized polyester thereof. As the polyester, a polyester composition containing additives such as an organic or inorganic lubricant, an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent is used as long as the effects of the present invention are not impaired in addition to the above polyester. be able to.

【0015】本発明におけるポリエステルを押出機に代
表される周知の溶融押出装置に供給し、該ポリエステル
の軟化点以上の温度で加熱溶融する。溶融した該組成物
は、Tダイなどのスリット状ダイから押し出し、冷却ロ
ール上に密着せしめ冷却固化し、実質的に無配向のポリ
エステルフイルムを得る。
The polyester of the present invention is supplied to a known melt extruder represented by an extruder, and is heated and melted at a temperature not lower than the softening point of the polyester. The melted composition is extruded from a slit die such as a T die, adhered on a cooling roll, and cooled and solidified to obtain a substantially non-oriented polyester film.

【0016】前記実質的に無配向のポリエステルフイル
ムを複数のロール間に供給することにより、連続的に長
手方向に延伸した一軸延伸フイルムを得る。すなわち
低周速回転に設定した複数のロール(以下、ロール群と
いう)と高周速回転に設定したロール群を通過させるこ
とにより、各ロール群の速度差によってフィルムに張力
を与えて長手方向に延伸する。長手方向に延伸して得ら
れた一軸延伸フィルムを予熱、延伸、熱固定、冷却工程
からなる横延伸装置を用いて幅方向に延伸し,フィルム
ワインダー等でによって巻き取られることは公知であ
る。
By supplying the substantially non-oriented polyester film between a plurality of rolls, a uniaxially stretched film continuously stretched in the longitudinal direction is obtained. Ie
The film is stretched in the longitudinal direction by applying tension to the film due to the speed difference between each roll group by passing through a plurality of rolls (hereinafter, referred to as a roll group) set at a low peripheral speed and a roll group set at a high peripheral speed. I do. It is known that a uniaxially stretched film obtained by stretching in the longitudinal direction is stretched in the width direction by using a transverse stretching apparatus including a preheating, stretching, heat setting, and cooling steps, and is wound by a film winder or the like.

【0017】本発明では、製膜・延伸条件として、この
ような樹脂の溶融・押出し条件、キャスティング条件、
長手方向延伸条件、幅方向延伸条件、熱固定条件、巻き
条件等を適宣選択できる。また本発明では、幅方向延
伸、冷却、熱固定工程が連接している場合や、上記工程
間に長手方向あるいは幅方向あるいは長手/幅両方向の
再延伸工程 及び弛緩 または定長熱処理工程が含まれる
場合は当然含まれる。さらに、長手方向へ延伸後幅方向
に延伸する製造方法以外の延伸方式も本発明に含まれ
る。例えば、長手方向に延伸後 幅方向に延伸してフイ
ルムを更に再長手方向に延伸する方式、長手方向の多段
延伸方式、などその要旨を越えない限り上記に限定され
るものではない。
In the present invention, the conditions for film formation and stretching include melting and extrusion conditions of such resins, casting conditions, and the like.
Longitudinal stretching conditions, widthwise stretching conditions, heat setting conditions, winding conditions, and the like can be appropriately selected. Further, in the present invention, a case where the stretching in the width direction, cooling, and heat setting steps are connected, or a re-stretching step in the longitudinal direction, the width direction, or both the longitudinal / width direction, and a relaxation or fixed-length heat treatment step are included in the above-described steps. The case is of course included. Furthermore, a stretching method other than the manufacturing method of stretching in the width direction after stretching in the longitudinal direction is also included in the present invention. For example, the film is stretched in the longitudinal direction and then stretched in the width direction, and the film is further stretched in the longitudinal direction, or a multi-stage stretching method in the longitudinal direction.

【0018】本発明の特徴である二軸延伸ポリエステル
フィルムの幅方向延伸方法を詳細に説明する。
The method of stretching the biaxially stretched polyester film in the width direction, which is a feature of the present invention, will be described in detail.

【0019】長手方向に延伸された一軸延伸ポリエステ
ルフィルムを横延伸装置を用いて幅方向に延伸する際、
横延伸装置のフイルム温度は、フィルムの幅方向中央部
でガラス転移温度〜融点未満の温度、好ましくは110
℃〜180℃であり、さらに好ましくは130〜160
℃である。また、フィルムの幅方向両端部は、中央部に
比べ1℃以上30℃以下の温度差分高温にする。フィル
ム温度を中央部より高温にするフィルム両端部割合は、
フィルム全幅に対して5%以上30%以下が好ましい。
When the uniaxially stretched polyester film stretched in the longitudinal direction is stretched in the width direction using a transverse stretching apparatus,
The film temperature of the transverse stretching apparatus is a glass transition temperature to a temperature lower than the melting point at the center in the width direction of the film, preferably 110 ° C.
° C to 180 ° C, more preferably 130 to 160 ° C.
° C. In addition, both ends in the width direction of the film are set to a temperature difference of 1 ° C. or more and 30 ° C. or less as compared with the central portion. The ratio of both ends of the film that makes the film temperature higher than the center is
It is preferably from 5% to 30% of the entire width of the film.

【0020】フィルムの幅方向中央部の温度がガラス転
移温度未満の低温では、幅方向延伸性が悪く破断が多発
し、かつ、幅方向延伸に起因する幅方向の厚み斑が増大
し好ましくなく、また、フィルムの幅方向中央部の温度
が融点近傍以上の高温では、厚み斑が増加し好ましくな
い。また、フィルムの幅方向両端部の温度差を中央部に
比べ1℃未満にすると、本発明によるフィルム幅方向の
物性差を均一化する効果が低減し好ましくなく、フィル
ムの幅方向両端部の温度差が中央部に比べ30℃を越え
るとフィルム幅方向両端部の熱結晶化が進行し破断が多
発し、かつ、横方向の厚み斑が増大し好ましくない。ま
た、フィルム温度を中央部より高温にするフィルム両端
部のフィルム全幅に対する割合が5%未満では、本発明
による、フィルム幅方向の物性差を均一化する効果が低
減し、かつ 幅方向延伸による変化がクリップの極近傍
に極度に集中するため破断が多発し好ましくなく、フィ
ルム温度を中央部より高温にするフィルム両端部のフィ
ルム全幅に対する割合が30%を越えると、フィルム幅
方向の物性差が均一化される幅方向の割合が低減し好ま
しくない。
If the temperature at the center of the film in the width direction is lower than the glass transition temperature, the film has poor stretchability in the width direction and frequently breaks, and the thickness unevenness in the width direction due to the stretching in the width direction increases, which is not preferable. If the temperature at the center in the width direction of the film is higher than the melting point or higher, unevenness in thickness increases, which is not preferable. Further, when the temperature difference between both ends in the width direction of the film is less than 1 ° C. as compared with the central portion, the effect of equalizing the difference in physical properties in the width direction of the film according to the present invention is reduced, which is not preferable. If the difference exceeds 30 ° C. as compared with the central portion, thermal crystallization at both ends in the film width direction proceeds, and rupture occurs frequently, and thickness unevenness in the lateral direction increases, which is not preferable. Further, when the ratio of the both ends of the film, in which the film temperature is higher than the center, to the entire width of the film is less than 5%, the effect of equalizing the physical property difference in the film width direction according to the present invention is reduced, and the change due to the stretching in the width direction. However, if the ratio of the film ends to the entire width of the film exceeds 30%, the difference in physical properties in the film width direction becomes uniform. The ratio in the width direction is reduced, which is not preferable.

【0021】横延伸倍率は、2.5倍以上である。延伸
倍率が2.5倍未満では、横方向の強度が低くなり、か
つ、幅方向延伸に起因する横方向の厚み斑が増大し好ま
しくない。より好ましくは3.0倍以上である。
The transverse stretching magnification is 2.5 times or more. When the stretching ratio is less than 2.5 times, the strength in the transverse direction is low, and the unevenness in the thickness in the transverse direction due to the stretching in the width direction is undesirably increased. More preferably, it is 3.0 times or more.

【0022】幅方向延伸工程でフィルムの幅方向に温度
分布を付与するには、フィルムの上面または下面より、
フィルムの進行方向に対し垂直方向より赤外線ヒーター
を用いて加熱する方法、熱風を吹き付ける方法、および
これらの組み合わせる方法等より選択することが好まし
い。
In order to provide a temperature distribution in the width direction of the film in the width direction stretching step, from the upper surface or the lower surface of the film,
It is preferable to select from a method of heating using an infrared heater from a direction perpendicular to the traveling direction of the film, a method of blowing hot air, a method of combining these, and the like.

【0023】また、上記加熱方法によるフイルム幅方向
の温度の制御は、テンター内にフィルム幅方向またはフ
ィルム流れ方向に対し仕切り板を設けることでより精度
の高い制御が可能となる。また、赤外線ヒーターを用い
て加熱する方法の場合、ヒーターの裏面と側面に反射板
を設けることにより、効率の良い加熱が可能となる。ま
た、フィルム幅方向に全幅加熱することができるスリッ
ト状の熱風を出す装置の中央部に遮蔽板を設置し、幅方
向で風速を変える事で温度分布を付与する方法を用いる
事もできる。
Further, the control of the temperature in the film width direction by the above-mentioned heating method can be performed with higher precision by providing a partition plate in the tenter in the film width direction or the film flow direction. In the case of a method of heating using an infrared heater, efficient heating can be achieved by providing a reflector on the back and side surfaces of the heater. A method of providing a temperature distribution by installing a shielding plate at the center of a device that emits hot air in a slit shape that can be heated in the width direction of the film and changing the wind speed in the width direction can also be used.

【0024】また、上記加熱方法によって加熱されたフ
ィルムを計測するには、赤外線放射温度計を用いて測定
する方法、熱電対を横延伸装置内でフィルムに接触させ
ながら測定する方法等を選択することで行うことが出来
る。
In order to measure the film heated by the above-mentioned heating method, a method using an infrared radiation thermometer, a method using a thermocouple in contact with the film in a horizontal stretching apparatus, and the like are selected. It can be done by doing.

【0025】[0025]

【作用】本発明によれば、ポリエステルフィルムを幅方
向に延伸する際、横方向延伸装置内で幅方向フィルム端
部の温度を中央部より高温にすることで、フィルム端部
の幅方向延伸応力を強制的に減少させる事により、本来
フィルムの幅方向で分布を生じていた延伸による変形量
を均一化させ、横延伸過程に発生するボーイング線の形
状が抑制することが出来る。
According to the present invention, when a polyester film is stretched in the width direction, the temperature of the width direction film end is made higher than that of the central portion in the transverse stretching apparatus, so that the width direction stretching stress at the film end is increased. Forcibly reduces the amount of deformation due to stretching, which originally had a distribution in the width direction of the film, and suppresses the shape of the bowing line generated in the transverse stretching process.

【0026】[0026]

【実施例】次に 本発明を実施例によって具体的に説明
する。なお、実施例及び比較例の評価に用いた測定方法
は次の通りである。
Next, the present invention will be described in detail with reference to examples. In addition, the measuring method used for evaluation of an Example and a comparative example is as follows.

【0027】1.ボーイング 本発明の効果確認のためボーイングを評価した。ボーイ
ングは、横延伸装置に入る前の長手方向一軸延伸フィル
ムの表面に幅方向に直線を描き、最終的に得られた弓形
の状況を、 B=b/W×100 (%) ここで、B=ボーイング(%) W=フィルム幅(mm) b=ボーイング線の最大凹量(mm) によって算出した。
1. Boeing Boeing was evaluated to confirm the effects of the present invention. Boeing draws a straight line in the width direction on the surface of the longitudinally uniaxially stretched film before entering the transverse stretching device, and describes the finally obtained arcuate condition as B = b / W × 100 (%) where B = Boeing (%) W = Film width (mm) b = Maximum concave amount of bowing line (mm)

【0028】2.厚みムラ 本発明の効果確認のため厚み斑を評価した。厚み斑は、
二軸延伸ポリエステルフィルムを長手方向、幅方向にそ
れぞれ2m×5cmの短冊状に切断し、安立電機(株)
製厚さ計K306Cを用い厚み形状を測定し、下記式に
より1m当たりの厚み斑を算出し、これを5回繰り返し
て平均値を厚み斑とした。 厚み斑(%)=(最大厚み−最小厚み)/平均厚み×1
00
2. Thickness unevenness Thickness unevenness was evaluated for confirming the effect of the present invention. Thick spots are
The biaxially stretched polyester film is cut into 2m x 5cm strips in the longitudinal and width directions, respectively, and Anritsu Electric Co., Ltd.
The thickness shape was measured using a thickness gauge K306C, the thickness unevenness per meter was calculated by the following equation, and this was repeated five times, and the average value was taken as the thickness unevenness. Thickness unevenness (%) = (maximum thickness−minimum thickness) / average thickness × 1
00

【0029】3.熱収縮率 フィルムの中央部、及び 中央から両側にそれぞれ幅方
向に45%(フィルムの全幅を100%として) 離れた
位置のフィルムを,23℃×65%RHの雰囲気中で、
幅方向に15mm、長さ方向に200mmの寸法にカット
し、標線間の寸法(L0)を読取顕微鏡によって正確に
測定した後、150℃のオーブン内30分間入れ、オー
ブンからフィルムを出した後、23℃×65%RHの雰
囲気中に15分以上 放置して平衡に達してから前期標
線間の寸法(L1)を測定し、次式より求めた。 熱収縮率(%)= [(L0−L1)/L0] × 100
3. Heat shrinkage rate The film at the center part of the film and 45% apart in the width direction on both sides from the center (assuming the total width of the film as 100%) is placed in an atmosphere of 23 ° C. × 65% RH.
The film was cut into a size of 15 mm in the width direction and 200 mm in the length direction, and the dimension between the marked lines (L 0 ) was accurately measured by a reading microscope. After that, it was left in an atmosphere of 23 ° C. × 65% RH for 15 minutes or more to reach equilibrium, and then the dimension (L 1 ) between the marked lines was measured, and calculated by the following equation. Heat shrinkage (%) = [(L 0 −L 1 ) / L 0 ] × 100

【0030】4.熱収縮率の斜め差 フィルムの中央部、及び端部すなわち中央から両側にそ
れぞれ幅方向に45%(フィルムの全幅を100%とし
て) 離れた位置のフイルムについてフィルム幅方向に対
して斜め45°と135°方向の熱収縮率を測定し、そ
の差を求めた。測定サンプルは上記斜め方向に沿って幅
15mm×長さ200mmの寸法にカットし、150℃のオ
ーブン内に30分間入れ、オーブンからフィルムを出し
た後、23℃×65%RHの雰囲気中に15分以上放置し
てから寸法を測定し、処理前の寸法に対する収縮率を求
めた。各斜め方向の収縮率の差の絶対値を熱収縮率の斜
め差とした。熱収縮率の斜め差が大きいフィルムほど高
温に晒された時にカールしやすいなどの不具合が生じ
る。
4. Oblique difference in heat shrinkage ratio The film at the center and at the edge, that is, 45% in the width direction on both sides from the center (total width of the film is 100%). The heat shrinkage in the 135 ° direction was measured, and the difference was determined. The measurement sample was cut along the above-mentioned oblique direction into a size of 15 mm width × 200 mm length, placed in an oven at 150 ° C. for 30 minutes, taken out of the oven, and then placed in an atmosphere of 23 ° C. × 65% RH. After being left for more than a minute, the dimensions were measured, and the shrinkage relative to the dimensions before the treatment was determined. The absolute value of the difference in the shrinkage ratio in each oblique direction was defined as the oblique difference in the heat shrinkage ratio. Problems such as a film having a large difference in thermal shrinkage having a large difference in heat shrinkage tend to curl when exposed to a high temperature.

【0031】製膜状況は、2時間、同一条件で二軸延伸
し、破断回数を調べた。
The state of film formation was biaxially stretched for 2 hours under the same conditions, and the number of breaks was examined.

【0032】(実施例1)十分に乾燥した無機滑剤を
0.1重量%含むポリエチレンテレフタレートペレット
(極限粘度0.62)を押し出し機に供給し、285℃で
溶融し、Tダイよりフィルム状に押し出し、直流高電圧
を印加した電極を用いて冷却ロールに静電密着させ冷却
固化せしめて厚さ182μmの無配向フィルムを得た。
横延伸工程でフィルムをクリップに把持しやすいように
するため、この無配向フィルムの端部の厚さは中央部の
厚さの1.5倍にした。無配向フィルムを長手方向に7
5℃で3.8倍に延伸し、その後 横延伸装置によって
幅方向に4.0倍延伸し、熱固定および5%の幅方向弛
緩処理を施した後に冷却し二軸延伸ポリエステルフィル
ムとした。横延伸装置内における温度は、予熱温度を熱
風吹き付けによりフイルム全幅で100℃、延伸温度を
熱風吹き付けによりフイルム中央部で140℃、幅方向
フイルム端部は 遠赤外線ヒーターで加熱し145℃と
した。幅方向延伸後のフィルム温度は横延伸工程後、赤
外線放射温度計を用いて測定した。熱固定温度は、熱風
吹き付けによりフイルム全幅で235℃とした。ここで
幅方向フィルム端部とは、全幅に対して20%の幅を左
右両クリップより中央部に均等に分割した幅を示す。そ
の後、通常のようにしてフィルムを巻き取った。
(Example 1) Polyethylene terephthalate pellets containing 0.1% by weight of a sufficiently dried inorganic lubricant
(Intrinsic viscosity 0.62) is supplied to an extruder, melted at 285 ° C., extruded into a film form from a T-die, electrostatically adhered to a cooling roll using an electrode to which a high DC voltage is applied, and solidified by cooling. A non-oriented film having a thickness of 182 μm was obtained.
The thickness of the non-oriented film at the end was set to 1.5 times the thickness at the center in order to make it easy to hold the film on the clip in the transverse stretching step. Non-oriented film in longitudinal direction 7
The film was stretched 3.8 times at 5 ° C., then stretched 4.0 times in the width direction by a transverse stretching device, subjected to heat setting and 5% relaxation in the width direction, and then cooled to obtain a biaxially stretched polyester film. The temperature in the horizontal stretching apparatus was set to 100 ° C. in the entire width of the film by blowing hot air at a preheating temperature, 140 ° C. in the center of the film by blowing hot air, and 145 ° C. to the end in the width direction by a far infrared heater. The film temperature after stretching in the width direction was measured using an infrared radiation thermometer after the transverse stretching step. The heat setting temperature was 235 ° C. over the entire width of the film by blowing hot air. Here, the width direction film edge means a width obtained by equally dividing a width of 20% of the entire width into a center portion from both left and right clips. Thereafter, the film was wound up as usual.

【0033】(実施例2)横延伸装置内で遠赤外線ヒー
ターにより加熱されるフイルム端部の温度を150℃と
する以外は実施例1と同様にして二軸延伸ポリエステル
フィルムを得た。
(Example 2) A biaxially stretched polyester film was obtained in the same manner as in Example 1 except that the temperature of the film end heated by the far-infrared heater in the horizontal stretching apparatus was set to 150 ° C.

【0034】(実施例3)横延伸装置内で遠赤外線ヒー
ターにより加熱されるフィルム端部の温度を155℃と
する以外は実施例1と同様にして二軸延伸ポリエステル
フィルムを得た。
Example 3 A biaxially stretched polyester film was obtained in the same manner as in Example 1 except that the temperature of the film edge heated by the far-infrared heater in the horizontal stretching apparatus was 155 ° C.

【0035】(実施例4)横延伸装置内で遠赤外線ヒー
ターにより加熱されるフィルム端部の温度を160℃と
する以外は実施例1と同様にして二軸延伸ポリエステル
フィルムを得た。
Example 4 A biaxially stretched polyester film was obtained in the same manner as in Example 1 except that the temperature of the film edge heated by the far-infrared heater in the horizontal stretching apparatus was set to 160 ° C.

【0036】(実施例5)横延伸装置内で遠赤外線ヒー
ターにより加熱されるフィルム端部の温度を150℃と
し、端部加熱する位置を全幅5%とする以外は実施例1
と同様にして二軸延伸ポリエステルフィルムを得た。
Example 5 Example 1 was repeated except that the temperature of the end of the film heated by the far-infrared heater in the horizontal stretching apparatus was set to 150 ° C., and the position of the end heated was set to 5% of the entire width.
In the same manner as in the above, a biaxially stretched polyester film was obtained.

【0037】(実施例6)横延伸装置内で遠赤外線ヒー
ターにより加熱されるフィルム端部の温度を150℃と
し、端部加熱する位置を全幅40%とする以外は実施例
1と同様にして二軸延伸ポリエステルフィルムを得た。
(Example 6) In the same manner as in Example 1 except that the temperature of the end of the film heated by the far-infrared heater in the horizontal stretching apparatus was set to 150 ° C, and the position for heating the end was set to 40% of the entire width. A biaxially stretched polyester film was obtained.

【0038】(実施例7)横延伸装置内のフィルム中央
部の温度を80℃とし、かつ、遠赤外線ヒーターにより
加熱されるフィルム端部の温度を90℃とする以外は実
施例1と同様にして二軸延伸ポリエステルフィルムを得
た。
Example 7 The procedure of Example 1 was repeated except that the temperature at the center of the film in the horizontal stretching apparatus was 80 ° C., and the temperature at the edge of the film heated by the far-infrared heater was 90 ° C. Thus, a biaxially stretched polyester film was obtained.

【0039】(実施例8)横延伸装置内のフィルム中央
部の温度を190℃とし、かつ、遠赤外線ヒーターによ
り加熱されるフィルム端部の温度を200℃とする以外
は実施例1と同様にして二軸延伸ポリエステルフィルム
を得た。
Example 8 The procedure of Example 1 was repeated except that the temperature at the center of the film in the horizontal stretching apparatus was 190 ° C. and the temperature at the edge of the film heated by the far-infrared heater was 200 ° C. Thus, a biaxially stretched polyester film was obtained.

【0040】(比較例1)横延伸装置内のフィルム中央
部の温度を140℃とし、遠赤外線ヒーターを使用しな
い以外は実施例1と同様にして2軸配向ポリエステルフ
ィルムを得た。
(Comparative Example 1) A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the temperature of the central portion of the film in the horizontal stretching apparatus was set at 140 ° C and a far-infrared heater was not used.

【0041】実施例と比較例における製膜条件とフィル
ム評価結果を表1に示す。
Table 1 shows film forming conditions and film evaluation results in Examples and Comparative Examples.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によれば、幅方向延伸でのボーイ
ング現象が抑制し、熱収縮率の斜め差が小さく、厚み斑
も小さな二軸延伸ポリエステルフィルムを破断の少ない
状態で製造できることがわかる。
According to the present invention, it can be seen that a bowing phenomenon in the stretching in the width direction is suppressed, a biaxially stretched polyester film having a small oblique difference in the heat shrinkage and a small thickness unevenness can be produced with little breakage. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 明人 愛知県犬山市木津字前畑344番地 東洋紡 績株式会社犬山工場内 Fターム(参考) 4F210 AA24 AG01 AP05 AR06 QC06 QD32 QD36 QD39 QG01 RG67 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akito Hamano 344 Maebata, Kizu-shaped, Inuyama-shi, Aichi F-term in the Inuyama Plant of Toyobo Co., Ltd. 4F210 AA24 AG01 AP05 AR06 QC06 QD32 QD36 QD39 QG01 RG67

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実質的に無配向のポリエステルフィルム
を長手方向に延伸し、ついで幅方向に延伸する二軸延伸
ポリエステルフィルムを製造する方法であって、幅方向
に延伸する際のフィルム温度をフィルム幅方向に変化さ
せることを特徴とする二軸延伸ポリエステルフィルムの
製造方法。
1. A method for producing a biaxially stretched polyester film in which a substantially non-oriented polyester film is stretched in a longitudinal direction and then stretched in a width direction. A method for producing a biaxially stretched polyester film, characterized by changing the width in the width direction.
【請求項2】 請求項1項記載の二軸延伸ポリエステル
フィルムの製造方法であって、幅方向に延伸する際、フ
ィルム幅方向のフイルム端部の温度をフィルム中央部よ
り1℃〜30℃高くして幅方向に延伸することを特徴と
する二軸延伸ポリエステルフィルムの製造方法。
2. The method for producing a biaxially stretched polyester film according to claim 1, wherein, when the film is stretched in the width direction, the temperature of the film end in the film width direction is higher by 1 ° C. to 30 ° C. than that of the center of the film. And stretching the film in the width direction.
【請求項3】 請求項1あるいは2項記載の二軸延伸ポ
リエステルフィルムの製造方法であって、幅方向に延伸
する際のフィルム温度をフイルム幅方向に変化させる手
段として、熱風ファンを設置することを特徴とする二軸
延伸ポリエステルフィルムの製造方法。
3. The method for producing a biaxially stretched polyester film according to claim 1, wherein a hot air fan is provided as a means for changing a film temperature in the film width direction when the film is stretched in the width direction. A method for producing a biaxially stretched polyester film.
【請求項4】 請求項1あるいは2項記載の二軸延伸ポ
リエステルフィルムの製造方法であって、幅方向に延伸
する際のフィルム温度をフイルム幅方向に変化させる手
段として、遠赤外線ヒーター、近赤外線ヒーターを使用
することを特徴とする二軸延伸ポリエステルフィルムの
製造方法。
4. The method for producing a biaxially stretched polyester film according to claim 1, wherein the means for changing the film temperature in the film width direction in the film width direction in the film width direction is a far-infrared heater or a near-infrared ray. A method for producing a biaxially stretched polyester film, comprising using a heater.
【請求項5】 請求項1、2、3、4のいずれかに記載
の二軸延伸ポリエステルフィルムの製造方法であって、
幅方向に延伸直後、幅方向にフィルム温度を測定するこ
とができる非接触赤外線式の放射温度計が設置され、自
動的に幅方向フィルム温度差を設けるように端部加熱手
段の出力が変化する装置を備えていることを特徴とする
二軸延伸ポリエステルフィルムの製造方法。
5. The method for producing a biaxially stretched polyester film according to any one of claims 1, 2, 3, and 4,
Immediately after stretching in the width direction, a non-contact infrared radiation thermometer capable of measuring the film temperature in the width direction is installed, and the output of the edge heating means changes so as to automatically provide a width-direction film temperature difference. A method for producing a biaxially stretched polyester film, comprising a device.
JP2001107268A 2001-04-05 2001-04-05 Manufacturing method for biaxially oriented polyester film Withdrawn JP2002301762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107268A JP2002301762A (en) 2001-04-05 2001-04-05 Manufacturing method for biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107268A JP2002301762A (en) 2001-04-05 2001-04-05 Manufacturing method for biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JP2002301762A true JP2002301762A (en) 2002-10-15

Family

ID=18959612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107268A Withdrawn JP2002301762A (en) 2001-04-05 2001-04-05 Manufacturing method for biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP2002301762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540177A (en) * 2005-05-10 2008-11-20 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Method and apparatus for transverse stretching a raw web
WO2010095316A1 (en) * 2009-02-18 2010-08-26 コニカミノルタオプト株式会社 Optical film manufacturing method
KR20170129783A (en) 2015-03-25 2017-11-27 도요보 가부시키가이샤 Heat-shrinkable polyester-based film and packaging body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540177A (en) * 2005-05-10 2008-11-20 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Method and apparatus for transverse stretching a raw web
WO2010095316A1 (en) * 2009-02-18 2010-08-26 コニカミノルタオプト株式会社 Optical film manufacturing method
KR20110122186A (en) * 2009-02-18 2011-11-09 코니카 미놀타 옵토 인코포레이티드 Optical film manufacturing method
JPWO2010095316A1 (en) * 2009-02-18 2012-08-23 コニカミノルタアドバンストレイヤー株式会社 Manufacturing method of optical film
JP5601317B2 (en) * 2009-02-18 2014-10-08 コニカミノルタ株式会社 Manufacturing method of optical film
TWI485058B (en) * 2009-02-18 2015-05-21 Konica Minolta Opto Inc Production method of optical film
CN102325642B (en) * 2009-02-18 2016-05-18 柯尼卡美能达精密光学株式会社 The manufacture method of blooming
KR101630477B1 (en) * 2009-02-18 2016-06-14 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Optical film manufacturing method
KR20170129783A (en) 2015-03-25 2017-11-27 도요보 가부시키가이샤 Heat-shrinkable polyester-based film and packaging body
US9944012B2 (en) 2015-03-25 2018-04-17 Toyobo Co., Ltd. Heat-shrinkable polyester film and package

Similar Documents

Publication Publication Date Title
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
JP2000177002A (en) Manufacture of polyester film
JPS631174B2 (en)
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JP2002301762A (en) Manufacturing method for biaxially oriented polyester film
JPH1044230A (en) Preparation of biaxially oriented polyamide film
JP2002210818A (en) Method for manufacturing thermoplastic resin oriented sheet
JP2841755B2 (en) Polyamide film and method for producing the same
JP4810747B2 (en) Method for producing biaxially stretched polyester film
JP3006751B2 (en) Thermoplastic resin film having excellent thickness uniformity and method for producing the same
JP2002361734A (en) Method for producing biaxially oriented polyamide film
JPH11216759A (en) Manufacture of thermoplastic resin film
JP2002192609A (en) Manufacturing method of biaxially oriented polyester film
JPS62268629A (en) Heat treating method for thermoplastic resin film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JPH06166102A (en) Manufacture of polyester film
JP2013107316A (en) Biaxially oriented polyester film excellent in secondary processability
JP2917443B2 (en) Thermoplastic stretched film
JPH04142918A (en) Manufacture of thermoplastic resin film
JPH01165423A (en) Preparation of biaxially oriented polyester film
JP2841817B2 (en) Method for producing thermoplastic resin film
JP2003019748A (en) Manufacturing method for thermoplastic resin film
JPH11115043A (en) Biaxially stretched polyester film and its manufacture
JP2004276565A (en) Manufacturing process of biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A761 Written withdrawal of application

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A761