JPH0773877B2 - Method for producing biaxially oriented polyester film - Google Patents

Method for producing biaxially oriented polyester film

Info

Publication number
JPH0773877B2
JPH0773877B2 JP30083089A JP30083089A JPH0773877B2 JP H0773877 B2 JPH0773877 B2 JP H0773877B2 JP 30083089 A JP30083089 A JP 30083089A JP 30083089 A JP30083089 A JP 30083089A JP H0773877 B2 JPH0773877 B2 JP H0773877B2
Authority
JP
Japan
Prior art keywords
film
temperature
width direction
biaxially oriented
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30083089A
Other languages
Japanese (ja)
Other versions
JPH03161319A (en
Inventor
淳二 小林
寛志 徳田
剛 石田
正己 越中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30083089A priority Critical patent/JPH0773877B2/en
Publication of JPH03161319A publication Critical patent/JPH03161319A/en
Publication of JPH0773877B2 publication Critical patent/JPH0773877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は二軸配向ポリエステルフイルムの製造方法に関
し、更に詳しくはフイルム幅方向に沿って物性が均一で
あり、かつ寸法変化及びその面内異方性が極めて小さい
二軸配向ポリエステルフイルムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for producing a biaxially oriented polyester film. More specifically, the physical properties are uniform along the width direction of the film, and dimensional changes and in-plane variations thereof are also present. The present invention relates to a method for producing a biaxially oriented polyester film having extremely low toroidal properties.

<従来技術> 二軸配向ポリエステルフイルムは種々の用途に供されて
いるが、なかでもフレキシブル液晶パネル,写真,製
図,磁気デイスクの用途では縦横両方向の特性特に温度
膨張率,湿度膨張率,熱収縮率のバランスしていること
が望まれている。しかし、通常の逐次二軸延伸法すなわ
ち縦延伸に続いてステンターにて横延伸を行なう方法に
おいて、製品フイルの幅方向の物性を均一にすることは
極めて困難であった。これは、下記の現象に原因があ
る。
<Prior Art> Biaxially oriented polyester films are used for various purposes. Among them, in the applications of flexible liquid crystal panels, photographs, drawings, and magnetic disks, characteristics in both vertical and horizontal directions, especially temperature expansion coefficient, humidity expansion coefficient, and heat shrinkage. It is hoped that the rates are balanced. However, it was extremely difficult to make the physical properties of the product film uniform in the width direction in the usual sequential biaxial stretching method, that is, the method in which the longitudinal stretching is followed by the transverse stretching with a stenter. This is due to the following phenomenon.

ステンター内でのフイルムの横延伸においては縦方向の
収縮応力をともなう。ところがフイルムの両側端部はク
リップ等で把持され強く拘束されているから、上記収縮
応力の影響が小さい。一方フイルム中央部は拘束力が比
較的弱いから、上記収縮応力の影響を大きく受ける。こ
のため、フイルム中央部が両側端部に比して位置的に遅
れて走行するようになり、また分子配向も緩和されるよ
うになる。例えば、横延伸の前にフイルム面に幅方向に
直線を描くと、横延伸とそれにつづく緊張熱処理の間
に、この直線はフイルム進行方向に向って凹形の曲線と
なる。この現象は通常ボーイングと称されているもので
ある。このボーイングは逐次二軸延伸では避け難いもの
である。このボーイングによって、フイルムは幅方向で
の物性に分布を持つようになり、中央部と両側端部とに
物性差(特に温度膨張率,湿度膨張率の不均一性)を生
ずる。すなわち、フイルムの中央部と両側端部で分子配
向状態が違ってくる。このようなフイルムは再加熱した
とき熱収縮率差によって異形収縮のトラブルを起し、ま
たコーティング等の加工工程でフイルムの蛇行を発生す
るようになる。
Lateral stretching of the film in the stenter is accompanied by longitudinal shrinkage stress. However, since both end portions of the film are gripped and strongly restrained by clips or the like, the influence of the shrinkage stress is small. On the other hand, since the central portion of the film has a relatively weak restraining force, it is greatly affected by the shrinkage stress. Therefore, the central portion of the film travels with a positional delay as compared with the both end portions, and the molecular orientation is also relaxed. For example, if a straight line is drawn in the width direction on the film surface before the lateral stretching, the straight line becomes a concave curve in the film advancing direction during the lateral stretching and the subsequent tension heat treatment. This phenomenon is usually called Boeing. This bowing is inevitable in successive biaxial stretching. Due to this bowing, the film has a distribution of physical properties in the width direction, and a difference in physical properties (particularly non-uniformity of thermal expansion coefficient and humidity expansion coefficient) occurs between the central portion and both end portions. That is, the molecular alignment state differs between the center part and both end parts of the film. When such a film is reheated, a difference in heat shrinkage causes a problem of irregular shape shrinkage, and the film is meandered in a processing step such as coating.

従来、ボーイング現象に対する改善法が種々提案されて
いる。例えば、特開平1−165423号公報には横延伸後フ
イルムを一旦横延伸温度以下に冷却し、続いて2以上に
分割された温度領域で幅方向に2〜20%伸張させながら
昇温し、次いで熱固定する方法が提案されている。しか
し、この方法ではボーイングの割合や温度膨張率の異方
性は小さくできるものの、低温から高温までの横方向熱
収が著しく大きくなる。この結果、例えば磁気ディスク
のベースフイルムとしては使用できないことになる。
Conventionally, various methods for improving the bowing phenomenon have been proposed. For example, in JP-A-1-165423, after transverse stretching, the film is once cooled to a transverse stretching temperature or lower, and subsequently heated in a temperature region divided into two or more while being stretched by 2 to 20% in the width direction, Then, a method of heat setting has been proposed. However, although this method can reduce the bowing ratio and the anisotropy of the coefficient of thermal expansion, the lateral heat absorption from a low temperature to a high temperature becomes significantly large. As a result, it cannot be used as a base film of a magnetic disk, for example.

また特開平1−204723号公報には横方向の延伸を90℃以
上の温度から始めて10℃/秒以下の速度で必要最高温度
まで昇温しながら行い、横延伸後上記最高温度以下の温
度で横方向に0.5〜6%リラックスさせ、その後80〜120
℃で縦方向に0.1〜1.0%リラックスさせる方法で提案さ
れている。しかし、この方法も横方向熱収の大きいフイ
ルムが得られる。そして横方向熱収が実用上問題のない
レベルまで小さくなるように横方向のリラックスを行う
と、横延伸工程と横リラックス工程とが連続しているこ
とから幅方向均一性の効果が減少する。さらに、横方向
のリラックスを横延伸機内で実施する方法は設備が複雑
になるばかりでなく、設備コストが非常に高くなる。
Further, in JP-A-1-204723, stretching in the transverse direction is started at a temperature of 90 ° C. or higher and is raised at a rate of 10 ° C./sec or lower to a required maximum temperature, and after transverse stretching at a temperature of the maximum temperature or lower. Relax laterally 0.5-6%, then 80-120
It is proposed as a method of relaxing 0.1 to 1.0% in the vertical direction at ℃. However, this method also yields a film having a large heat absorption in the lateral direction. Then, if the transverse relaxation is performed so that the heat absorption in the transverse direction is reduced to a level at which there is no practical problem, the effect of the uniformity in the width direction is reduced because the transverse stretching step and the transverse relaxing step are continuous. Further, the method of performing the relaxation in the transverse direction in the transverse stretching machine not only complicates the equipment, but also increases the equipment cost.

<発明の目的> 本発明の目的は、フイルム幅方向に沿って物性が均一で
あり、かつ寸法変化及びその面内異方性が極めて小さい
二軸配向ポリエステルフイルムの製造方法を提供するこ
とにある。
<Object of the Invention> An object of the present invention is to provide a method for producing a biaxially oriented polyester film having uniform physical properties along the width direction of the film, and having extremely small dimensional change and in-plane anisotropy thereof. .

<発明の構成・効果> 本発明の目的は、本発明によれば、走行する縦延伸ポリ
エステルフイルムに横延伸,熱固定,熱弛緩の処理を順
次施して二軸配向ポリエステルフイルムを製造する方法
であって、(イ)横延伸を、ポリエステルのガラス転移
点(Tg)より20℃以上高い温度から始めて、ポリエステ
ルの融点(Tm)より120〜30℃低い温度まで昇温しなが
ら行ない、(ロ)熱固定を、横延伸終了時の温度から始
めて、フイルム幅方向に5〜20%伸張させながらかつ
(Tm−20)℃以下の温度まで昇温して行ない、次いで
(ハ)熱固定フイルムをTg以下の温度に冷却し、その後
(ニ)熱弛緩を、フイルム幅方向を拘束せずかつ4〜10
Kg/cm2の低い走行張力下、(Tg+30)〜(Tg+80)℃の
温度で0.3〜20秒間行なうことを特徴とする二軸配向ポ
リエステルフイルムの製造方法によって達成される。
<Structure / Effect of Invention> According to the present invention, the object of the present invention is to provide a biaxially oriented polyester film by sequentially subjecting a running longitudinally stretched polyester film to transverse stretching, heat setting and heat relaxation. Therefore, (a) the transverse stretching is started at a temperature 20 ° C or more higher than the glass transition point (Tg) of the polyester, and is raised to a temperature 120 to 30 ° C lower than the melting point (Tm) of the polyester. The heat setting is started from the temperature at the end of the transverse stretching, and the temperature is raised to a temperature of (Tm-20) ° C or less while stretching the film in the width direction by 5 to 20%, and then (c) the heat setting film is heated to Tg. After cooling to the following temperature, (d) thermal relaxation is performed without restraining the film width direction and 4 to 10
It is achieved by a method for producing a biaxially oriented polyester film, which is carried out at a temperature of (Tg + 30) to (Tg + 80) ° C. for 0.3 to 20 seconds under a low running tension of Kg / cm 2 .

本発明におけるポリエステルはポリエチレンテレフタレ
ート,ポリエチレン−2,6−ナフタレートに代表される
芳香族ポリエステルであり、ホモポリマー,コポリマ
ー,ブレンドポリマーのいずれでもよい。例えばポリエ
チレンテレフタレートなどに20モル%以下の第三成分を
共重合したコポリエステルであってよい。またポリエチ
レンテレフタレートやコポリエステルに20重量%以下の
第三成分をブレンドしたブレンドポリマーであってもよ
い。
The polyester in the present invention is an aromatic polyester represented by polyethylene terephthalate and polyethylene-2,6-naphthalate, which may be a homopolymer, a copolymer or a blend polymer. For example, it may be a copolyester obtained by copolymerizing polyethylene terephthalate with 20 mol% or less of a third component. It may also be a blend polymer obtained by blending polyethylene terephthalate or copolyester with 20% by weight or less of a third component.

ポリエチレンテレフタレートは、テレフタル酸またはそ
のエステル形成性誘導体とエチレングリコールまたはそ
のエステル形成性誘導体とを、好ましくは触媒の存在
下、反応させることで製造する。また上記反応におい
て、第三成分としてエステル形成官能基を有する化合物
を添加反応させることでコポリエステルを製造すること
ができる。また上記反応の完結前または後に第三成分を
添加ブレンドすることでブレンドポリマーを製造するこ
とができる。本発明におけるポリエステルには安定剤
(例えばリン酸,亜リン酸,これらのエステル等),滑
剤(例えば酸化チタン,シリカ,炭酸カルシウム等),
帯電防止剤,難燃剤等の他の改質剤を含有させることが
できる。
Polyethylene terephthalate is produced by reacting terephthalic acid or its ester-forming derivative with ethylene glycol or its ester-forming derivative, preferably in the presence of a catalyst. In the above reaction, a copolyester can be produced by adding and reacting a compound having an ester-forming functional group as the third component. Also, a blended polymer can be produced by adding and blending the third component before or after the completion of the above reaction. The polyester in the present invention includes stabilizers (eg phosphoric acid, phosphorous acid, esters thereof, etc.), lubricants (eg titanium oxide, silica, calcium carbonate etc.),
Other modifiers such as antistatic agents and flame retardants can be included.

本発明における縦延伸ポリエステルフイルムは、例えば
ポリエステルをシート状に溶融押出し、急冷した未延伸
フイルムを、ロール加熱,赤外線加熱等で加熱して縦方
向に延伸することで得られる。この延伸は2個以上のロ
ールの周速差を利用して行なうのが好ましい。延伸温度
はポリエステルのガラス転移点(Tg)より高い温度、更
にはTgより20〜30℃高い温度とするのが好ましい。延伸
倍率は、最終的なフイルムの物性にもよるが3倍以上、
更には3.5倍以上とするのが好ましい。この倍率はさら
に5倍以下とするのが好ましい。
The longitudinally stretched polyester film in the present invention can be obtained, for example, by melt-extruding polyester into a sheet, and rapidly cooling the unstretched film to be stretched in the longitudinal direction by heating with roll heating or infrared heating. This stretching is preferably performed by utilizing the peripheral speed difference between two or more rolls. The stretching temperature is preferably higher than the glass transition point (Tg) of polyester, and more preferably 20 to 30 ° C. higher than Tg. The draw ratio depends on the physical properties of the final film, but it is 3 times or more,
Further, it is preferably 3.5 times or more. This magnification is preferably 5 times or less.

本発明においては縦延伸ポリエステルフイルムに横延
伸,熱固定,熱弛緩の処理を順次施して二軸配向フイル
ムとするが、これら処理はフイルムを走行させながら行
なう。
In the present invention, the longitudinally stretched polyester film is sequentially subjected to the treatments of transverse stretching, heat setting and heat relaxation to obtain a biaxially oriented film. These treatments are carried out while the film is running.

横延伸の処理はポリエステルのガラス転移点(Tg)より
20℃以上高い温度から始める。そしてポリエステルの融
点(Tm)より(120〜30)℃低い温度まで昇温しながら
行なう。この延伸開始温度は(Tg+31)℃以下であるこ
とが好ましく、例えばポリエチレンテレフタレートの場
合89〜100℃の温度範囲内、またポリエチレン−2,6−ナ
フタレートの場合133〜144℃の温度範囲内にあることが
好ましい。また延伸最高温度はTmより(100〜40)℃低
い温度であることが好ましい。
The transverse stretching process is based on the glass transition point (Tg) of polyester.
Start at a temperature above 20 ° C. Then, the temperature is raised to (120 to 30) ° C lower than the melting point (Tm) of the polyester. The stretching start temperature is preferably (Tg + 31) ° C. or lower, for example, in the temperature range of 89 to 100 ° C. in the case of polyethylene terephthalate, and in the temperature range of 133 to 144 ° C. in the case of polyethylene-2,6-naphthalate. It is preferable. The maximum stretching temperature is preferably (100 to 40) ° C. lower than Tm.

横延伸過程での昇温は連続的でも段階的(逐次的)でも
よい。通常逐次的に昇温する。例えばステンターの横延
伸ゾーンをフイルム走行方向に沿って複数にわけ、各ゾ
ーン毎に所定温度の加熱媒体を流すことで昇温する。横
延伸開始温度が低すぎるとフイルムの破れが起こり、好
ましくない。また延伸最高温度が(Tm−120)℃より低
いとフイルムの熱収が大きくなり、また幅方向の物性均
一性の割合が小さくなり、好ましくない。一方延伸最高
温度が(Tm−30)℃より高いとフイルムが軟らかくなり
外乱等によってフイルムの破れが起こり、好ましくな
い。
The temperature increase in the transverse stretching process may be continuous or stepwise (sequential). Usually, the temperature is raised sequentially. For example, the transverse stretching zone of the stenter is divided into a plurality of zones along the film running direction, and a heating medium having a predetermined temperature is caused to flow in each zone to raise the temperature. If the transverse stretching start temperature is too low, the film may break, which is not preferable. On the other hand, if the maximum drawing temperature is lower than (Tm-120) ° C, the heat absorption of the film becomes large, and the ratio of the physical property uniformity in the width direction becomes small, which is not preferable. On the other hand, if the maximum drawing temperature is higher than (Tm-30) ° C, the film becomes soft and the film is torn due to disturbance or the like, which is not preferable.

横延伸の倍率は最終的なフイルムの物性にもよるが、3
倍以上、更には3.5倍以上とするのが好ましい。この倍
率はさらに5倍以下とするのが好ましい。
The ratio of transverse stretching depends on the physical properties of the final film, but it is 3
It is preferable that the amount is at least double, more preferably at least 3.5. This magnification is preferably 5 times or less.

熱固定の処理は横延伸に引きつづいて行なうが、横延伸
終了時の温度から始める。そして、フイルム幅方向に5
〜20%伸張させながらかつ(Tm−20)℃以下の温度まで
昇温して行なう。この伸張は通常トウアウトと言われて
いるものであり、好ましくは10〜15%である。また熱固
定終了時の温度と熱固定開始時の温度の差は40℃以下、
更には30℃以下にするのが好ましい。またこの温度差は
1℃でもよいときがあるが、5℃以上、更には10℃以上
とするのが好ましい。熱固定における伸張が5%より小
さいと、フイルム幅方向の等方性の領域が小さくなるの
で好ましくない。一方この伸張が20%より大きいと横方
向の熱収を著しく大きくするばかりでなく、フイルムの
破れが起こりやすくなるので好ましくない。
The heat-setting treatment is carried out after the transverse stretching, but the treatment is started at the temperature at the end of the transverse stretching. And 5 in the width direction of the film
Extending by -20% and heating to a temperature below (Tm-20) ° C. This extension is what is commonly referred to as toeout and is preferably 10-15%. The difference between the temperature at the end of heat setting and the temperature at the start of heat setting is 40 ° C or less,
Furthermore, it is preferable that the temperature is 30 ° C. or lower. The temperature difference may be 1 ° C. in some cases, but is preferably 5 ° C. or higher, more preferably 10 ° C. or higher. When the elongation in heat setting is less than 5%, the isotropic region in the film width direction becomes small, which is not preferable. On the other hand, if the elongation is larger than 20%, not only the heat absorption in the lateral direction becomes remarkably large, but also the film is easily broken, which is not preferable.

熱固定処理を行なったフイルムは一旦ポリエステルのガ
ラス転移点(Tg)以下の温度に冷却し、フイルム端部を
所定幅でスリットし、分離してから熱弛緩処理に供す
る。
The heat-fixed film is once cooled to a temperature not higher than the glass transition point (Tg) of polyester, the film end is slit with a predetermined width, separated and then subjected to heat relaxation treatment.

熱弛緩処理はフイルム幅方向を拘束せず、かつ4〜10Kg
/cm2の低い走行張力下、(Tg+30)〜(Tg+80)℃の温
度で0.3〜20秒間行なう。この熱弛緩処理に供するフイ
ルムの厚みは20〜200μm、さらに30〜150μmが好まし
い。またフイルムの幅は1m以上が好ましい。上記処理温
度は例えばポリエチレンテレフタレートの場合約100〜1
50℃である。熱弛緩処理は加熱浮上処理装置を用いて行
なうのが好ましい。フイルムを加熱浮上させる媒体とし
ては加熱された不活性気体特に加熱空気が好ましく用い
られる。この加熱浮上処理によると、安定したフイルム
走行を保ちながら熱弛緩処理を効率よく行なうことがで
きる。
Thermal relaxation treatment does not restrain the width direction of the film, and 4-10Kg
/ cm 2 low traveling under tension, is performed (Tg + 30) ~ (Tg + 80) 0.3~20 seconds ℃ temperature. The thickness of the film used for this heat relaxation treatment is preferably 20 to 200 μm, more preferably 30 to 150 μm. The width of the film is preferably 1 m or more. The processing temperature is, for example, about 100 to 1 in the case of polyethylene terephthalate.
It is 50 ° C. The thermal relaxation treatment is preferably performed using a heating levitation treatment device. A heated inert gas, particularly heated air, is preferably used as a medium for heating and floating the film. According to this heating floating process, the thermal relaxation process can be efficiently performed while maintaining stable film traveling.

熱弛緩処理後の二軸配向ポリエステルフイルムは60℃,8
0%RHで72時間保持したときの熱収縮率が0.02%以下、
更には0.01%以下、特に0.008%以下であることが好ま
しい。さらに105℃で30分間保持したときの熱収縮率が
1%以下、更には0.5%以下、特に0.4%以下であること
が好ましい。またフイルム幅方向の屈折率等方度(フイ
ルム幅方向に沿って各所の各方位の屈折率を求め、この
最大値と最小値の差が10×10-13以下である領域をフイ
ルム幅に対して求めた割合:%)が70%以上、更には75
%以上であり、温度膨張係数等方度(フイルム幅方向に
沿って各所の各方位の温度膨張係数を求め、この最大値
と最小値の差が8×10-6以下である領域を全フイルム幅
に対して求めた割合:%)が70%以上、更には75%以上
であることが好ましい。
Biaxially oriented polyester film after heat-relaxation treatment at 60 ℃, 8
Thermal shrinkage of 0.02% or less when held at 0% RH for 72 hours,
Further, it is preferably 0.01% or less, and particularly preferably 0.008% or less. Further, it is preferable that the heat shrinkage rate when kept at 105 ° C. for 30 minutes is 1% or less, further 0.5% or less, and particularly 0.4% or less. Also, the refractive index isotropic in the film width direction (the refractive index of each direction along the film width direction is obtained, and the area where the difference between the maximum value and the minimum value is 10 × 10 -13 or less is relative to the film width. The ratio:%) is 70% or more, and even 75
% Or more, the coefficient of thermal expansion isotropic (the coefficient of thermal expansion of each direction along the film width direction is obtained, and the area where the difference between the maximum value and the minimum value is 8 × 10 −6 or less is the entire film. The ratio (%) obtained with respect to the width is preferably 70% or more, more preferably 75% or more.

本発明の方法は、上述したとおり、特定の条件下で逐次
二軸延伸,熱固定及び熱弛緩処理を行なうので,ボーイ
ング現象を緩和し、フイルム幅方向の物性の均一性を著
しく高めることができ、さらに低い熱収縮率でこの面内
異方性の著しく小さいポリエステルフイルムを製造する
ことができる。従って製品歩留りを高めることができ
る。さらに製品フイルムは物性バランスの優れたもので
あって、磁気ディスク用ベースフイルム,写真用ベース
フイルムその他の一般工業用ベースフイルムとして有用
である。
As described above, since the method of the present invention sequentially performs biaxial stretching, heat setting and heat relaxation treatment under specific conditions, it can alleviate the bowing phenomenon and significantly improve the uniformity of physical properties in the film width direction. It is possible to produce a polyester film having a significantly low in-plane anisotropy with a lower heat shrinkage. Therefore, the product yield can be improved. Further, the product film has an excellent balance of physical properties and is useful as a base film for magnetic disks, a base film for photography and other general industrial base films.

<実施例> 以下、実施例をあげて本発明を更に説明する。なお、例
中の物性は次の方法で測定したものである。
<Examples> Hereinafter, the present invention will be further described with reference to Examples. In addition, the physical property in an example is measured by the following method.

1)フイルムの屈折率 ASTM−D 542−50に準じて、アッベ屈折計で接触液にヨ
ウ化メチレン(屈折率は1.7425)を、光源にナトリウム
ランプ(波長589nm)を用いて測定する。
1) Refractive index of film According to ASTM-D 542-50, methylene iodide (refractive index is 1.7425) is used as a contact liquid with an Abbe refractometer, and a sodium lamp (wavelength 589 nm) is used as a light source.

試料フイルムの採取は製品フイルム(巻取りフイルム)
の幅方向についてセンターふりわけ100m/mピッチで行な
い、各試料の各方位の屈折率を測定して最大値と最小値
を求める。そしてこの最大値と最小値の差が10×10-13
以下となるフイルム幅方向の領域を製品フイルムの全幅
に対する割合で求め、この割合(%)を屈折率等方度と
して示す。
Sampling of the sample film is the product film (rolling film)
In the width direction of the sample, the center distribution is performed at 100 m / m pitch, and the maximum and minimum values are obtained by measuring the refractive index of each sample in each direction. And the difference between this maximum and minimum value is 10 × 10 -13
The following region in the film width direction is obtained as a ratio to the total width of the product film, and this ratio (%) is shown as the refractive index isotropic.

2)ポリエステルのガラス転移点(Tg),融点(Tm) パーキンエルマー社製のDSC(示差走査熱量計)II型を
用いて測定する。DSCの測定条件は次の通りである。す
なわち、試料フイルム10mgをDSC装置にセットし、300℃
の温度で溶融した後、液体窒素中に急冷する。この急冷
試料を10℃/分で昇温し、ガラス転移点(Tg),融点
(Tm)を測定する。
2) Glass transition point (Tg) and melting point (Tm) of polyester Measure with a DSC (Differential Scanning Calorimeter) II type manufactured by Perkin Elmer. The DSC measurement conditions are as follows. That is, set 10 mg of sample film in the DSC device,
After being melted at the temperature of, it is quenched in liquid nitrogen. The temperature of this quenched sample is raised at 10 ° C./min, and the glass transition point (Tg) and melting point (Tm) are measured.

3)フイルムの寸法変化率 測定方向に沿って10mm幅,150mm長さの試料フイルムを切
り出し、該フイルムの長手方向の両端近傍に標点を付
け、処理前にこの標点間距離を測長し、所定の温湿度に
調整されたオーブンに自由端で所定の時間放置する。こ
れを取り出し室温で調整後、再度標点間距離を測長し、
寸法変化率を求める。フイルム面内異方性については、
原反フイルムから180゜にわたり10゜毎に試料フイルム
を切り出し、これらフイルムを用いて寸法変化率を測定
し、これらの最大値と最小値をもって示す。
3) Dimensional change rate of the film A sample film with a width of 10 mm and a length of 150 mm is cut out along the measuring direction, marked points are provided near both ends in the longitudinal direction of the film, and the distance between these marked points is measured before processing. , Leave it in the oven adjusted to the specified temperature and humidity at the free end for the specified time. After taking this out and adjusting it at room temperature, measure the gauge length again,
Obtain the dimensional change rate. For the film in-plane anisotropy,
A sample film was cut out from the original film at intervals of 10 ° over 180 °, the dimensional change rate was measured using these films, and the maximum and minimum values are shown.

4)フイルムの温度膨張係数 試料フイルムを長さ150mm,幅10mmの短冊状に切り出し、
これを恒温恒湿槽中にセットし、一定荷重(10g)を加
える。湿度を一定(10%RH)に保ち、温度を20℃から30
℃に変化させた時の可逆的寸法変化△lを作動トランス
で電気的に変換して読み取り、下式のaをもって温度膨
張係数とする。l0は試長150mmである。
4) Coefficient of thermal expansion of the film Cut the sample film into strips 150 mm long and 10 mm wide,
Set this in a thermo-hygrostat and apply a constant load (10 g). Keep the humidity constant (10% RH) and keep the temperature from 20 ℃ to 30 ℃.
The reversible dimensional change Δl when the temperature is changed to ° C is electrically converted by the operating transformer and read, and a in the following equation is defined as the temperature expansion coefficient. l 0 is a test length of 150 mm.

a=△l/(l0×10) mm/mm・℃ 上記試料フイルムの採取は製品フイルム(巻取りフイル
ム)の幅方向についてセンターふりわけ200m/mピッチで
行ない、各試料の各方位の温度膨張係数を測定して最大
値と最小値を求める。そしてこの最大値と最小値の差が
8×10-6以下となるフイルム幅方向の領域を製品フイル
ムの全幅に対する割合で求め、この割合(%)を温度膨
張率等方度として示す。
a = △ l / (l 0 × 10) mm / mm ・ ℃ The sample film is sampled in the width direction of the product film (winding film) at the center distribution of 200 m / m pitch, and the temperature expansion of each sample in each direction. Measure the coefficient to find the maximum and minimum values. Then, the area in the film width direction in which the difference between the maximum value and the minimum value is 8 × 10 −6 or less is obtained as a ratio to the total width of the product film, and this ratio (%) is shown as the coefficient of thermal expansion isotropic.

5)フイルムの厚み β線厚み計にて測定する。5) Film thickness Measure with a β-ray thickness gauge.

6)走行張力 テンション計(ニレコ製MB11A)を有するロールにて測
定する。
6) Running tension Measure with a roll equipped with a tension meter (MB11A manufactured by Nireco).

実施例1 ポリエチレンテレフタレート(Tg69℃,Tm263℃)を溶融
押出し冷却ドラムで急冷固化して未延伸フイルムとし、
この未延伸フイルムを周速の異なるロール群で、95℃で
3.6倍に縦延伸した。続いて、得られた縦延伸フイルム
をテンターに導き、横延伸を100℃から開始し、延伸完
了時点の温度が190℃となるように逐次昇温しなが3.4倍
に横延伸し、続いて熱固定を190℃から開始し、幅方向
に15%伸張(トウアウト)させながらかつ熱固定完了時
点の温度が215℃となるように逐次昇温しながら熱固定
を行なった。得られた二軸配向フイルムを70℃以下に冷
却し、その後フイルム端部をスリットし、切り離して4m
幅,75μm厚みの二軸配向フイルムを得た。
Example 1 Polyethylene terephthalate (Tg69 ° C., Tm263 ° C.) was melt extruded and rapidly solidified by a cooling drum to obtain an unstretched film,
This unstretched film is rolled at 95 ° C with rolls with different peripheral speeds.
It was longitudinally stretched to 3.6 times. Subsequently, the obtained longitudinally stretched film was introduced into a tenter, and transverse stretching was started from 100 ° C., and the temperature at the time of completion of stretching was sequentially raised to 190 ° C., but transversely stretched to 3.4 times, subsequently. The heat setting was started from 190 ° C., and the heat setting was performed while the temperature was 15% stretched (toe-out) in the width direction and the temperature at the end of the heat setting was 215 ° C. The obtained biaxially oriented film is cooled to 70 ° C or lower, and then the film end is slit and separated to 4 m.
A biaxially oriented film having a width of 75 μm was obtained.

この二軸配向フイルムを、巻取り機に巻取る前に、幅方
向を拘束せずに加熱浮上処理に供し、130℃の加熱空気
で浮上させながら走行張力5Kg/cm2で4秒間二軸方向
(縦方向及び幅方向)に弛緩させた。この弛緩処理を行
なったのち巻取り機に巻取った。
Before winding this biaxially oriented film on the winder, it is subjected to a heating levitating process without restraining the width direction, and while being levitated with heated air at 130 ° C, it is biaxially oriented for 4 seconds at a running tension of 5 Kg / cm 2. It was relaxed in the longitudinal direction and the width direction. After performing this relaxation treatment, it was wound on a winder.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

実施例2 横延伸完了時点の温度と熱固定開始時の温度を175℃と
する以外は、実施例1と同じように行なった。
Example 2 The procedure of Example 1 was repeated, except that the temperature at the completion of transverse stretching and the temperature at the start of heat setting were 175 ° C.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

実施例3 熱固定での幅方向の伸張を10%とする以外は、実施例1
と同じように行なった。
Example 3 Example 1 except that the extension in the width direction by heat setting is 10%.
Same as.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

比較例1 巻取る前の弛緩処理を省略する以外は、実施例1と同じ
ように行なった。
Comparative Example 1 The procedure of Example 1 was repeated, except that the relaxation treatment before winding was omitted.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

比較例2 熱固定での幅方向の伸張を4%とする以外は、実施例1
と同じように行なった。
Comparative Example 2 Example 1 except that the expansion in the width direction by heat setting was 4%.
Same as.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

比較例3 横延伸完了時点の温度を120℃とする以外は、実施例1
と同じように行なった。
Comparative Example 3 Example 1 except that the temperature at the completion of transverse stretching was 120 ° C.
Same as.

得られたフイルムの特性を表1に示す 比較例4 弛緩熱処理時の温度を80℃とする以外は、実施例1と同
じように行なった。
The properties of the obtained film are shown in Table 1. Comparative Example 4 The procedure of Example 1 was repeated, except that the temperature during the relaxation heat treatment was 80 ° C.

得られたフイルムの特性を表1に示す。The properties of the obtained film are shown in Table 1.

第1の結果から、実施例1〜3で得られた二軸配向ポリ
エステルフイルムは60℃,105℃での面内寸法変化率がと
もに小さく、かつ屈折率等方度,温度膨張係数等方度が
大きく、フイルム幅方向の配向異方性がかなり小さい状
態でエッヂ近傍まで物性の均一性がひろげられているこ
とがわかる。一方、比較例1で得られた二軸配向ポリエ
ステルフイルムは幅方向の熱収が著しく大きく、かつ面
内寸法変化率が大きく、商品加工での加熱処理時にシワ
が発生し、この加工に耐えられないものである。例えば
ベースフイルムの表面に磁性層を塗工する工程では、通
常磁性塗料の塗布,乾燥,カレンダー,硬化処理が行な
われるが、これら処理では60〜120℃程度の加熱処理が
含まれており、該ベースフイルムとして比較例1のフイ
ルムを用いると該フイルム熱変形し、シワその他の欠点
が発生する。
From the first results, the biaxially oriented polyester films obtained in Examples 1 to 3 have small in-plane dimensional change rates at 60 ° C. and 105 ° C., and have isotropic refractive index and isotropic coefficient of thermal expansion. It is clear that the uniformity of the physical properties is expanded up to near the edge in the state where the film orientation is large and the orientation anisotropy in the film width direction is considerably small. On the other hand, the biaxially oriented polyester film obtained in Comparative Example 1 has a remarkably large heat absorption in the width direction and a large in-plane dimensional change rate, and wrinkles are generated during the heat treatment during product processing, and can withstand this process. There is no such thing. For example, in the step of coating the magnetic layer on the surface of the base film, application of a magnetic coating material, drying, calendering, and curing treatment are usually performed, but these treatments include heat treatment at about 60 to 120 ° C. When the film of Comparative Example 1 is used as the base film, the film is thermally deformed and wrinkles and other defects occur.

また、比較例2,3で得られた二軸配向ポリエステルフイ
ルムは幅方向の屈折率等方度,温度膨張係数等方度が小
さく、製品歩留りの低いものであることがわかる。さら
に比較例4で得られた二軸配向ポリエステルフイルムは
熱収が大きく、比較例1のフイルムに似た欠点をかかえ
ていることがわかる。
Further, it can be seen that the biaxially oriented polyester films obtained in Comparative Examples 2 and 3 have a small refractive index isotropic coefficient in the width direction and a small coefficient of thermal expansion coefficient isotropic coefficient, and thus the product yield is low. Further, it can be seen that the biaxially oriented polyester film obtained in Comparative Example 4 has a large heat absorption and has a defect similar to that of the film of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越中 正己 神奈川県相模原市小山3丁目37番19号 帝 人株式会社相模原研究センター内 (56)参考文献 特開 平2−22038(JP,A) 特開 平1−204722(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masami Etanaka 3-37-19 Oyama, Sagamihara-shi, Kanagawa Teijin Ltd. Sagamihara Research Center (56) Reference JP-A-2-22038 (JP, A) JP-A-1-204722 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】走行する縦延伸ポリエステルフイルムに横
延伸,熱固定,熱弛緩の処理を順次施して二軸配向ポリ
エステルフイルムを製造する方法であって、(イ)横延
伸を、ポリエステルのガラス転移点(Tg)より20℃以上
高い温度から始めて、ポリエステルの融点(Tm)より12
0〜30℃低い温度まで昇温しながら行ない、(ロ)熱固
定を、横延伸終了時の温度から始めて、フイルム幅方向
に5〜20%伸張させながらかつ(Tm−20)℃以下の温度
まで昇温して行ない、次いで(ハ)熱固定フイルムをTg
以下の温度に冷却し、その後(ニ)熱弛緩を、フイルム
幅方向を拘束せずかつ4〜10Kg/cm2の低い走行張力下、
(Tg+30)〜(Tg+80)℃の温度で0.3〜20秒間行なう
ことを特徴とする二軸配向ポリエステルフイルムの製造
方法。
1. A method for producing a biaxially oriented polyester film by sequentially subjecting a running longitudinally stretched polyester film to transverse stretching, heat setting and heat relaxation, wherein (a) transverse stretching is carried out by a glass transition of polyester. Start at a temperature 20 ° C or more above the point (Tg) and 12 above the melting point (Tm) of the polyester
The temperature is raised to 0-30 ° C lower temperature, and (b) the heat setting is started from the temperature at the end of the transverse stretching, while being stretched by 5 to 20% in the width direction of the film, and at a temperature of (Tm-20) ° C or less. Up to Tg.
After cooling to the following temperature, (d) thermal relaxation was performed without restraining the film width direction and under a low running tension of 4 to 10 kg / cm 2 .
A method for producing a biaxially oriented polyester film, which comprises performing the treatment at a temperature of (Tg + 30) to (Tg + 80) ° C. for 0.3 to 20 seconds.
JP30083089A 1989-11-21 1989-11-21 Method for producing biaxially oriented polyester film Expired - Fee Related JPH0773877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30083089A JPH0773877B2 (en) 1989-11-21 1989-11-21 Method for producing biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30083089A JPH0773877B2 (en) 1989-11-21 1989-11-21 Method for producing biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPH03161319A JPH03161319A (en) 1991-07-11
JPH0773877B2 true JPH0773877B2 (en) 1995-08-09

Family

ID=17889622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30083089A Expired - Fee Related JPH0773877B2 (en) 1989-11-21 1989-11-21 Method for producing biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPH0773877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737937A (en) * 2013-11-27 2014-04-23 卫辉市银金达薄膜有限公司 Processing method for increase longitudinal stretching strength of polyester heat shrinkage film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765681B2 (en) * 1998-12-18 2006-04-12 富士写真フイルム株式会社 Production method of polyester film
EP1116573A4 (en) * 1999-06-28 2002-09-11 Teijin Ltd Biaxially oriented polyester film, process for producing the same, and use thereof as substrate for photographic sensitive material
TW201738093A (en) * 2015-12-29 2017-11-01 3M新設資產公司 Low shrink polyester films and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103737937A (en) * 2013-11-27 2014-04-23 卫辉市银金达薄膜有限公司 Processing method for increase longitudinal stretching strength of polyester heat shrinkage film
CN103737937B (en) * 2013-11-27 2017-01-04 河南银金达新材料股份有限公司 A kind of processing method improving polyester thermal contraction film longitudinal tensile strength

Also Published As

Publication number Publication date
JPH03161319A (en) 1991-07-11

Similar Documents

Publication Publication Date Title
JPH0743445B2 (en) Polyethylene naphthalate uniaxial highly oriented film for polarizing plate
JPH0379178B2 (en)
JPH0773877B2 (en) Method for producing biaxially oriented polyester film
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPS58160122A (en) Manufacture of film having uniform physical properties
JPH0125695B2 (en)
JPS6243857B2 (en)
JP2009131981A (en) Polyethylene terephthalate resin film and manufacturing method therefor
JPH0348017B2 (en)
JP4441944B2 (en) Biaxially oriented polyester film
JP2009131982A (en) Polyethylene terephthalate resin film and manufacturing method therefor
JPH01165423A (en) Preparation of biaxially oriented polyester film
JP2002144421A (en) Method for heat treating biaxially stretched polyester film
JPH06166102A (en) Manufacture of polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film
JP2001328159A (en) Method for producing biaxially oriented film
KR0157090B1 (en) Biaxial oriented polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JP2825727B2 (en) Method for producing biaxially oriented polyester film
TW202308831A (en) Method for manufacturing biaxially oriented polyester film
JPH08174662A (en) Production of biaxially stretched polyester film
JPH03264334A (en) Manufacture of polyester film
JPS62270327A (en) Treatment of biaxially oriented polyester film
JP4810747B2 (en) Method for producing biaxially stretched polyester film
JPH06258766A (en) Film for photographic sensitive material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090809

LAPS Cancellation because of no payment of annual fees