JPS6242018B2 - - Google Patents

Info

Publication number
JPS6242018B2
JPS6242018B2 JP55169944A JP16994480A JPS6242018B2 JP S6242018 B2 JPS6242018 B2 JP S6242018B2 JP 55169944 A JP55169944 A JP 55169944A JP 16994480 A JP16994480 A JP 16994480A JP S6242018 B2 JPS6242018 B2 JP S6242018B2
Authority
JP
Japan
Prior art keywords
lead
lead material
conductivity
strength
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55169944A
Other languages
Japanese (ja)
Other versions
JPS5793555A (en
Inventor
Rensei Futatsuka
Tadao Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP16994480A priority Critical patent/JPS5793555A/en
Publication of JPS5793555A publication Critical patent/JPS5793555A/en
Publication of JPS6242018B2 publication Critical patent/JPS6242018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、良好な強度、曲げ加工性、熱伝導
性、および耐熱性などを兼ね備えた、トランジス
ター等の回路素子やICなどの半導体用リード材
に関するものである。 一般に、電子デバイス、例えば半導体素子とし
てのIC等は、第1図a〜fに概略製造工程が平
面図で例示されているように、 (a) まず、厚さ:0.2〜0.5mm、幅:20〜50mmの寸
法をもつた銅あるいは銅合金ストリツプからな
るリード素材1の表面の一部または全面に、
Ni、Sn、およびAgなどのうちの1種以上から
なるメツキ層を形成し(第1図a参照)、 (b) 上記メツキ層を形成したリード素材をプレス
機械で順次打抜いて、製造せんとするICの形
状に適合したリードフレーム2を成形し(同(b)
参照)、 (c) 上記リードフレーム2の所定個所に高純度シ
リコンあるいはゲルマニウムなどの半導体素子
3を順次約300〜400℃の温度で熱圧着して、前
記半導体素子3を上記メツキ層を介してリード
フレーム2の所定個所に接着し(同(c)参照)、 (d) 上記半導体素子3と上記リードフレーム2と
に結線4を施し(同(d)参照)、 (e) 上記半導体素子3、結線4、およびリードフ
レーム2の半導体素子取付部を樹脂5で被覆し
(同(e)参照)、 (f) 最終的にリードフレーム2における相互に連
なる部分を除いて、リード材2′を有するIC:
Aを得る(同(f)参照)、 以上(a)〜(f)からなる主要工程によつて製造され
ており、このことはトランジスター、ダイオー
ド、サイリスターなどの電子デバイスの製造にお
いてもほぼ同様である。 そして、最近のICのパワー向上技術の著しい
進歩によつて、リード材としてより良い性能を有
する銅合金の要求が高まつているが、その際、
ICのリード材には、 (1) リード材として十分な強度を有する材料(引
張り強さが40〜70Kgf/mm2のもの)であるこ
と。 (2) 電子デバイスを電気機器へ組込む際に、その
調整のための曲げ性が十分であること(すなわ
ち、伸びが6%以上であること)。 (3) 電子デバイスの使用に際して、放熱性が良
く、電気信号の良導体(導電率40%(IACS
%)以上をもつもの)であること。 (4) 電子デバイス組立工程中の加熱により、リー
ド材が軟化しないもの(軟化点が400℃以上の
耐熱性を有するもの)であること。 などの諸特性を具備することが望まれている。 従来、この種の電子デバイス用リード材の製造
に供されてきた銅合金としては、CDA505(Cu―
1.3重量%Sn―0.1重量%P)やCDA507(Cu―
1.8重量%Sn―0.1重量%P)が、リード材として
必要な諸特性を比較的満足するものとして使用さ
れていたが、これらの合金はSn成分が含有され
ているので、鋳造性や熱間加工性が比較的悪いこ
とから製造歩留りに難点があり、また軟化点が
400℃未満であるという低い耐熱性しか示さない
などの欠点を有していたため、強度や曲げ性には
富んでいるものの、経済上および技術上の見地か
ら、その採用に再考を要するといつたような問題
点を有していた。 本発明者等は、上述のような観点から、リード
材に要求される40〜70Kgf/mm2の高い引張り強さ
や、IC等のパワー向上のために必要な条件であ
る放熱性が導電率で表わして40%(IACS%)以
上の高い値を有するとともに、半導体素子の熱圧
着に際しても熱軟化が起らず、しかも電気機器へ
の組込みに際しても全く破損が発生しないリード
材を得べく研究を行なつた結果、従来のCu―Sn
―P系リード材合金のSn含有量を減じて加工性
を向上するとともに、特定量のNiおよびZnを添
加することによつて強度、耐熱性および導電性の
改善が可能であるとの知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであり、半導体用リード材を、重量%で、 Sn:0.25〜1.0%、 Ni:1.1〜2.5%、 Zn:0.005〜0.5%、 P:0.004〜0.2%、 Cuおよび不可避不純物:残り、 からなる成分組成を有する合金で構成することに
より、高い強度、良好な曲げ加工性、熱伝導性、
および耐熱性、そして鋳造性や、成形加工の容易
さなどを兼ね備えさせたことに特徴を有するもの
である。 この発明のリード材において、Sn、Ni、Zn、
およびP成分の成分組成範囲を上記の通りに限定
した理由を説明する。 (a) Sn Sn成分には、リード材の強度、曲げ性、およ
び耐熱性を確保する作用があるが、その含有量
が、0.25%未満では前記作用に所望の効果が得ら
れず、一方1.0%を越えて含有させると導電性が
低下するようになることから、その含有量を0.25
〜1.0%と限定した。 (b) Ni Ni成分には、リード材の強度、耐熱性をより
向上させる作用があるが、その含有量が1.1%未
満では前記作用に所望の効果が得られず、一方
2.5%を越えて含有させると曲げ性、および導電
性に悪影響を及ぼすので、その含有量を1.1〜2.5
%と限定した。 (c) Zn Zn成分には、蒸発性があり、このために溶解
時の溶湯の脱ガスを促進して鋳造性を改善する作
用があるが、その含有量が0.005%未満では前記
作用に所望の効果が得られず、一方、その含有量
が0.5%を越えると導電性や耐応力腐食割れ性が
劣化するようになるので、その含有量を0.005〜
0.5%と限定した。 (d) P P成分は溶湯の脱酸のために添加するものであ
るが、0.004%未満では前記作用に所望の効果が
得られず、一方0.2%を越えて含有させると導電
率が悪化することから、その含有量を0.004〜0.2
%と限定した。 つぎに、この発明のリード材を実施例により比
較例と対比しながら説明する。 まず、第1表に示される最終成分組成をもつた
溶湯をそれぞれ通常の溶解法により溶製した後、
公知の半連続鋳造法により、厚さ:150mm×幅:
400mm×長さ:1400mmの寸法を持つたCu合金素材
に鋳造し、ついで前記素材のそれぞれに、温度
850℃で熱間圧延を施して板厚:11mmとした後、
片面:0.5mmずつの深さで、その両面を面削し、
引続いて中間焼鈍および酸洗を2回繰り返して行
ない、最終的に25%の仕上圧延率にて板厚:0.25
mmとすることによつて本発明リード材用板材1〜
9および比較リード材用板材1〜6をそれぞれ成
形した。なお、比較リード材用板材1〜6は、構
成成分のうちのいずれかの成分(第1表には※印
で表示)がこの発明の範囲から外れた組成をもつ
ものである。 つぎに、この結果得られた本発明リード材用板
材1〜9および比較リード材用板材1〜6よりそ
れぞれ試験片を切り出し、引張り強さ、伸び、導
電率、および軟化点を測定した。この測定結果を
第1表に合せて示した。 第1表に示される結果から、比較リード材用板
材1〜6は、引張り強さ、伸び、導電率、および
軟化点(耐熱性)のうちの少なくとも1つの特性
(第1表には※印で表示)が半導体用リード材に
要求される値に達していないのに対して、本発明
The present invention relates to a lead material for semiconductors such as circuit elements such as transistors and ICs, which has good strength, bending workability, thermal conductivity, and heat resistance. In general, electronic devices, such as ICs as semiconductor elements, are manufactured as follows: (a) Thickness: 0.2 to 0.5 mm, width: Part or all of the surface of the lead material 1 consisting of a copper or copper alloy strip with a size of 20 to 50 mm,
A plating layer made of one or more of Ni, Sn, Ag, etc. is formed (see Figure 1 a), and (b) the lead material on which the plating layer is formed is sequentially punched out using a press machine. A lead frame 2 is molded to fit the shape of the IC (same (b)).
(c) Semiconductor elements 3 made of high-purity silicon or germanium are successively thermocompressed onto predetermined locations of the lead frame 2 at a temperature of approximately 300 to 400°C, and the semiconductor elements 3 are bonded through the plating layer. (d) connect the semiconductor element 3 and the lead frame 2 at a predetermined location (see (d)); , the connections 4, and the semiconductor element mounting portion of the lead frame 2 are coated with resin 5 (see (e) of the same). IC with:
A (see (f)) is manufactured using the main process consisting of (a) to (f) above, and this is almost the same in the manufacturing of electronic devices such as transistors, diodes, and thyristors. be. With the recent remarkable progress in IC power improvement technology, the demand for copper alloys with better performance as lead materials is increasing.
The IC lead material must: (1) be a material with sufficient strength as a lead material (with a tensile strength of 40 to 70 kgf/ mm2 ); (2) Sufficient bendability for adjustment when incorporating electronic devices into electrical equipment (that is, elongation must be 6% or more). (3) When using electronic devices, it has good heat dissipation and is a good conductor of electrical signals (conductivity 40% (IACS
%) or more). (4) The lead material must not be softened by heating during the electronic device assembly process (heat resistant with a softening point of 400°C or higher). It is desired to have various characteristics such as. Conventionally, CDA505 (Cu-
1.3wt%Sn-0.1wt%P) and CDA507(Cu-
1.8 wt% Sn - 0.1 wt% P) has been used as a material that relatively satisfies the various properties required for lead materials, but since these alloys contain Sn components, they have poor castability and hot working properties. There are difficulties in manufacturing yield due to relatively poor processability, and the softening point is low.
It had drawbacks such as low heat resistance of less than 400℃, and although it has high strength and bendability, it was necessary to reconsider its use from an economic and technical standpoint. It had such problems. From the above-mentioned viewpoints, the present inventors have determined that the high tensile strength of 40 to 70 kgf/mm 2 required for lead materials and the heat dissipation, which is a necessary condition for improving the power of ICs, etc., are achieved by conductivity. We are conducting research to obtain a lead material that has a high value of 40% (IACS%) or more, does not undergo thermal softening during thermocompression bonding of semiconductor elements, and does not cause any damage when incorporated into electrical equipment. As a result, the conventional Cu-Sn
- Findings that it is possible to improve workability by reducing the Sn content of P-based lead alloys, and to improve strength, heat resistance, and electrical conductivity by adding specific amounts of Ni and Zn. I got it. This invention has been made based on the above knowledge, and the lead material for semiconductor is made by weight percentage: Sn: 0.25-1.0%, Ni: 1.1-2.5%, Zn: 0.005-0.5%, P: 0.004- 0.2%, Cu and unavoidable impurities: The remainder: By composing the alloy with a composition consisting of: high strength, good bending workability, thermal conductivity,
It is characterized by having a combination of heat resistance, castability, and ease of molding. In the lead material of this invention, Sn, Ni, Zn,
The reason why the component composition ranges of the P component and P component are limited as described above will be explained. (a) Sn The Sn component has the effect of ensuring the strength, bendability, and heat resistance of the lead material, but if the content is less than 0.25%, the desired effects cannot be obtained; If the content exceeds 0.25%, the conductivity will decrease.
It was limited to ~1.0%. (b) Ni The Ni component has the effect of further improving the strength and heat resistance of the lead material, but if its content is less than 1.1%, the desired effect cannot be obtained;
If the content exceeds 2.5%, it will have a negative effect on bendability and conductivity, so the content should be reduced to 1.1 to 2.5%.
%. (c) Zn The Zn component has evaporability, and therefore has the effect of promoting degassing of the molten metal during melting and improving castability, but if its content is less than 0.005%, the desired effect is not achieved. On the other hand, if the content exceeds 0.5%, the conductivity and stress corrosion cracking resistance will deteriorate.
It was limited to 0.5%. (d) P The P component is added to deoxidize the molten metal, but if it is less than 0.004%, the desired effect cannot be obtained, while if it is contained in more than 0.2%, the conductivity will deteriorate. Therefore, the content should be set at 0.004 to 0.2
%. Next, the lead material of the present invention will be explained using examples and comparing with comparative examples. First, molten metals having the final component compositions shown in Table 1 were melted using the usual melting method, and then
Thickness: 150mm x Width: Made using a known semi-continuous casting method.
Cast into Cu alloy material with dimensions of 400mm x length: 1400mm, then each of said materials is heated to
After hot rolling at 850℃ to a plate thickness of 11mm,
One side: Both sides are milled to a depth of 0.5mm,
Subsequently, intermediate annealing and pickling are repeated twice, and the plate thickness is finally 0.25 at a finishing rolling rate of 25%.
Plate material 1 for lead material of the present invention by making mm
9 and comparative lead material plates 1 to 6 were molded, respectively. In addition, the comparative lead material plates 1 to 6 have a composition in which one of the components (indicated by * in Table 1) is outside the scope of the present invention. Next, test pieces were cut out from the resulting lead material plates 1 to 9 of the present invention and comparative lead material plates 1 to 6, and their tensile strength, elongation, electrical conductivity, and softening point were measured. The measurement results are also shown in Table 1. From the results shown in Table 1, comparative lead materials 1 to 6 have at least one property of tensile strength, elongation, electrical conductivity, and softening point (heat resistance) (Table 1 is marked with *). ) does not reach the value required for semiconductor lead materials, whereas the inventive lead material

【表】 ード材用板材1〜9は、いずれもすぐれた特性を
有し、半導体用リード材として使用するのに適し
た特性を有することが明らかである。また、本発
明リード材用板材1〜9に対して別途行なつた塩
水噴霧試験でも、本発明リード材用板材は、いず
れもすぐれた耐食性を示すものであつた。 上述のように、この発明のリード材は、最近の
ICパワーの向上にも充分追随することができる
高強度、すぐれた曲げ性、熱伝導性、および耐熱
性を具備しているのである。
[Table] It is clear that board materials 1 to 9 for lead materials all have excellent properties and have properties suitable for use as lead materials for semiconductors. Further, in salt water spray tests separately conducted on the reed plates 1 to 9 of the present invention, all of the reed plates of the present invention exhibited excellent corrosion resistance. As mentioned above, the lead material of this invention is based on the recent
It has high strength, excellent bendability, thermal conductivity, and heat resistance that can fully keep up with the increase in IC power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜fはICの概略製造工程を示す平面
図(ただし同fは正面図)である。図面におい
て、 1…リード素材、2…リードフレーム、2′…
リード材、3…半導体素子、4…結線、5…樹
脂。
FIGS. 1a to 1f are plan views (however, FIG. 1f is a front view) schematically showing the manufacturing process of the IC. In the drawings, 1...lead material, 2...lead frame, 2'...
Lead material, 3... Semiconductor element, 4... Connection, 5... Resin.

Claims (1)

【特許請求の範囲】 1 Sn:0.25〜1%、 Ni:1.1〜2.5%、 Zn:0.005〜0.5%、 P:0.004〜0.2%、 を含有し、残りがCuと不可避不純物からなる組
成(以上重量%)を有するCu合金で構成したこ
とを特徴とする半導体用リード材。
[Claims] 1. A composition containing 1 Sn: 0.25-1%, Ni: 1.1-2.5%, Zn: 0.005-0.5%, P: 0.004-0.2%, with the remainder consisting of Cu and unavoidable impurities. A lead material for semiconductors characterized by being composed of a Cu alloy having a
JP16994480A 1980-12-02 1980-12-02 Lead material for semiconductor Granted JPS5793555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16994480A JPS5793555A (en) 1980-12-02 1980-12-02 Lead material for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16994480A JPS5793555A (en) 1980-12-02 1980-12-02 Lead material for semiconductor

Publications (2)

Publication Number Publication Date
JPS5793555A JPS5793555A (en) 1982-06-10
JPS6242018B2 true JPS6242018B2 (en) 1987-09-05

Family

ID=15895780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16994480A Granted JPS5793555A (en) 1980-12-02 1980-12-02 Lead material for semiconductor

Country Status (1)

Country Link
JP (1) JPS5793555A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153853A (en) * 1983-02-21 1984-09-01 Hitachi Metals Ltd Matrial for lead frame
JPS605550A (en) * 1983-06-24 1985-01-12 Toshiba Corp Electronic parts
JPS6039142A (en) * 1983-08-11 1985-02-28 Mitsubishi Electric Corp Copper alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575836A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575836A (en) * 1980-06-16 1982-01-12 Nippon Mining Co Ltd High strength copper alloy having excellent heat resistance for use as conductive material
JPS5727051A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Copper nickel tin alloy for integrated circuit conductor and its manufacture

Also Published As

Publication number Publication date
JPS5793555A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
US4366117A (en) Copper alloy for use as lead material for semiconductor devices
US4666667A (en) High-strength, high-conductivity copper alloy
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS6250425A (en) Copper alloy for electronic appliance
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
US4908078A (en) Material for conductive parts of electronic or electric devices
US5833920A (en) Copper alloy for electronic parts, lead-frame, semiconductor device and connector
JPH05306421A (en) Cu alloy lead material for semiconductor device
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
US5463247A (en) Lead frame material formed of copper alloy for resin sealed type semiconductor devices
US4668471A (en) Copper alloy lead material for leads of a semiconductor device
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPS6254852B2 (en)
JPS6158536B2 (en)
JPS63307232A (en) Copper alloy
JPS6242018B2 (en)
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPS6250426A (en) Copper alloy for electronic appliance
JPS6293325A (en) Cu alloy lead material for semiconductor device
JPS639574B2 (en)
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPS58147140A (en) Lead wire of semiconductor device
JPS58147139A (en) Lead wire of semiconductor device
JPH0314897B2 (en)
JPH0380856B2 (en)