JPS6238427B2 - - Google Patents
Info
- Publication number
- JPS6238427B2 JPS6238427B2 JP58198418A JP19841883A JPS6238427B2 JP S6238427 B2 JPS6238427 B2 JP S6238427B2 JP 58198418 A JP58198418 A JP 58198418A JP 19841883 A JP19841883 A JP 19841883A JP S6238427 B2 JPS6238427 B2 JP S6238427B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- alloy
- cobalt
- chromium
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 66
- 239000000956 alloy Substances 0.000 claims description 66
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 36
- 229910017052 cobalt Inorganic materials 0.000 claims description 25
- 239000010941 cobalt Substances 0.000 claims description 25
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 239000011651 chromium Substances 0.000 claims description 15
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000006748 scratching Methods 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 1
- 238000004663 powder metallurgy Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 22
- 230000006378 damage Effects 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 229910000990 Ni alloy Inorganic materials 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 230000003678 scratch resistant effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910000619 316 stainless steel Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- -1 chromium carbides Chemical class 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 208000037974 severe injury Diseases 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- RUDATBOHQWOJDD-UZVSRGJWSA-N ursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-UZVSRGJWSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Heat Treatment Of Steel (AREA)
- Lift Valve (AREA)
- Laminated Bodies (AREA)
- Soft Magnetic Materials (AREA)
- Pens And Brushes (AREA)
- Sealing Devices (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Heat Treatment Of Articles (AREA)
- Materials For Medical Uses (AREA)
- Arc Welding In General (AREA)
Description
本発明は鉄基合金に関し、より詳細には、苛酷
な耐摩耗性の用途、例えばバルブ構成品などに適
した高クロムステンレス鋼に関するものである。 鉄―クロム―ニツケル耐蝕鋼としての発明以
来、ステンレス鋼は常に発展、改良が続けられて
いる。現在何百種ものステンレス鋼が存在する。
それらの多くは、特定の用途向けに設計された。
先行技術では、必要条件として要求される特殊の
性質が得られるようにするための鋼の成分の改良
が多かつた。目下コバルト基合金によつてまかな
われている合金に代つて、耐蝕性および耐機械的
摩耗性を有する低価格合金に対する要求が極めて
緊要のものになつた。 このクラスに属する公知の合金は、ステライト
(STELLITE)No.6合金として市販されており、
代表的に28%クロム、4.5%タングステン、1.2%
炭素と残部コバルトを含有する。鉄は低価格で入
手可能性が高いことから、いくつかの鉄基合金が
摩耗を伴なう用途向けに提案された。例えばアメ
リカ特許2635044は、熱処理した場合にかじり及
び又は表面傷生成(galling)およびエロージヨ
ン−コロージヨンに耐える硬化可能型ステンレス
鋼として、モリブデン、ベリリユウムとけい素を
添加した18―8ステンレス鋼を開示している。 先行技術 アメリカ特許1790177では、孔明工具および溶
接棒としての用途に適した耐蝕合金鋼を開示して
いる。この鋼は、必須成分として、クロム、ニツ
ケル、けい素および炭素のみを含んでいるもの
で、25〜35%のクロムが主特徴である。またアメ
リカ特許2750283では、既知のほとんど全てのク
ロム―鉄合金、即ちニツケル、炭素、けい素、マ
ンガン、モリブデン、タングステン、コバルトそ
の他の任意添加元素を含み又は含まないクロム―
鉄合金の熱間圧延特性を向上させるためのほう素
の添加を開示している。アメリカ特許4002510で
は、18―8ステンレス鋼に対するけい素の添加が
デルタフエライトの形成を促進し、その結果応力
腐蝕割れに対する抵抗性を高めることを開示して
いる。 本明細書中に用いられているように、全成分は
重量パーセントで示されている。 アメリカ特許3912503及び4039356とは、臨界的
成分量のマンガンとけい素を有する改良18―8ス
テンレス鋼に関するものである。 当業界では、これに類似の市販鋼としてアーム
コ社の商標名ニトロニツク(NITRONIC)60が
あり、これは重量パーセントで代表的に最大0.1
%の炭素、8%のマンガン、4%のけい素、17%
のクロム、8.5%ニツケルと0.13%の窒素を含
む。この鋼は耐特性が良く、特にかじり又は表面
損傷試験の結果が良好なことをデータが示してい
る。 産業界あるいは消費者の機械的操作における金
属摩耗は、常に不経済かつ危険な問題となつてい
る。摩耗環境は非常に多様化しているので、これ
ら問題の全てを解決しうるような最適又は完全と
いえる耐摩耗合金はない。更に、ある耐摩耗合金
を生産するための元素の価格及び入手可能性とい
う点を考慮することが重要になつている。当技術
界は、定常的にこれらの要求を満たす新しい改良
された合金を捜し求めている。 例へば、化学的に侵食性のある媒体のもとで使
用されるバルブ部材は、ステンレス鋼か高ニツケ
ル合金で作られている。代表的には、304ステン
レス鋼は食品加工産業比較的に弱い腐食剤を含む
システムで選択され、316ステンレス鋼は化学プ
ロセス産業で多く使用され、高ニツケル合金は侵
食性の高い媒体が存在する場所で使用される。 300タイプのステンレス鋼及び高ニツケル合金
の大きな欠点はというと、これらがバルブの作動
として宿命的とも言える高荷重の下での相対的な
運動をしている時に、かじりおよび/または表面
損傷(表面のひどい傷害を受ける)を生起しがち
であることである。この点で、特に問題となるの
は、シール目的のため完全性を保有することが不
可欠な弁座面である。 一般的に、300シリーズ鋼は基本的な耐蝕ステ
ンレス鋼である。ニツケルの使用を低減する手段
として、200シリーズ鋼が開発された、この鋼種
ではニツケルの代わりとしてマンガンと窒素が用
いられている。用途によつては、これら200シリ
ーズ鋼が300シリーズ鋼以上の機械的張力を有す
ることがわかつた。これら合金の耐かじり及び又
は耐表面傷特性を向上するために、一層高濃度の
シリコン(けい素)が添加されたニトロニツク
(NITRONIC)60というタイプの合金がつくられ
た。ニトロニツク(NITRONIC)60は、200およ
び300シリーズ鋼に比較し優れた耐かじり特性と
耐表面傷特性を有している。 実験の結果、ニトロニツク60は、それら同士が
結合された場合、高い耐表面損傷性を示すことが
判明した。一方、他の対向する材料、特に300シ
リーズ鋼や高ニツケル合金と相対向して結合され
た時は、耐かじり特性と耐表面傷特性は限られた
程度でしかなかつた。したがつて、技術界でのこ
れら合金の使用には限度があることになる。 更に、通常の窒素含有合金の生産においては、
経験的に窒素含有量の制御が困難であることが知
られている。窒素は溶接時のガスの問題を促進し
がちである。マンガンもある種の炉のライニング
材を著るしく劣化させる原因となつているようで
ある。 目 的(OBJECTS) 従つて、本発明の第1の目的は、既存合金では
得られないような一層高度の耐摩耗性有する合金
の供給にある。 また本発明のもう一つの重要な目的は、種々の
摩耗環境下でより高い耐摩耗性を有する合金を供
給することである。 本発明の他の目的は、第1表に開示されている
本発明の合金により当業者には十分認識されるこ
とと思はれる。 本発明 第1表には、本発明の合金の各種の実施態様を
規定するところの成分範囲が示されている。第1
表における“広い範囲”とは、ある状況下では、
本発明のいくつかの有効性が達成され得る範囲を
規定するものである。第一表中の好適成分範囲の
意味は、より高度の有効性が得られることが可能
な範囲である。この範囲内の成分では、多くの特
性が向上することがデータに示されている。第1
表中“一層好適な範囲”として規定されている範
囲においては、より望ましい工学的特性が組合せ
て達成される。 第1表に規定される“代表的な合金”は、本発
明中で最適の成分を有するものである。この“代
表的な合金”は実質的に第1表の“代表的成分範
囲”と規定されているように、実用的な実施可能
範囲を有しているものである。
な耐摩耗性の用途、例えばバルブ構成品などに適
した高クロムステンレス鋼に関するものである。 鉄―クロム―ニツケル耐蝕鋼としての発明以
来、ステンレス鋼は常に発展、改良が続けられて
いる。現在何百種ものステンレス鋼が存在する。
それらの多くは、特定の用途向けに設計された。
先行技術では、必要条件として要求される特殊の
性質が得られるようにするための鋼の成分の改良
が多かつた。目下コバルト基合金によつてまかな
われている合金に代つて、耐蝕性および耐機械的
摩耗性を有する低価格合金に対する要求が極めて
緊要のものになつた。 このクラスに属する公知の合金は、ステライト
(STELLITE)No.6合金として市販されており、
代表的に28%クロム、4.5%タングステン、1.2%
炭素と残部コバルトを含有する。鉄は低価格で入
手可能性が高いことから、いくつかの鉄基合金が
摩耗を伴なう用途向けに提案された。例えばアメ
リカ特許2635044は、熱処理した場合にかじり及
び又は表面傷生成(galling)およびエロージヨ
ン−コロージヨンに耐える硬化可能型ステンレス
鋼として、モリブデン、ベリリユウムとけい素を
添加した18―8ステンレス鋼を開示している。 先行技術 アメリカ特許1790177では、孔明工具および溶
接棒としての用途に適した耐蝕合金鋼を開示して
いる。この鋼は、必須成分として、クロム、ニツ
ケル、けい素および炭素のみを含んでいるもの
で、25〜35%のクロムが主特徴である。またアメ
リカ特許2750283では、既知のほとんど全てのク
ロム―鉄合金、即ちニツケル、炭素、けい素、マ
ンガン、モリブデン、タングステン、コバルトそ
の他の任意添加元素を含み又は含まないクロム―
鉄合金の熱間圧延特性を向上させるためのほう素
の添加を開示している。アメリカ特許4002510で
は、18―8ステンレス鋼に対するけい素の添加が
デルタフエライトの形成を促進し、その結果応力
腐蝕割れに対する抵抗性を高めることを開示して
いる。 本明細書中に用いられているように、全成分は
重量パーセントで示されている。 アメリカ特許3912503及び4039356とは、臨界的
成分量のマンガンとけい素を有する改良18―8ス
テンレス鋼に関するものである。 当業界では、これに類似の市販鋼としてアーム
コ社の商標名ニトロニツク(NITRONIC)60が
あり、これは重量パーセントで代表的に最大0.1
%の炭素、8%のマンガン、4%のけい素、17%
のクロム、8.5%ニツケルと0.13%の窒素を含
む。この鋼は耐特性が良く、特にかじり又は表面
損傷試験の結果が良好なことをデータが示してい
る。 産業界あるいは消費者の機械的操作における金
属摩耗は、常に不経済かつ危険な問題となつてい
る。摩耗環境は非常に多様化しているので、これ
ら問題の全てを解決しうるような最適又は完全と
いえる耐摩耗合金はない。更に、ある耐摩耗合金
を生産するための元素の価格及び入手可能性とい
う点を考慮することが重要になつている。当技術
界は、定常的にこれらの要求を満たす新しい改良
された合金を捜し求めている。 例へば、化学的に侵食性のある媒体のもとで使
用されるバルブ部材は、ステンレス鋼か高ニツケ
ル合金で作られている。代表的には、304ステン
レス鋼は食品加工産業比較的に弱い腐食剤を含む
システムで選択され、316ステンレス鋼は化学プ
ロセス産業で多く使用され、高ニツケル合金は侵
食性の高い媒体が存在する場所で使用される。 300タイプのステンレス鋼及び高ニツケル合金
の大きな欠点はというと、これらがバルブの作動
として宿命的とも言える高荷重の下での相対的な
運動をしている時に、かじりおよび/または表面
損傷(表面のひどい傷害を受ける)を生起しがち
であることである。この点で、特に問題となるの
は、シール目的のため完全性を保有することが不
可欠な弁座面である。 一般的に、300シリーズ鋼は基本的な耐蝕ステ
ンレス鋼である。ニツケルの使用を低減する手段
として、200シリーズ鋼が開発された、この鋼種
ではニツケルの代わりとしてマンガンと窒素が用
いられている。用途によつては、これら200シリ
ーズ鋼が300シリーズ鋼以上の機械的張力を有す
ることがわかつた。これら合金の耐かじり及び又
は耐表面傷特性を向上するために、一層高濃度の
シリコン(けい素)が添加されたニトロニツク
(NITRONIC)60というタイプの合金がつくられ
た。ニトロニツク(NITRONIC)60は、200およ
び300シリーズ鋼に比較し優れた耐かじり特性と
耐表面傷特性を有している。 実験の結果、ニトロニツク60は、それら同士が
結合された場合、高い耐表面損傷性を示すことが
判明した。一方、他の対向する材料、特に300シ
リーズ鋼や高ニツケル合金と相対向して結合され
た時は、耐かじり特性と耐表面傷特性は限られた
程度でしかなかつた。したがつて、技術界でのこ
れら合金の使用には限度があることになる。 更に、通常の窒素含有合金の生産においては、
経験的に窒素含有量の制御が困難であることが知
られている。窒素は溶接時のガスの問題を促進し
がちである。マンガンもある種の炉のライニング
材を著るしく劣化させる原因となつているようで
ある。 目 的(OBJECTS) 従つて、本発明の第1の目的は、既存合金では
得られないような一層高度の耐摩耗性有する合金
の供給にある。 また本発明のもう一つの重要な目的は、種々の
摩耗環境下でより高い耐摩耗性を有する合金を供
給することである。 本発明の他の目的は、第1表に開示されている
本発明の合金により当業者には十分認識されるこ
とと思はれる。 本発明 第1表には、本発明の合金の各種の実施態様を
規定するところの成分範囲が示されている。第1
表における“広い範囲”とは、ある状況下では、
本発明のいくつかの有効性が達成され得る範囲を
規定するものである。第一表中の好適成分範囲の
意味は、より高度の有効性が得られることが可能
な範囲である。この範囲内の成分では、多くの特
性が向上することがデータに示されている。第1
表中“一層好適な範囲”として規定されている範
囲においては、より望ましい工学的特性が組合せ
て達成される。 第1表に規定される“代表的な合金”は、本発
明中で最適の成分を有するものである。この“代
表的な合金”は実質的に第1表の“代表的成分範
囲”と規定されているように、実用的な実施可能
範囲を有しているものである。
【表】
耐蝕性を与え、またクロム炭化物、クロムほう
化物などの形成を促進させるため本発明の合金に
はクロムが存在している。10%以下のクロムでは
十分な耐蝕性が得られないし、一方、40%以上の
成分のクロムでは合金の延性が低下する。 ニツケルは、合金中のオーステナイト構造を促
進させるため含有させるべきものである。効果的
には少くとも5%のニツケルが必要だが、15%以
上にしても何等の付加的効果が期待できない。試
験の結果によれば、僅に5.12%のニツケル量で
は、高ニツケル合金に本合金を結合した場合に
は、高度の耐かじりおよび耐表面傷特性が認めら
れた。14.11%のニツケル量でもまた高ニツケル
合金に対する耐かじりおよび耐表面傷特性は劣
り、また14.11%ニツケル合金同士を結合した場
合も同様であつた。 けい素は合金の耐かじりおよび耐表面傷特性を
増強するためのものとして存在させねばならな
い。3%以下では十分でなく、また7%を超える
と合金を脆くする。 勿論、鉄の炭化物とほう化物も形成される。合
金中にこれらの炭化物やほう化物の有効量を得る
ためには、炭素及びほう素は合計量が0.25%以上
なければならない。合計で3.5%以上の炭素とほ
う素が存在すると合金の延性は低下する傾向にな
る。前述した炭化物またはほう化物形成元素(鉄
以外)の総量は、効果をもたらすためには10%以
上存在しなければならない、しかし一方、40%以
上の量では、延性を低下させるだろうし、更にコ
ストがかさんでしまう。 一般には、炭化物およびほう化物は、3ないし
それ以上の元素からなる複合体であると理解され
ているもの、つまりクロム―鉄―炭化物のような
ものである。 勿論、炭化物―ほう化物形成元素の1部は基質
内に見出される。本発明の合金中で窒素は、いく
つかの用途にとつては有益となるものであつて、
過剰の窒化物の形成と溶接時のガスに関する問題
を避けるために0.2%を超えない量だけは存在し
ていてもよい。即ち窒素が0.2%を超えると合金
中の窒化物が過剰となり溶接性が劣化する。好適
な窒素の量は第1表に示されているように0.15%
以下である。 コバルトは合金成分中でも特に臨界的なもので
ある。下記のデータが示しているように、制御さ
れた量のコバルトによつて合金の本質的特徴が得
られるもので、特に衝撃強度において有効であ
る。衝撃強度を効果的に高めるには、最低5%の
コバルト量が必要である。コバルト量が30%を超
えると、有益な効果は失なわれコスト増加の割に
見合うだけの付加的な改良度は見られなくなる。
実際の試験に結果、コバルトの最適量はほぼ12%
と示されている。このようにして、好適成分範囲
のコバルト量は5〜20%が本発明に最も有用なも
のとして提案できる。 コバルトの臨界性についての一連の試験を2種
の鉄基合金を用いて行なつた。合金Aは、コバル
トを除いては第2表の6781合金と同一のものであ
る。合金Bはクロム20.37%、ニツケル9.83%、
けい素4.74%、炭素2.2%、バナジウム7.93%から
成る。この基本合金A,Bにコバルトが添加され
た。このようにしてできた合金の衝撃強度試験を
行つた。試験は標準シヤルピー衝撃試験機で行な
われ、測定値は非切り欠き試験片からジユール単
位で得られた。データは第3表に示されており、
別図にグラフで示されている。 データ及びグラフから、コバルト量のコントロ
ールが衝撃強度に対し劇的なまでに作用している
ことが明確にされている。データから12%付近が
コバルトの最適成分量となつている。コバルトの
効果が有効的に働くのは合金Aでは30%、合金B
では20%までとなつている。 このデータによれば、基本合金A自体はもとも
と高い衝撃強度を有していることを示している、
しかしながら、コバルトの影響は合金Bでも同様
なことを示している。試験した材料の組合わせの
全てを考慮してみると、第4表に示されているデ
ータのように、コバルトが4.86%しか含まれない
もの(合金A―1)は、コバルトを11.95%含む
もの(A―2)に比較しかじりおよび/又は表面
損傷に対する一般的抵抗性(general resistance
to galling)は劣る。一方コバルトを26.92%まで
増やしても(A―3)、かじりに対する抵抗性の
改善はほとんど得られなかつた。先行技術で公知
の合金との直接の比較のために、第4表にはステ
ライト(STELLITE)合金6、ニトロニツク
(NITRONIC)60、およびニツケル基合金として
公知のハステロイ(HASTELLOY)合金C―276
のデータを掲示してある。かじりおよび表面損傷
試験の実施方法は後述する。 これらの摩耗データから、本発明合金は、他の
代表的な商業的に入手可能な合金と同等あるいは
それ以上に優秀であることがわかる。 これらのデータから、コバルトの含有量の最大
限は30%までで、コバルトの価格を考えると、20
%が好適量と考えられる。 マンガンは本発明合金では、不可欠成分ではな
いが、ニツケルと共に総量20%を超えない範囲で
存在していてもよい。
化物などの形成を促進させるため本発明の合金に
はクロムが存在している。10%以下のクロムでは
十分な耐蝕性が得られないし、一方、40%以上の
成分のクロムでは合金の延性が低下する。 ニツケルは、合金中のオーステナイト構造を促
進させるため含有させるべきものである。効果的
には少くとも5%のニツケルが必要だが、15%以
上にしても何等の付加的効果が期待できない。試
験の結果によれば、僅に5.12%のニツケル量で
は、高ニツケル合金に本合金を結合した場合に
は、高度の耐かじりおよび耐表面傷特性が認めら
れた。14.11%のニツケル量でもまた高ニツケル
合金に対する耐かじりおよび耐表面傷特性は劣
り、また14.11%ニツケル合金同士を結合した場
合も同様であつた。 けい素は合金の耐かじりおよび耐表面傷特性を
増強するためのものとして存在させねばならな
い。3%以下では十分でなく、また7%を超える
と合金を脆くする。 勿論、鉄の炭化物とほう化物も形成される。合
金中にこれらの炭化物やほう化物の有効量を得る
ためには、炭素及びほう素は合計量が0.25%以上
なければならない。合計で3.5%以上の炭素とほ
う素が存在すると合金の延性は低下する傾向にな
る。前述した炭化物またはほう化物形成元素(鉄
以外)の総量は、効果をもたらすためには10%以
上存在しなければならない、しかし一方、40%以
上の量では、延性を低下させるだろうし、更にコ
ストがかさんでしまう。 一般には、炭化物およびほう化物は、3ないし
それ以上の元素からなる複合体であると理解され
ているもの、つまりクロム―鉄―炭化物のような
ものである。 勿論、炭化物―ほう化物形成元素の1部は基質
内に見出される。本発明の合金中で窒素は、いく
つかの用途にとつては有益となるものであつて、
過剰の窒化物の形成と溶接時のガスに関する問題
を避けるために0.2%を超えない量だけは存在し
ていてもよい。即ち窒素が0.2%を超えると合金
中の窒化物が過剰となり溶接性が劣化する。好適
な窒素の量は第1表に示されているように0.15%
以下である。 コバルトは合金成分中でも特に臨界的なもので
ある。下記のデータが示しているように、制御さ
れた量のコバルトによつて合金の本質的特徴が得
られるもので、特に衝撃強度において有効であ
る。衝撃強度を効果的に高めるには、最低5%の
コバルト量が必要である。コバルト量が30%を超
えると、有益な効果は失なわれコスト増加の割に
見合うだけの付加的な改良度は見られなくなる。
実際の試験に結果、コバルトの最適量はほぼ12%
と示されている。このようにして、好適成分範囲
のコバルト量は5〜20%が本発明に最も有用なも
のとして提案できる。 コバルトの臨界性についての一連の試験を2種
の鉄基合金を用いて行なつた。合金Aは、コバル
トを除いては第2表の6781合金と同一のものであ
る。合金Bはクロム20.37%、ニツケル9.83%、
けい素4.74%、炭素2.2%、バナジウム7.93%から
成る。この基本合金A,Bにコバルトが添加され
た。このようにしてできた合金の衝撃強度試験を
行つた。試験は標準シヤルピー衝撃試験機で行な
われ、測定値は非切り欠き試験片からジユール単
位で得られた。データは第3表に示されており、
別図にグラフで示されている。 データ及びグラフから、コバルト量のコントロ
ールが衝撃強度に対し劇的なまでに作用している
ことが明確にされている。データから12%付近が
コバルトの最適成分量となつている。コバルトの
効果が有効的に働くのは合金Aでは30%、合金B
では20%までとなつている。 このデータによれば、基本合金A自体はもとも
と高い衝撃強度を有していることを示している、
しかしながら、コバルトの影響は合金Bでも同様
なことを示している。試験した材料の組合わせの
全てを考慮してみると、第4表に示されているデ
ータのように、コバルトが4.86%しか含まれない
もの(合金A―1)は、コバルトを11.95%含む
もの(A―2)に比較しかじりおよび/又は表面
損傷に対する一般的抵抗性(general resistance
to galling)は劣る。一方コバルトを26.92%まで
増やしても(A―3)、かじりに対する抵抗性の
改善はほとんど得られなかつた。先行技術で公知
の合金との直接の比較のために、第4表にはステ
ライト(STELLITE)合金6、ニトロニツク
(NITRONIC)60、およびニツケル基合金として
公知のハステロイ(HASTELLOY)合金C―276
のデータを掲示してある。かじりおよび表面損傷
試験の実施方法は後述する。 これらの摩耗データから、本発明合金は、他の
代表的な商業的に入手可能な合金と同等あるいは
それ以上に優秀であることがわかる。 これらのデータから、コバルトの含有量の最大
限は30%までで、コバルトの価格を考えると、20
%が好適量と考えられる。 マンガンは本発明合金では、不可欠成分ではな
いが、ニツケルと共に総量20%を超えない範囲で
存在していてもよい。
【表】
【表】
【表】
【表】
実施例
試験のため一連の合金試料を準備した。合金試
料は誘導加熱溶解されガラス管中に吸引鋳造さ
れ、径4.8mm(0.188インチ)の溶接棒にされた。
溶接棒の溶着はガス―タングステン アーク溶接
で行なつた。溶着金属は試験片として作成され
た。 本発明の合金6781―Wは展伸材(wrought
product)として準備された。第2表は本合金の
分析結果を示す。合金は真空誘導溶解され、続い
てエレクトロスラツグ再溶解(ESR)を行なつ
た。エレクトロスラバ再溶解(ESR)バーは
1177℃(2150〓)で鍛造され、同じ温度で圧延さ
れて板になり、最終的には1.59mm厚(1/16イン
チ)の試験用薄板にされた。かじり試験および表
面損傷試験によると、本発明の合金は展伸材の形
態において、表面硬化溶着肉盛層の状態の合金に
みられるのと同様な、顕著な耐かじりおよび耐表
面傷特性を有することがわかつた。 展伸材合金は当技術分野で公知の標準方法によ
り衝撃試験が行なわれた。試験データを第5表に
掲示した。 本合金からは粉体製品を生産することもでき
る。
料は誘導加熱溶解されガラス管中に吸引鋳造さ
れ、径4.8mm(0.188インチ)の溶接棒にされた。
溶接棒の溶着はガス―タングステン アーク溶接
で行なつた。溶着金属は試験片として作成され
た。 本発明の合金6781―Wは展伸材(wrought
product)として準備された。第2表は本合金の
分析結果を示す。合金は真空誘導溶解され、続い
てエレクトロスラツグ再溶解(ESR)を行なつ
た。エレクトロスラバ再溶解(ESR)バーは
1177℃(2150〓)で鍛造され、同じ温度で圧延さ
れて板になり、最終的には1.59mm厚(1/16イン
チ)の試験用薄板にされた。かじり試験および表
面損傷試験によると、本発明の合金は展伸材の形
態において、表面硬化溶着肉盛層の状態の合金に
みられるのと同様な、顕著な耐かじりおよび耐表
面傷特性を有することがわかつた。 展伸材合金は当技術分野で公知の標準方法によ
り衝撃試験が行なわれた。試験データを第5表に
掲示した。 本合金からは粉体製品を生産することもでき
る。
【表】
本発明の合金と、例えば、タングステンカーバ
イドやほう化チタニウム(titanium diboride)
などの硬質粒とを混合した複合体を形成すること
もできる。 この混合物を更に処理して有用な形態にするこ
とになる。これに加えて、この混合物の構成成分
を別々に溶接トーチに添加して、最終製品を複合
溶着金属にすることもできる。 第4表のデータを作成するため行なつたかじり
試験および表面損傷試験は以下の手順を含むもの
である。 a 円柱ピン(直径15.9mm)を正逆方向に〔2.1
ラヂアン(120゜の弧)〕負荷の下に相手ブロツ
クに対し捩る、 b 元来は表面研磨仕上げ状態になつていた試験
面を表面あらさ計により摺動間に生じた表面の
損傷度を調べる、 各一対の試験片に対し負荷を3種とし、1360.8
Kg(3000lb)、2721.6Kg(6000lb)および4082.3Kg
(9000lb)の荷重で行なつた。試験ピンはスパナ
を用い手動で、荷重は球軸受を介して伝達した。
ピンの首部はスパナと球軸受の両者を受け入れる
ことができるよう設計した。 高荷重下で摺動を受けた金属表面は不規則な側
面形状の一つまたは二つの溝模様を呈することが
多いので、平均的な表面粗サ(極めて損傷の甚だ
しい部分の存在を隠しがちである)の変化を測定
するよりは、むしろ谷部から最高山部までの高さ
の変化の点から損傷の程度を測定する方がより適
当だと考えられた。 目視的には、円柱ピンと相手方ブロツクの両方
が所定の試験で同程度の損傷を受けているように
認められた。損傷を定量的に測定する方法として
は、探針が傷部の周辺に達してその部分を越えて
動くのが可能であり表面あらさ計に一層適してい
る点から、ブロツクの方だけを使用することにし
た。 確度を上げるため各損傷部に対し探針を2回づ
つ(ブロツク側面に平行な直径に沿つて1回、そ
れに直角な直径に沿つてさらに1回)通過させ
た。 最初のピークからの谷までの巾の計算を可能に
するため近接した未摩耗領域をかなり重複させる
ようにした。 各半径を傷痕の明白な領域として考え、最終ピ
ークから谷部までの巾の4個の値を各傷痕ごとに
測定した。最初のピークから谷までの巾の4つの
値の平均値を控除し、これらの4つの値の平均値
を発生した損傷の程度を決定するために使用し
た。 上記の表面損傷の評価のための試験方法は、一
層厳しくかつ試験結果を一層意味のあるものにす
るために開発されたもので、公知方法から変更さ
れ修正されている。そこでこゝに報告した試験デ
ータは他の試験法によつて求められ発表されてい
るデータには必ずしも対応しない。 別途の記載がない限り、こゝに報告されている
かじり及び表面損傷試験は全く同一な試験条件の
もとに行なわれ、従つて試験結果はこゝに試験さ
れた各種合金間で直接比較とする上で努力がある
ものである。
イドやほう化チタニウム(titanium diboride)
などの硬質粒とを混合した複合体を形成すること
もできる。 この混合物を更に処理して有用な形態にするこ
とになる。これに加えて、この混合物の構成成分
を別々に溶接トーチに添加して、最終製品を複合
溶着金属にすることもできる。 第4表のデータを作成するため行なつたかじり
試験および表面損傷試験は以下の手順を含むもの
である。 a 円柱ピン(直径15.9mm)を正逆方向に〔2.1
ラヂアン(120゜の弧)〕負荷の下に相手ブロツ
クに対し捩る、 b 元来は表面研磨仕上げ状態になつていた試験
面を表面あらさ計により摺動間に生じた表面の
損傷度を調べる、 各一対の試験片に対し負荷を3種とし、1360.8
Kg(3000lb)、2721.6Kg(6000lb)および4082.3Kg
(9000lb)の荷重で行なつた。試験ピンはスパナ
を用い手動で、荷重は球軸受を介して伝達した。
ピンの首部はスパナと球軸受の両者を受け入れる
ことができるよう設計した。 高荷重下で摺動を受けた金属表面は不規則な側
面形状の一つまたは二つの溝模様を呈することが
多いので、平均的な表面粗サ(極めて損傷の甚だ
しい部分の存在を隠しがちである)の変化を測定
するよりは、むしろ谷部から最高山部までの高さ
の変化の点から損傷の程度を測定する方がより適
当だと考えられた。 目視的には、円柱ピンと相手方ブロツクの両方
が所定の試験で同程度の損傷を受けているように
認められた。損傷を定量的に測定する方法として
は、探針が傷部の周辺に達してその部分を越えて
動くのが可能であり表面あらさ計に一層適してい
る点から、ブロツクの方だけを使用することにし
た。 確度を上げるため各損傷部に対し探針を2回づ
つ(ブロツク側面に平行な直径に沿つて1回、そ
れに直角な直径に沿つてさらに1回)通過させ
た。 最初のピークからの谷までの巾の計算を可能に
するため近接した未摩耗領域をかなり重複させる
ようにした。 各半径を傷痕の明白な領域として考え、最終ピ
ークから谷部までの巾の4個の値を各傷痕ごとに
測定した。最初のピークから谷までの巾の4つの
値の平均値を控除し、これらの4つの値の平均値
を発生した損傷の程度を決定するために使用し
た。 上記の表面損傷の評価のための試験方法は、一
層厳しくかつ試験結果を一層意味のあるものにす
るために開発されたもので、公知方法から変更さ
れ修正されている。そこでこゝに報告した試験デ
ータは他の試験法によつて求められ発表されてい
るデータには必ずしも対応しない。 別途の記載がない限り、こゝに報告されている
かじり及び表面損傷試験は全く同一な試験条件の
もとに行なわれ、従つて試験結果はこゝに試験さ
れた各種合金間で直接比較とする上で努力がある
ものである。
添付の図面は、各試料合金についてのコバルト
の含有量の変化に伴なう非ノツチシヤルピー衝撃
強度の変化を示すグラフである。
の含有量の変化に伴なう非ノツチシヤルピー衝撃
強度の変化を示すグラフである。
Claims (1)
- 【特許請求の範囲】 1 15〜40%のクロムと7〜13%のニツケルと、
合計量が15%以下のニツケル及びマンガンと、
3.5〜6%のけい素と、合計量が0.75〜3.0%の炭
素及びほう素と、0.15%以下の窒素と、5〜20%
のコバルトと、残部鉄及び不可避不純物とから成
り、良好な衝撃強度と良好な耐摩耗性、特に耐か
じり特性および/または耐表面傷生成特性を併せ
有する合金。 2 25〜40%のクロムと、7〜13%のニツケル
と、合計量が15%以下のニツケルおよびマンガン
と、4〜5.5%のけい素と、合計量が0.75〜2.5%
の炭素及びほう素と、0.10%以下の窒素と、9〜
15%のコバルトと、を含有する特許請求の範囲第
1項記載の合金。 3 30%のクロムと、10%のニツケルと、4.7%
のけい素と、1%の炭素と、12%のコバルトとを
含有する特許請求の範囲第1項に記載の合金。 4 28.5〜31.5%のクロムと、9〜11%のニツケ
ルと、4.4〜5.2%のけい素と、0.85〜1.15%の炭
素と、11〜13%のコバルトとを含有する特許請求
の範囲第1項記載の合金。 5 種々の条件の下で高度の耐摩耗性、特に耐か
じり特性及び又は耐表面傷生成特性を有する特許
請求の範囲第1項記載の合金。 6 鋳造品、展伸材、表面硬化肉盛材あるいは、
焼結粉末冶金製品の形態になつている特許請求の
範囲第1項記載の合金。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US436233 | 1982-10-25 | ||
US06/436,233 US4487630A (en) | 1982-10-25 | 1982-10-25 | Wear-resistant stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5993859A JPS5993859A (ja) | 1984-05-30 |
JPS6238427B2 true JPS6238427B2 (ja) | 1987-08-18 |
Family
ID=23731643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58198418A Granted JPS5993859A (ja) | 1982-10-25 | 1983-10-25 | 耐摩耗性ステンレス鋼 |
Country Status (17)
Country | Link |
---|---|
US (1) | US4487630A (ja) |
JP (1) | JPS5993859A (ja) |
KR (1) | KR840006376A (ja) |
AT (1) | AT387791B (ja) |
AU (1) | AU555365B2 (ja) |
BE (1) | BE898069A (ja) |
CA (1) | CA1206023A (ja) |
CH (1) | CH658672A5 (ja) |
DE (1) | DE3338503A1 (ja) |
FI (1) | FI75604C (ja) |
FR (1) | FR2534931B1 (ja) |
GB (1) | GB2128633B (ja) |
IL (1) | IL69649A0 (ja) |
IN (1) | IN161777B (ja) |
IT (1) | IT1169893B (ja) |
SE (1) | SE457884B (ja) |
ZA (1) | ZA837168B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524513A (ja) * | 2004-02-16 | 2007-08-30 | ケビン、フランシス、ドルマン | 硬化肉盛合金鉄材料 |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725512A (en) * | 1984-06-08 | 1988-02-16 | Dresser Industries, Inc. | Materials transformable from the nonamorphous to the amorphous state under frictional loadings |
US4643767A (en) * | 1984-11-19 | 1987-02-17 | Cabot Corporation | Nuclear grade steels |
JP2506333B2 (ja) * | 1986-03-12 | 1996-06-12 | 日産自動車株式会社 | 耐摩耗性鉄基焼結合金 |
US4678523A (en) * | 1986-07-03 | 1987-07-07 | Cabot Corporation | Corrosion- and wear-resistant duplex steel |
US4844738A (en) * | 1986-10-31 | 1989-07-04 | Mitsubishi Kinzoku Kabushiki Kaisha | Carbide-dispersed type Fe-base sintered alloy excellent in wear resistance |
JPH089113B2 (ja) * | 1987-07-16 | 1996-01-31 | 三菱マテリアル株式会社 | 耐食耐摩耗性に優れたFe基肉盛合金 |
JP2696853B2 (ja) * | 1987-09-19 | 1998-01-14 | トヨタ自動車株式会社 | ホーニング装置 |
US5038640A (en) * | 1990-02-08 | 1991-08-13 | Hughes Tool Company | Titanium carbide modified hardfacing for use on bearing surfaces of earth boring bits |
US5328763A (en) * | 1993-02-03 | 1994-07-12 | Kennametal Inc. | Spray powder for hardfacing and part with hardfacing |
US5350560A (en) * | 1993-07-12 | 1994-09-27 | Triten Corporation | Wear resistant alloy |
JP2820613B2 (ja) * | 1994-03-29 | 1998-11-05 | 新日本製鐵株式会社 | 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔 |
JP2733016B2 (ja) * | 1994-04-06 | 1998-03-30 | 新日本製鐵株式会社 | 酸化雰囲気中で接合可能な耐熱材料用液相拡散接合合金箔 |
ES2111405T3 (es) * | 1994-05-17 | 1998-03-01 | Ksb Ag | Fundicion dura de elevada resistencia a la corrosion y al desgaste. |
GB9506677D0 (en) * | 1995-03-31 | 1995-05-24 | Rolls Royce & Ass | A stainless steel alloy |
US5514328A (en) * | 1995-05-12 | 1996-05-07 | Stoody Deloro Stellite, Inc. | Cavitation erosion resistent steel |
US5533438A (en) * | 1995-05-31 | 1996-07-09 | Fmc Corporation | Spiral tee for tin free steel containers |
US6168757B1 (en) * | 1995-11-15 | 2001-01-02 | Alphatech, Inc. | Material formulation for galvanizing equipment submerged in molten aluminum and aluminum/zinc melts |
GB9714651D0 (en) | 1997-07-12 | 1997-09-17 | Petroline Wellsystems Ltd | Downhole tubing |
US6004507A (en) * | 1997-08-11 | 1999-12-21 | Alphatech, Inc. | Material formulation for galvanizing equipment submerged in molten and aluminum zinc melts |
US6098717A (en) * | 1997-10-08 | 2000-08-08 | Formlock, Inc. | Method and apparatus for hanging tubulars in wells |
GB9723031D0 (en) | 1997-11-01 | 1998-01-07 | Petroline Wellsystems Ltd | Downhole tubing location method |
GB0224807D0 (en) | 2002-10-25 | 2002-12-04 | Weatherford Lamb | Downhole filter |
CA2356194C (en) | 1998-12-22 | 2007-02-27 | Weatherford/Lamb, Inc. | Procedures and equipment for profiling and jointing of pipes |
US6425444B1 (en) | 1998-12-22 | 2002-07-30 | Weatherford/Lamb, Inc. | Method and apparatus for downhole sealing |
US6415863B1 (en) | 1999-03-04 | 2002-07-09 | Bestline Liner System, Inc. | Apparatus and method for hanging tubulars in wells |
GB2354260A (en) * | 1999-07-10 | 2001-03-21 | Univ Bradford | Sintering stainless steels |
GB9921557D0 (en) | 1999-09-14 | 1999-11-17 | Petroline Wellsystems Ltd | Downhole apparatus |
US6325148B1 (en) | 1999-12-22 | 2001-12-04 | Weatherford/Lamb, Inc. | Tools and methods for use with expandable tubulars |
US6598678B1 (en) | 1999-12-22 | 2003-07-29 | Weatherford/Lamb, Inc. | Apparatus and methods for separating and joining tubulars in a wellbore |
US6899772B1 (en) | 2000-03-27 | 2005-05-31 | Alphatech, Inc. | Alloy molten composition suitable for molten magnesium environments |
DE60117372T2 (de) | 2000-05-05 | 2006-10-12 | Weatherford/Lamb, Inc., Houston | Vorrichtung und verfahren zur herstellung einer lateralbohrung |
US6485678B1 (en) | 2000-06-20 | 2002-11-26 | Winsert Technologies, Inc. | Wear-resistant iron base alloys |
US7172027B2 (en) | 2001-05-15 | 2007-02-06 | Weatherford/Lamb, Inc. | Expanding tubing |
US20040258554A1 (en) * | 2002-01-09 | 2004-12-23 | Roman Radon | High-chromium nitrogen containing castable alloy |
US6761777B1 (en) * | 2002-01-09 | 2004-07-13 | Roman Radon | High chromium nitrogen bearing castable alloy |
US6732806B2 (en) | 2002-01-29 | 2004-05-11 | Weatherford/Lamb, Inc. | One trip expansion method and apparatus for use in a wellbore |
WO2003078158A1 (en) * | 2002-03-11 | 2003-09-25 | Liquidmetal Technologies | Encapsulated ceramic armor |
US7560001B2 (en) * | 2002-07-17 | 2009-07-14 | Liquidmetal Technologies, Inc. | Method of making dense composites of bulk-solidifying amorphous alloys and articles thereof |
WO2004009268A2 (en) * | 2002-07-22 | 2004-01-29 | California Institute Of Technology | BULK AMORPHOUS REFRACTORY GLASSES BASED ON THE Ni-Nb-Sn TERNARY ALLOY SYTEM |
WO2004012620A2 (en) | 2002-08-05 | 2004-02-12 | Liquidmetal Technologies | Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles |
JP2004148414A (ja) * | 2002-10-28 | 2004-05-27 | Seiko Epson Corp | 研削材及び研削材の製造方法並びに製造装置 |
USRE47321E1 (en) | 2002-12-04 | 2019-03-26 | California Institute Of Technology | Bulk amorphous refractory glasses based on the Ni(-Cu-)-Ti(-Zr)-Al alloy system |
US7896982B2 (en) * | 2002-12-20 | 2011-03-01 | Crucible Intellectual Property, Llc | Bulk solidifying amorphous alloys with improved mechanical properties |
WO2004059019A1 (en) * | 2002-12-20 | 2004-07-15 | Liquidmetal Technologies, Inc. | Pt-BASE BULK SOLIDIFYING AMORPHOUS ALLOYS |
US8828155B2 (en) | 2002-12-20 | 2014-09-09 | Crucible Intellectual Property, Llc | Bulk solidifying amorphous alloys with improved mechanical properties |
US7520944B2 (en) * | 2003-02-11 | 2009-04-21 | Johnson William L | Method of making in-situ composites comprising amorphous alloys |
EP1597500B1 (de) * | 2003-02-26 | 2009-06-17 | Bosch Rexroth AG | Direktgesteuertes druckbegrenzungsventil |
WO2005033350A1 (en) * | 2003-10-01 | 2005-04-14 | Liquidmetal Technologies, Inc. | Fe-base in-situ composite alloys comprising amorphous phase |
US7308944B2 (en) * | 2003-10-07 | 2007-12-18 | Weatherford/Lamb, Inc. | Expander tool for use in a wellbore |
CN1929991B (zh) * | 2004-01-29 | 2016-02-24 | 纳米钢公司 | 耐磨材料 |
US6978885B1 (en) | 2004-07-27 | 2005-12-27 | Rexnord Industries, Inc. | Hinge conveyor chain |
US8124007B2 (en) * | 2006-02-16 | 2012-02-28 | Stoody Company | Stainless steel weld overlays with enhanced wear resistance |
AT502397B1 (de) * | 2006-03-20 | 2007-03-15 | Boehler Edelstahl | Legierung für wälzlager |
US8430075B2 (en) * | 2008-12-16 | 2013-04-30 | L.E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
US8479700B2 (en) * | 2010-01-05 | 2013-07-09 | L. E. Jones Company | Iron-chromium alloy with improved compressive yield strength and method of making and use thereof |
EP2728028B1 (fr) | 2012-11-02 | 2018-04-04 | The Swatch Group Research and Development Ltd. | Alliage d'acier inoxydable sans nickel |
CN104096989B (zh) * | 2014-07-09 | 2017-10-20 | 博睿泰达科技(北京)有限公司 | 一种发动机气门堆焊用铁基喷焊粉 |
EP3327151A1 (fr) * | 2016-11-04 | 2018-05-30 | Richemont International S.A. | Résonateur pour piece d'horlogerie |
CN107287532A (zh) * | 2017-06-29 | 2017-10-24 | 浙江创特新材科技有限公司 | 一种高强度不锈钢粉末冶金材料及其制备方法 |
US10844465B2 (en) * | 2017-08-09 | 2020-11-24 | Garrett Transportation I Inc. | Stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
US11371108B2 (en) | 2019-02-14 | 2022-06-28 | Glassimetal Technology, Inc. | Tough iron-based glasses with high glass forming ability and high thermal stability |
CN111618481A (zh) * | 2020-04-03 | 2020-09-04 | 杨传志 | 金属表面高耐磨复合焊层焊料与制备方法以及在金属零部件方面的应用 |
EP4039843A1 (fr) | 2021-02-04 | 2022-08-10 | Richemont International S.A. | Alliage antiferromagnétique, son procédé de réalisation et composant de mouvement horloger fait de l'alliage |
CN113146095B (zh) * | 2021-03-01 | 2023-04-11 | 哈尔滨威尔焊接有限责任公司 | 一种奥氏体高合金钢专用焊材及应用 |
CN113182730B (zh) * | 2021-05-08 | 2023-04-07 | 广西辉煌耐磨技术股份有限公司 | 一种高性能硬面堆焊药芯焊丝 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518808A (en) * | 1974-06-06 | 1976-01-24 | Ericsson Telefon Ab L M | Spc shikidenkitsushinsochi |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899302A (en) * | 1959-08-11 | Mckel-silicon-boron alloys | ||
GB691811A (en) * | 1950-01-09 | 1953-05-20 | Deutsche Edelstahlwerke Ag | Process for the production of articles from boron-containing steels |
GB758009A (en) * | 1952-09-10 | 1956-09-26 | Schoeller Bleckmann Stahlwerke | High-temperature corrosion resistant alloys |
US3385739A (en) * | 1965-04-13 | 1968-05-28 | Eaton Yale & Towne | Alloy steel articles and the method of making |
US3912503A (en) * | 1973-05-14 | 1975-10-14 | Armco Steel Corp | Galling resistant austenitic stainless steel |
JPS5462108A (en) * | 1977-10-27 | 1979-05-18 | Nippon Piston Ring Co Ltd | Abrasion resistant sintered alloy |
JPS55145151A (en) * | 1979-04-26 | 1980-11-12 | Nippon Piston Ring Co Ltd | Wear resistant sintered alloy material for internal combustion engine |
JPS6059077B2 (ja) * | 1980-05-02 | 1985-12-23 | 福田金属箔粉工業株式会社 | ニツケル基肉盛合金 |
-
1982
- 1982-10-25 US US06/436,233 patent/US4487630A/en not_active Expired - Lifetime
-
1983
- 1983-09-04 IL IL69649A patent/IL69649A0/xx not_active IP Right Cessation
- 1983-09-14 CA CA000436670A patent/CA1206023A/en not_active Expired
- 1983-09-26 ZA ZA837168A patent/ZA837168B/xx unknown
- 1983-09-28 SE SE8305242A patent/SE457884B/sv not_active IP Right Cessation
- 1983-10-04 FI FI833604A patent/FI75604C/fi not_active IP Right Cessation
- 1983-10-20 IN IN1289/CAL/83A patent/IN161777B/en unknown
- 1983-10-22 DE DE19833338503 patent/DE3338503A1/de not_active Withdrawn
- 1983-10-24 FR FR8316887A patent/FR2534931B1/fr not_active Expired
- 1983-10-24 AU AU20526/83A patent/AU555365B2/en not_active Ceased
- 1983-10-24 KR KR1019830005019A patent/KR840006376A/ko not_active Application Discontinuation
- 1983-10-24 BE BE0/211764A patent/BE898069A/fr not_active IP Right Cessation
- 1983-10-24 AT AT0378483A patent/AT387791B/de not_active IP Right Cessation
- 1983-10-25 JP JP58198418A patent/JPS5993859A/ja active Granted
- 1983-10-25 IT IT23427/83A patent/IT1169893B/it active
- 1983-10-25 CH CH5782/83A patent/CH658672A5/fr not_active IP Right Cessation
- 1983-10-25 GB GB08328413A patent/GB2128633B/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518808A (en) * | 1974-06-06 | 1976-01-24 | Ericsson Telefon Ab L M | Spc shikidenkitsushinsochi |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524513A (ja) * | 2004-02-16 | 2007-08-30 | ケビン、フランシス、ドルマン | 硬化肉盛合金鉄材料 |
Also Published As
Publication number | Publication date |
---|---|
BE898069A (fr) | 1984-02-15 |
CA1206023A (en) | 1986-06-17 |
JPS5993859A (ja) | 1984-05-30 |
FI833604A (fi) | 1984-04-26 |
FI833604A0 (fi) | 1983-10-04 |
SE457884B (sv) | 1989-02-06 |
IN161777B (ja) | 1988-02-06 |
FR2534931A1 (fr) | 1984-04-27 |
AU555365B2 (en) | 1986-09-18 |
CH658672A5 (fr) | 1986-11-28 |
IL69649A0 (en) | 1983-12-30 |
FI75604B (fi) | 1988-03-31 |
IT1169893B (it) | 1987-06-03 |
AT387791B (de) | 1989-03-10 |
SE8305242L (sv) | 1984-04-26 |
ZA837168B (en) | 1984-05-30 |
GB8328413D0 (en) | 1983-11-23 |
FI75604C (fi) | 1988-07-11 |
IT8323427A0 (it) | 1983-10-25 |
SE8305242D0 (sv) | 1983-09-28 |
FR2534931B1 (fr) | 1987-01-30 |
DE3338503A1 (de) | 1984-04-26 |
KR840006376A (ko) | 1984-11-29 |
US4487630A (en) | 1984-12-11 |
AU2052683A (en) | 1984-05-03 |
GB2128633A (en) | 1984-05-02 |
GB2128633B (en) | 1986-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6238427B2 (ja) | ||
Sandhu et al. | Metallurgical, wear and fatigue performance of Inconel 625 weld claddings | |
EP0265165B1 (en) | Cobalt-free, iron-base hardfacing alloys | |
CA1095746A (en) | Galling resistant austenitic stainless steel | |
Rao et al. | Weld overlay cladding of high strength low alloy steel with austenitic stainless steel–structure and properties | |
JP7217150B2 (ja) | 完全可読性溶射コーティング | |
EP0149340B1 (en) | Galling and wear resistant steel alloy | |
Adamiak et al. | Comparison of abrasion resistance of selected constructional materials | |
US4678523A (en) | Corrosion- and wear-resistant duplex steel | |
Bakhshayesh et al. | Evaluation of crane wheels restored by hardfacing two distinct 13Cr-4Ni martensitic stainless steels | |
US4146412A (en) | Galling resistant austenitic stainless steel | |
EP0789786B1 (en) | Cobalt-free hardfacing alloys with improved welding characteristics | |
Crook | The effects of dilution upon the corrosion and wear properties of cobalt-based weld overlays | |
Henzler et al. | Influence of austenitic interlayer on the properties of stellite padding welds after impact-hardening | |
NL8002939A (nl) | Legering op nikkelbasis, die tegen slijtage bestand is. | |
Sieurin et al. | Fracture toughness of welded commercial lean duplex stainless steels | |
Matthews et al. | Weldability characteristics of a new corrosion-and wear-resistant cobalt alloy | |
GB1595755A (en) | Galling resistant austenitic stainless steel | |
Barmaki et al. | Effect of the Number of Welding Passes on the Microstructure and Wear Behavior of St52 Plain Carbon Steel Coated with a High Chromium-Carbon Electrode. | |
JP2703552B2 (ja) | コバルトを含まない鉄基表面硬化合金 | |
Crook et al. | Cobalt-base alloys | |
Poweleit | Steel castings properties | |
Ganeshkumar et al. | Dissimilar Welding of Aluminium Alloy 6063 and Stainless Steel 316 by using Various Parameters and Evaluate the Mechanical Properties | |
Srinivasan et al. | Nickel Chromium Overlay on SS410 by MIG Cladding Process | |
Uhl et al. | A HIP Clad Nickel-Base Alloy for Deep Sour Wells |