JPS6238416B2 - - Google Patents

Info

Publication number
JPS6238416B2
JPS6238416B2 JP59184965A JP18496584A JPS6238416B2 JP S6238416 B2 JPS6238416 B2 JP S6238416B2 JP 59184965 A JP59184965 A JP 59184965A JP 18496584 A JP18496584 A JP 18496584A JP S6238416 B2 JPS6238416 B2 JP S6238416B2
Authority
JP
Japan
Prior art keywords
properties
stress
stress relaxation
phosphor bronze
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59184965A
Other languages
Japanese (ja)
Other versions
JPS6164841A (en
Inventor
Kazutake Ikushima
Koji Iwatate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP18496584A priority Critical patent/JPS6164841A/en
Publication of JPS6164841A publication Critical patent/JPS6164841A/en
Publication of JPS6238416B2 publication Critical patent/JPS6238416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコネクター、スイツチ、リレー等の電
気機器用のばね材料として用いられる導電性とば
ね特性に優れたCu―Sn―P系の導電ばね材料に
関するものである。 (従来の技術) 従来、導電性とばね特性とに優れた導電ばね材
料として代表的なものは、JISに2種、3種とし
て規定されているSn5.5〜9.0%、P0.03〜0.3%を
含むりん青銅であるが、最近の小型化されて高い
信頼性が求められる電子部品として使用するには
曲げ成形性特に応力弛緩特性等が不十分であると
いう問題点があつた。 (発明が解決しようとする問題点) ところが、前記のような応力弛緩特性は試験片
に例えば40Kg/cm2の最大曲げ応力が作用するよう
に荷重をかけてわん曲させ、200℃で100時間保持
後に荷重を解除して試験片の残留応力を測定する
方法により評価されるもので、電子部品の高い信
頼性を保障する重要な特性とされているが、従来
のりん青銅にあつては応力残留率が30%前後であ
つて、高い信頼性を得ることができなかつた。 (問題点を解決するための手段) 本発明は上記のような従来の問題点を解決する
ため、従来のりん青銅中のSnの一部をNiで置換
することにより組織の微細化とともに第2相の析
出によつてりん青銅の優れた機械的性質を失うこ
となく曲げ成形性、応力弛緩特性等の諸特性にも
優れた導電ばね材料としたものであつて、重量%
で、Sn5.5〜8.5%、P0.05〜0.35%、Ni1.5〜3.5
%、残部Cuおよび不可避的な不純物からなるも
のである。 次に本発明におけるSnおよびNi,Pの含有率
の限定理由を説明すると、Snは5.5%未満である
と十分な機械的強度が得られず、8.5%を越える
と伸びが減少して冷間圧延性等の加工性が低下す
るもので、5.5〜8.5%の範囲が最も好ましい。Ni
はこれを加えることにより結晶粒を微細化させる
とともにSnとの間に第2相を生成させて前記諸
特性の向上を図るための成分であり、Niが1.5%
未満では結晶粒の微細化効果が不十分で応力弛緩
特性の向上が得られず、3.5%を越えると冷間圧
延性や曲げ成形性が悪化するものであつて、1.5
〜3.5%の範囲が最も好ましい。脱酸剤であるP
は0.05%未満では溶湯の脱酸効果が不足して素材
の鋳造欠陥が多くなつて圧延加工性および機械的
特性を悪化させ、0.35%を越えると導電性を悪化
させるものであつて、0.05〜0.35%の範囲が最も
好ましい。 実施例
(Field of Industrial Application) The present invention relates to a Cu--Sn--P based conductive spring material that has excellent conductivity and spring properties and is used as a spring material for electrical equipment such as connectors, switches, and relays. (Prior art) Conventionally, typical conductive spring materials with excellent conductivity and spring properties are Sn5.5-9.0% and P0.03-0.3, which are specified as Types 2 and 3 by JIS. %, but it has had the problem that its bending formability, particularly its stress relaxation properties, etc., are insufficient for use in electronic components that have recently been miniaturized and require high reliability. (Problem to be Solved by the Invention) However, the above-mentioned stress relaxation properties cannot be obtained by bending a test piece under a load such that a maximum bending stress of 40 kg/cm 2 is applied, for example, and at 200°C for 100 hours. This is evaluated by measuring the residual stress in the test piece after the load is released after it is held, and is considered to be an important property to ensure high reliability of electronic components.However, with conventional phosphor bronze, stress The residual rate was around 30%, and high reliability could not be obtained. (Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the present invention replaces a part of the Sn in the conventional phosphor bronze with Ni, thereby making the structure finer and producing a second A conductive spring material that has excellent properties such as bending formability and stress relaxation properties without losing the excellent mechanical properties of phosphor bronze due to phase precipitation.
So, Sn5.5~8.5%, P0.05~0.35%, Ni1.5~3.5
%, the balance consists of Cu and unavoidable impurities. Next, to explain the reason for limiting the content of Sn, Ni, and P in the present invention, if Sn is less than 5.5%, sufficient mechanical strength cannot be obtained, and if it exceeds 8.5%, elongation decreases and cold The most preferable range is from 5.5% to 8.5% since it reduces workability such as rolling properties. Ni
is a component that refines the crystal grains by adding it and generates a second phase between it and Sn to improve the various properties mentioned above.Ni is 1.5%
If it is less than 3.5%, the effect of grain refinement is insufficient and no improvement in stress relaxation properties can be obtained, and if it exceeds 3.5%, cold rollability and bending formability deteriorate.
A range of ~3.5% is most preferred. P, which is a deoxidizing agent
If it is less than 0.05%, the deoxidizing effect of the molten metal will be insufficient and the casting defects of the material will increase, deteriorating the rolling workability and mechanical properties, and if it exceeds 0.35%, the conductivity will deteriorate. A range of 0.35% is most preferred. Example

【表】 第1表に示される実施例1〜5及び従来のりん
青銅材料を高周波誘導炉で溶解鋳造し、焼鈍、冷
間圧延の繰り返しにより所定の板厚とし、最終軟
化焼鈍を550℃で2時間行い、次いで60%の冷間
圧延の後、200℃2時間の低温焼鈍を施して特性
を測定した。その結果を第2表に示す。なお、第
2表において応力弛緩特性は前記方法により測定
された応力残留率(%)で示し、ヤング率は(Kg
f/mm2)で、曲げ成形性は(クランクを生じずに
90゜曲げができる最少曲率半径/板厚)で、引張
強度、耐力、ばね限界値(kb値)はいずれも
(Kgf/mm2)で示した。また、0゜は圧延方向に
おける特性値を、90゜は圧延方向に直角方向の特
性値を示す。
[Table] Examples 1 to 5 and conventional phosphor bronze materials shown in Table 1 were melted and cast in a high-frequency induction furnace, made to a predetermined thickness by repeated annealing and cold rolling, and final softening annealed at 550°C. Then, after 60% cold rolling, low-temperature annealing was performed at 200° C. for 2 hours, and the properties were measured. The results are shown in Table 2. In Table 2, the stress relaxation properties are expressed as the stress residual rate (%) measured by the above method, and the Young's modulus is expressed as (Kg
f/mm 2 ), and the bending formability is (without cranking).
Tensile strength, yield strength, and spring limit value (kb value) are all expressed in (Kgf/mm 2 ). Further, 0° indicates the characteristic value in the rolling direction, and 90° indicates the characteristic value in the direction perpendicular to the rolling direction.

【表】 (発明の効果) 本発明は以上の説明からも明らかなように、従
来のりん青銅中のSnの一部をNiで置換すること
により組織の微細化と第2相の析出によつて機械
的特性を劣化させることなく熱的安定性の向上を
図り、応力弛緩特性を向上させるとともに曲げ成
形性を向上させ、更に導電性、加工性等の諸特性
を改良したものであつて、従来の導電ばね材料の
問題点を解決したものとして産業の発展に寄与す
るところは極めて大である。
[Table] (Effects of the invention) As is clear from the above explanation, the present invention achieves refinement of the structure and precipitation of the second phase by substituting a part of Sn in conventional phosphor bronze with Ni. It aims to improve thermal stability without deteriorating mechanical properties, improves stress relaxation properties, improves bending formability, and further improves various properties such as electrical conductivity and workability. It will greatly contribute to the development of industry as it solves the problems of conventional conductive spring materials.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、Sn5.5〜8.5%、P0.05〜0.35%、
Ni1.5〜3.5%、残部Cuおよび不可避的な不純物か
らなる導電ばね材料。
1 Weight%: Sn5.5-8.5%, P0.05-0.35%,
Conductive spring material consisting of 1.5~3.5% Ni, balance Cu and unavoidable impurities.
JP18496584A 1984-09-03 1984-09-03 Material for conductive spring Granted JPS6164841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18496584A JPS6164841A (en) 1984-09-03 1984-09-03 Material for conductive spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18496584A JPS6164841A (en) 1984-09-03 1984-09-03 Material for conductive spring

Publications (2)

Publication Number Publication Date
JPS6164841A JPS6164841A (en) 1986-04-03
JPS6238416B2 true JPS6238416B2 (en) 1987-08-18

Family

ID=16162445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18496584A Granted JPS6164841A (en) 1984-09-03 1984-09-03 Material for conductive spring

Country Status (1)

Country Link
JP (1) JPS6164841A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264144A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655540A (en) * 1979-10-09 1981-05-16 Tokyo Tokushu Kinzoku Kk Low-tin phosphor bronze for spring and its manufacture
JPS572849A (en) * 1980-06-04 1982-01-08 Kobe Steel Ltd Copper alloy for electronic parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655540A (en) * 1979-10-09 1981-05-16 Tokyo Tokushu Kinzoku Kk Low-tin phosphor bronze for spring and its manufacture
JPS572849A (en) * 1980-06-04 1982-01-08 Kobe Steel Ltd Copper alloy for electronic parts

Also Published As

Publication number Publication date
JPS6164841A (en) 1986-04-03

Similar Documents

Publication Publication Date Title
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US4486250A (en) Copper-based alloy and method for producing the same
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
US5041176A (en) Particle dispersion-strengthened copper alloy
EP0180443B1 (en) Electroconductive spring material
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPS6238416B2 (en)
JPS63286544A (en) Copper alloy for multipolar connector
JPS6338547A (en) High strength conductive copper alloy
JPH0418016B2 (en)
JPH0219433A (en) Copper alloy for electronic equipment
JPS6140019B2 (en)
JPH0469217B2 (en)
JPS634889B2 (en)
JPH0456755A (en) Manufacture of phosphor bronze excellent in bendability
JPH01189805A (en) Copper alloy for wire harness terminal
JP3050763B2 (en) Heat resistant automotive terminal materials
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH0525568A (en) Easy-to-work high strength copper alloy and its production
JPS6160131B2 (en)
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JPS6319582B2 (en)
JPH0118139B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term