JPS6160131B2 - - Google Patents

Info

Publication number
JPS6160131B2
JPS6160131B2 JP18496484A JP18496484A JPS6160131B2 JP S6160131 B2 JPS6160131 B2 JP S6160131B2 JP 18496484 A JP18496484 A JP 18496484A JP 18496484 A JP18496484 A JP 18496484A JP S6160131 B2 JPS6160131 B2 JP S6160131B2
Authority
JP
Japan
Prior art keywords
properties
conductivity
stress
stress relaxation
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18496484A
Other languages
Japanese (ja)
Other versions
JPS6164840A (en
Inventor
Kazutake Ikushima
Koji Iwatate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP18496484A priority Critical patent/JPS6164840A/en
Publication of JPS6164840A publication Critical patent/JPS6164840A/en
Publication of JPS6160131B2 publication Critical patent/JPS6160131B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコネクター、スイツチ、リレーなどの
電気機器用材料として用いられる導電性とばね特
性に優れたCu−Sn−Be系の導電ばね材料に関す
るものである。 (従来の技術) 導電性とばね特性とに優れた導電ばね材料とし
て代表的なものは、JISに2種又は3種として規
定されている5.5〜9.0%(重量%、以下同じ)の
Snと0.03〜0.3%のPとを含むりん青銅である
が、Snが高価であること、最近の小型化され高
い信頼性が求められる電子部品として使用するに
は導電性、曲げ成形性、応力弛緩特性等が不十分
であること等の理由により改善要求が高まつてい
る。そこで本出願人は先にりん青銅中に残存する
Pが導電性を低下させることに着目し、Pに代え
てBeによる脱酸を行わせたCu−Sn−Be系の材料
を発明し、導電率をりん青銅よりも50%以上向上
させるとともに熱間加工性の向上を図ることに成
功したところである。(特公昭51−8847号公報) (発明が解決しようとする問題点) ところが上記のCu−Sn−Be系の材料は導電性
及び熱間加工性の向上に成功したもののばねが安
定した接触圧を維持できるか否かの指標となる応
力弛緩特性が不十分であつた。この応力弛緩特性
は試験片に例えば40Kgf/cm2の最大曲げ応力が作
用するように荷重をかけてわん曲させ、200℃で
100時間保持後に荷重を解除して試験片の残留応
力を測定する方法により評価されるもので、電子
部品の高信頼性を保障する重要な特性とされてい
るが、上記のCu−Sn−Be系の材料はりん青銅に
対して若干勝つているものの満足できる値は得ら
れていない。従つて、導電性、曲げ成形性、応力
弛緩特性等の諸特性に優れしかも低コストの導電
ばね材料が求められていた。 (問題点を解決するための手段) 本発明は上記のような従来の問題点を解決する
ために完成されたものであり、重量比で5.0〜8.0
%のSnと、0.002〜0.2%のBeと、0.1〜3.0%Niお
よび0.05〜1.0%のFeのいずれか一方又は双方
と、残部を占めるCuとからなるものである。 即ち、本発明はBeの脱酸作用がPより優れて
おり、Cu−Sn−Be系の材料の導電率がCu−Sn
−P系のりん青銅よりも大きいとの従来の知見を
踏まえたうえで、高価なSnの一部をNi、Feで置
換することにより地合せ価格を引下げるとともに
組織の微細化と第2組の析出による耐熱性及び機
械的特性の向上を図ることができるとの新規な知
見に基いて完成されたもので、従来の材料に比較
して応力弛緩特性、曲げ成形性、導電性、熱間加
工性等の導電ばね材料に要求される諸特性がより
優れたものである。 次に各成分の含有率の限定理由を説明すると、
Snは5%未満であると十分な機械的強度が得ら
れず、8.5%を超えると伸びが減少して冷間圧延
性等の加工性が低下するもので、5.0〜6.5%の範
囲が最も好ましい。NiとFeはそのいずれか一方
又は双方を加えることにより結晶粒を微細化させ
るともにSnとの間あるいは単独で第2相を生成
させて熱的安定化を図り、前記諸特性の向上を図
るための成分であり、Niが0.1%未満では結晶粒
の微細化効果が不十分で応力弛緩特性の向上が得
られず、3%を越えると冷間圧延性や曲げ成形性
が悪化する。同様にFeが0.05%未満では結晶微
細化効果及び応力弛緩特性向上の効果が不十分
で、1%を越えると冷間圧延性及び曲げ成形性が
悪化する。Niは0.4〜2.5%の範囲が最も好まし
く、Ni単味、Fe単味、NiとFeとの併用のいずれ
の場合にもSn+Ni+Feを9%以下とすることが
好ましい。脱酸剤であるBeは0.002%未満で溶湯
の脱酸効果が不足して素材の鋳造欠陥が多くなり
圧延加工性及び機械的特性を悪化させ、0.2%を
越えると導電性を悪化させるとともに地合せ価格
の上昇を招く。 (実施例)
(Field of Industrial Application) The present invention relates to a Cu-Sn-Be-based conductive spring material that has excellent conductivity and spring properties and is used as a material for electrical equipment such as connectors, switches, and relays. (Prior art) A typical conductive spring material with excellent conductivity and spring properties is a material with a content of 5.5 to 9.0% (by weight, the same applies hereinafter), which is specified as Type 2 or Type 3 in JIS.
Phosphor bronze contains Sn and 0.03 to 0.3% P, but Sn is expensive, and it has poor conductivity, bending formability, and stress for use in recent miniaturized electronic components that require high reliability. Demand for improvement is increasing due to reasons such as insufficient relaxation properties. Therefore, the present applicant first focused on the fact that P remaining in phosphor bronze lowers the conductivity, and invented a Cu-Sn-Be-based material in which deoxidation was performed with Be instead of P. We have succeeded in improving the heat workability by more than 50% compared to phosphor bronze, as well as improving hot workability. (Japanese Patent Publication No. 51-8847) (Problems to be Solved by the Invention) However, although the above-mentioned Cu-Sn-Be material has succeeded in improving conductivity and hot workability, it is difficult to maintain a stable contact pressure in the spring. The stress relaxation property, which is an indicator of whether or not the stress can be maintained, was insufficient. This stress relaxation property is determined by bending a test piece under a load such that a maximum bending stress of 40 kgf/cm 2 is applied to it at 200°C.
This is evaluated by removing the load after holding for 100 hours and measuring the residual stress in the test piece, which is considered to be an important property to ensure high reliability of electronic components. Although this material is slightly superior to phosphor bronze, satisfactory values have not been obtained. Therefore, there has been a need for a conductive spring material that has excellent properties such as conductivity, bending formability, stress relaxation properties, etc., and is low cost. (Means for Solving the Problems) The present invention has been completed to solve the above-mentioned conventional problems, and has a weight ratio of 5.0 to 8.0.
% Sn, 0.002-0.2% Be, 0.1-3.0% Ni and/or 0.05-1.0% Fe, and the balance is Cu. That is, in the present invention, the deoxidizing effect of Be is superior to that of P, and the conductivity of the Cu-Sn-Be-based material is lower than that of Cu-Sn.
-Based on the conventional knowledge that it is larger than P-based phosphor bronze, we reduced the formation price by substituting a part of the expensive Sn with Ni and Fe, and also refined the structure and This material was developed based on the new knowledge that heat resistance and mechanical properties can be improved by the precipitation of It has better properties required for conductive spring materials such as workability. Next, the reason for limiting the content of each component is as follows.
If Sn is less than 5%, sufficient mechanical strength cannot be obtained, and if it exceeds 8.5%, elongation decreases and formability such as cold rollability decreases, and the range of 5.0 to 6.5% is the best. preferable. By adding either or both of them, Ni and Fe make the crystal grains finer, and also generate a second phase with Sn or alone to achieve thermal stabilization and improve the above-mentioned properties. If Ni is less than 0.1%, the grain refinement effect is insufficient and stress relaxation properties cannot be improved, and if it exceeds 3%, cold rollability and bending formability deteriorate. Similarly, if Fe is less than 0.05%, the effect of crystal refinement and improvement of stress relaxation properties is insufficient, and if it exceeds 1%, cold rollability and bending formability deteriorate. Ni is most preferably in the range of 0.4 to 2.5%, and it is preferable that Sn+Ni+Fe be 9% or less in any case of Ni alone, Fe alone, or a combination of Ni and Fe. Be, which is a deoxidizing agent, is less than 0.002% and the deoxidizing effect of the molten metal is insufficient, causing many casting defects in the material and deteriorating the rolling workability and mechanical properties.If it exceeds 0.2%, it deteriorates the conductivity and This will lead to an increase in the combined price. (Example)

【表】 第1表に示される実施例1〜6及び従来の導電
ばね材料を高周波誘導炉で溶解鋳造し、焼鈍、冷
間圧延を繰り返して板厚0.63mmの板とし、最終軟
化焼鈍を550℃で2時間行い、次いで60%の冷間
圧延の後、200℃2時間の低温焼鈍を施して特性
を測定した。その結果を第2表に示す。なお、第
2表において応力弛緩特性は前記方法により測定
された応力残留率(%)で示し、ヤング率は(Kg
f/mm2)で、曲げ成形性は(最少曲率半径/板
厚)で、引張強度、耐力、ばね限界値(kb値)
はいずれも(Kgf/mm2)で示した。また、0゜は
圧延方向における特性値を、90゜は圧延方向にお
ける特性値を、90゜は圧延方向に直角方向の特性
値を示す。第3表は熱的安定性の一つの指標とし
て各試料を250〜400℃に1時間保持した後の微小
ビツカース硬度を計り、室温の硬度に比較した硬
度残留率を%で示したものである。
[Table] Examples 1 to 6 and conventional conductive spring materials shown in Table 1 were melted and cast in a high frequency induction furnace, repeatedly annealed and cold rolled to form a plate with a thickness of 0.63 mm, and final softening annealed at 550 mm. ℃ for 2 hours, followed by 60% cold rolling, followed by low-temperature annealing at 200℃ for 2 hours, and the properties were measured. The results are shown in Table 2. In Table 2, the stress relaxation properties are expressed as the stress residual rate (%) measured by the above method, and the Young's modulus is expressed as (Kg
f/mm 2 ), bending formability is (minimum radius of curvature/plate thickness), tensile strength, proof stress, spring limit value (kb value)
All are expressed in (Kgf/mm 2 ). Further, 0° indicates the characteristic value in the rolling direction, 90° indicates the characteristic value in the rolling direction, and 90° indicates the characteristic value in the direction perpendicular to the rolling direction. Table 3 shows the residual hardness as an index of thermal stability, measured by microscopic Vickers hardness after holding each sample at 250 to 400°C for 1 hour, and showing the residual hardness in % compared to the hardness at room temperature. .

【表】【table】

【表】 (発明の効果) 本発明は以上の説明からも明らかなように、従
来のCu−Sn−Be系の材料中のSnの一部をNi,Fe
のいずれか一方又は双方で置換することにより組
織の微細化と第2相の析出による熱的安定性の向
上とを図り、応力弛緩特性を向上させるとともに
曲げ成形性を向上させ、更に導電性、加工性等の
諸特性を改良すると同時にSnの含有率を低下さ
せて地合せ価格の引下げにも成功したものである
から、従来の導電ばね材料の問題点を解決したも
のとして産業の発展に寄与するところは極めて大
である。
[Table] (Effects of the Invention) As is clear from the above description, the present invention replaces a part of Sn in the conventional Cu-Sn-Be material with Ni, Fe.
By substituting one or both of these, the structure is refined and the thermal stability is improved by precipitation of a second phase, which improves stress relaxation properties and bending formability, and further improves conductivity and This material has succeeded in reducing the fabrication price by improving various properties such as workability and at the same time reducing the Sn content, so it contributes to the development of industry as a solution to the problems of conventional conductive spring materials. There are a lot of things to do.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で5.0〜8.5%のSnと、0.002〜0.2%の
Beと、0.1〜3.0%のNiおよび0.05〜1.0%Feのい
ずれか一方又は双方と、残部を占めるCuとから
なる導電ばね材料。
1 5.0-8.5% Sn and 0.002-0.2% by weight
A conductive spring material consisting of Be, one or both of 0.1 to 3.0% Ni and 0.05 to 1.0% Fe, and the remainder Cu.
JP18496484A 1984-09-03 1984-09-03 Material for conductive spring Granted JPS6164840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18496484A JPS6164840A (en) 1984-09-03 1984-09-03 Material for conductive spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18496484A JPS6164840A (en) 1984-09-03 1984-09-03 Material for conductive spring

Publications (2)

Publication Number Publication Date
JPS6164840A JPS6164840A (en) 1986-04-03
JPS6160131B2 true JPS6160131B2 (en) 1986-12-19

Family

ID=16162427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18496484A Granted JPS6164840A (en) 1984-09-03 1984-09-03 Material for conductive spring

Country Status (1)

Country Link
JP (1) JPS6164840A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001196A (en) * 1996-10-28 1999-12-14 Brush Wellman, Inc. Lean, high conductivity, relaxation-resistant beryllium-nickel-copper alloys

Also Published As

Publication number Publication date
JPS6164840A (en) 1986-04-03

Similar Documents

Publication Publication Date Title
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JPS5816044A (en) Copper alloy
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
US4242131A (en) Copper base alloy containing manganese and iron
US4242132A (en) Copper base alloy containing manganese and nickle
JPS6160131B2 (en)
JPS63203738A (en) Cu alloy for relay and switch
US5002732A (en) Copper alloy having satisfactory pressability and method of manufacturing the same
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JPS6140019B2 (en)
JPS6164841A (en) Material for conductive spring
JPS6142772B2 (en)
JPS6319582B2 (en)
JPS62250136A (en) Copper alloy terminal and connector
JPS63317636A (en) Copper alloy for burn-in ic socket of semiconductor device
JPH01177328A (en) High strength copper-based alloy
JP6619389B2 (en) Cu-Ni-Si copper alloy
JP3050763B2 (en) Heat resistant automotive terminal materials
JPH01189805A (en) Copper alloy for wire harness terminal
JP2595095B2 (en) Copper alloy for terminals and connectors
US4761265A (en) Spring copper alloy for electric and electronic parts
JPS6319581B2 (en)