JPS6234472Y2 - - Google Patents

Info

Publication number
JPS6234472Y2
JPS6234472Y2 JP7247181U JP7247181U JPS6234472Y2 JP S6234472 Y2 JPS6234472 Y2 JP S6234472Y2 JP 7247181 U JP7247181 U JP 7247181U JP 7247181 U JP7247181 U JP 7247181U JP S6234472 Y2 JPS6234472 Y2 JP S6234472Y2
Authority
JP
Japan
Prior art keywords
semiconductor laser
holder
base
laser device
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7247181U
Other languages
Japanese (ja)
Other versions
JPS57186061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7247181U priority Critical patent/JPS6234472Y2/ja
Publication of JPS57186061U publication Critical patent/JPS57186061U/ja
Application granted granted Critical
Publication of JPS6234472Y2 publication Critical patent/JPS6234472Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Description

【考案の詳細な説明】 本考案は半導体レーザ装置に係り、特に半導体
レーザ素子とその出射光を集束するためのレンズ
系を一体化するための構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device, and more particularly to a structure for integrating a semiconductor laser element and a lens system for focusing its emitted light.

半導体レーザ素子と光フアイバとの高効率結合
を実現するため、第1図に示すように微小径の円
筒状レンズ1のようなマイクロレンズを半導体レ
ーザ素子2の出射端面3に対し横向きに配置し、
出射光を光フアイバ4の受光面に集束せしめるよ
うにしたものがある。
In order to realize highly efficient coupling between the semiconductor laser device and the optical fiber, a microlens such as a cylindrical lens 1 with a minute diameter is arranged horizontally to the output end face 3 of the semiconductor laser device 2, as shown in FIG. ,
There is one in which the emitted light is focused on the light receiving surface of the optical fiber 4.

上記構造において半導体レーザ素子2は内部で
発生する熱の放散を良くするため、熱伝導の良い
ダイヤモンド・ヒートシンク5に接着され、更に
ダイヤモンド・ヒートシンクは銅のような高熱伝
導度材料よりなる支持台6上に固着されている。
一方レンズ1はホルダ7上に接着され、ホルダ7
はヒートシンク5及び支持台6の上記出射端面3
側の端面8の接着剤で接着して固定されている。
In the above structure, the semiconductor laser element 2 is bonded to a diamond heat sink 5 with good thermal conductivity in order to improve the dissipation of the heat generated internally, and the diamond heat sink is further made of a support base 6 made of a material with high thermal conductivity such as copper. fixed on top.
On the other hand, the lens 1 is glued onto the holder 7, and the holder 7
is the above-mentioned output end surface 3 of the heat sink 5 and the support base 6
It is fixed by adhesive on the side end surface 8.

このようにして配設されたレンズ1と半導体レ
ーザ素子2との相対位置関係は非常に厳しい精度
が要求される。即ち結合効率の低下を1〔dB〕
以下とした場合、相対位置精度は約±0.2〔μ
m〕以下としなければならない。そのためホルダ
7を接着するに当つては、結合効率が最大となる
ようホルダの位置を調節し、その状態を治具等を
用いて接着剤が完全に硬化する迄保持する必要が
ある。
The relative positional relationship between the lens 1 and the semiconductor laser element 2 arranged in this manner requires very strict precision. In other words, the coupling efficiency decreases by 1 [dB]
The relative position accuracy is approximately ±0.2 [μ
m] or less. Therefore, when bonding the holder 7, it is necessary to adjust the position of the holder so that the bonding efficiency is maximized, and to maintain this state using a jig or the like until the adhesive is completely cured.

ところが接着剤が完全に硬化するには長時間を
要するので、その間上述の位置精度を保持するの
は必ずしも容易ではない。
However, since it takes a long time for the adhesive to completely harden, it is not always easy to maintain the above-mentioned positional accuracy during that time.

本考案は上述の従来技術の問題点を解消するた
め、ホルダをきわめて短時間で固定し得る半導体
レーザ装置の構造を提供するものである。
In order to solve the problems of the prior art described above, the present invention provides a structure of a semiconductor laser device that can fix the holder in a very short time.

以下本考案を実施例により説明する。 The present invention will be explained below with reference to examples.

第2図は本考案の一実施例を示す要部断面図で
あつて、支持板6の端部に鉄(Fe)のような熱
伝導度が1.7〔W/cm/℃〕以下の材料よりなる
基台11が接着され、ホルダ7と支持台6との間
に介在している。この点を除いて他は第1図に示
す従来例と異なる点はない。
FIG. 2 is a sectional view of a main part showing an embodiment of the present invention, in which the end of the support plate 6 is made of a material with a thermal conductivity of 1.7 [W/cm/°C] or less, such as iron (Fe). A base 11 is bonded and interposed between the holder 7 and the support base 6. Other than this point, there is no other difference from the conventional example shown in FIG.

本実施例では上述の如く低熱伝導材料よりなる
基台11を介在せしめることにより、接着剤を用
いるのに代えて、レーザビーム照射によりホルダ
7を基台11に固着せしめることが可能となつ
た。即ち第3図に示すようにホルダ7の側面12
と基台11の端面8′の接合線近傍にレーザビー
ム13を照射することにより両者を接着できる。
In this embodiment, by interposing the base 11 made of a low heat conductive material as described above, it is possible to fix the holder 7 to the base 11 by laser beam irradiation instead of using adhesive. That is, as shown in FIG. 3, the side surface 12 of the holder 7
By irradiating the vicinity of the joining line between the end face 8' of the base 11 and the base 11 with a laser beam 13, the two can be bonded together.

上記基台11のに用いる低熱伝導度材料は、鉄
(Fe)、モネル、ステンレス、インバー或いはス
ーパーインバー等の金属のほか、アルミナ磁気、
シリコン(Si)、石英等であつてもよい。これら
のうち鉄(Fe)等の金属は表面にニツケル
(Ni)及び金(Au)をメツキし、アルミナ磁気等
の場合には表面にチタン(Ti)−白金(Pt)−金
(Au)の薄層の順次スパツタ法により形成するな
どの方法によりメタライズして用いる。
The low thermal conductivity materials used for the base 11 include metals such as iron (Fe), Monel, stainless steel, Invar, and Super Invar, as well as alumina magnetic,
It may also be silicon (Si), quartz, or the like. Among these, metals such as iron (Fe) are plated with nickel (Ni) and gold (Au) on the surface, and in the case of alumina magnetism, the surface is plated with titanium (Ti) - platinum (Pt) - gold (Au). It is used after being metalized by a method such as sequential formation of thin layers by sputtering.

ホルダ7の材料は特に限定する必要はないが、
ホルダ7及び基台11の双方を比較的融点の低い
同一金属例えば鉄(Fe)で作成した場合には、
前述の如くレーザビーム13を照射することによ
り両者が局部的に溶融し接合する。ホルダ7及び
基台11のうちいずれか一方或いは双方が融点の
高い金属の場合、またアルミナ磁気や石英等の場
合には、金−錫(Au−Sn)、金−シリコン(Au
−Si)、金−アンチモン(Au−Sb)、金−ゲルマ
ニウム(Au−Ge)、鉛−錫(Pb−Sn)、インジウ
ム−錫(In−Sn)合金等よりなるロー材を用
い、レーザビーム照射によりロー材を溶融せし
め、これを介して接着できる。
The material of the holder 7 does not need to be particularly limited, but
When both the holder 7 and the base 11 are made of the same metal with a relatively low melting point, such as iron (Fe),
As described above, by irradiating the laser beam 13, both are locally melted and joined. If either or both of the holder 7 and the base 11 are made of a metal with a high melting point, or if they are made of alumina magnetic or quartz, gold-tin (Au-Sn), gold-silicon (Au
-Si), gold-antimony (Au-Sb), gold-germanium (Au-Ge), lead-tin (Pb-Sn), indium-tin (In-Sn) alloys, etc. The brazing material is melted by irradiation and can be bonded through this.

更にホルダ7を第4図に示すようにホルダ7の
レンズ1を固着する上面及び基台11の端面8′
に対向し接触する背面の双方に交又する2つの側
面12,12′と上記背面とのなす角を鋭角とし
基台11と接合せしめるエツジ部14をナイフエ
ツジ状とする。このようにすると2つのエツジ部
14に対しレーザビームの照射方向を一定とする
ことができる。第3図に示した例では、レーザビ
ーム13を斜めから照射しなければならないため
ホルダ7の両側面12,12′を接着するには、
照射方向をそれぞれ変更し調節せねばならないの
に比較し、ホルダ7を第4図に示す形状とするこ
とにより作業が容易となる。
Furthermore, as shown in FIG.
The angle formed by the back surface and the two side surfaces 12, 12' that intersect with both of the back surfaces facing and in contact with the back surface is an acute angle, and the edge portion 14 joined to the base 11 is shaped like a knife edge. In this way, the direction of irradiation of the laser beam to the two edge portions 14 can be made constant. In the example shown in FIG. 3, since the laser beam 13 must be irradiated obliquely, in order to bond both sides 12, 12' of the holder 7,
Compared to having to change and adjust the irradiation direction, the work becomes easier by forming the holder 7 in the shape shown in FIG. 4.

なお従来構造のように高熱伝導材料である銅
(Cu)よりなる支持台6にホルダを直接接着する
場合には、レーザビーム照射により加熱してもそ
の熱は支持台6を通つて速やかに放散されてしま
うため、溶着に必要な温度まで局部的に昇温する
ことができない。レーザビーム溶着が可能であつ
た前述の各種材料の熱伝導度はシリコン(Si)が
最も大きくて1.7(W/cm/℃〕、他はそれより小
さい。従つて熱伝導度が1.7〔W/cm/℃〕以下
の材料で作られた基台11をホルダ7と支持台6
との間に介在せしめることによりレーザ溶着が可
能となる。因みに銅(Cu)の熱伝導度は約4
〔W/cm/℃〕である。
Note that when the holder is directly bonded to the support base 6 made of copper (Cu), which is a highly thermally conductive material, as in the conventional structure, even if it is heated by laser beam irradiation, the heat is quickly dissipated through the support base 6. Therefore, it is not possible to locally raise the temperature to the temperature required for welding. The thermal conductivity of the various materials mentioned above that can be laser beam welded is the highest for silicon (Si), which is 1.7 (W/cm/℃), and the others are smaller. Therefore, the thermal conductivity is 1.7 [W/cm/℃]. cm/℃] A base 11 made of the following materials is attached to a holder 7 and a support base 6.
Laser welding becomes possible by interposing the material between the two. By the way, the thermal conductivity of copper (Cu) is approximately 4.
[W/cm/°C].

以上説明したごとく本考案によればホルダを瞬
間的に固定できるので、半導体レーザ素子と光フ
アイバとの相対位置精度を維持するのが容易であ
り、しかも作業能率が向上する。
As explained above, according to the present invention, the holder can be fixed instantaneously, so it is easy to maintain the relative positional accuracy between the semiconductor laser element and the optical fiber, and work efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザ装置を示す要部断
面図、第2図及び第3図は本考案の一実施例を示
す要部断面図及び要部斜視図、第4図は変形例を
示す要部斜視図である。 図において、1はマイクロレンズ、2は半導体
レーザ素子、3は出射端面、5はヒートシンク、
6は支持台、7はホルダ、8,8′は端面、11
は基台、12,12′は側面、13はレーザビー
ム、14はナイフエツジ状のエツジ部を示す。
FIG. 1 is a cross-sectional view of a main part showing a conventional semiconductor laser device, FIGS. 2 and 3 are a cross-sectional view and a perspective view of a main part showing an embodiment of the present invention, and FIG. 4 is a modified example. FIG. 3 is a perspective view of main parts. In the figure, 1 is a microlens, 2 is a semiconductor laser element, 3 is an emission end face, 5 is a heat sink,
6 is a support base, 7 is a holder, 8 and 8' are end faces, 11
12 and 12' are side surfaces, 13 is a laser beam, and 14 is a knife edge portion.

Claims (1)

【実用新案登録請求の範囲】 (1) 半導体レーザ素子の出射光を集束するため該
半導体レーザ素子の出射端面に配設されたマイ
クロレンズが、前記半導体レーザ素子を搭載せ
るヒートシンク及び該ヒートシンクを支持する
支持台の前記出射端側の端面に固定されたホル
ダ上に支持されてなる半導体レーザ装置におい
て、前記ホルダと前記支持台との間に熱伝導度
が1.7〔W/cm/℃〕以下の材料よりなる基台
を介在せしめたことを特徴とする半導体レーザ
装置。 (2) 前記ホルダのマイクロレンズを支持せる上面
及び前記基台に接触する背面の双方に文叉する
2つの側面が、前記背面となす角を鋭角とした
ことを特徴とする前記実用新案登録請求の範囲
第1項記載の半導体レーザ装置。
[Claims for Utility Model Registration] (1) A microlens disposed on the emission end face of the semiconductor laser element to focus the emitted light of the semiconductor laser element supports a heat sink on which the semiconductor laser element is mounted and the heat sink. In the semiconductor laser device supported on a holder fixed to the end face on the emission end side of the support base, the thermal conductivity between the holder and the support base is 1.7 [W/cm/°C] or less. A semiconductor laser device characterized by interposing a base made of a material. (2) The above-mentioned utility model registration request characterized in that the two side surfaces of the holder, which intersect with both the upper surface that supports the microlens and the back surface that contacts the base, form an acute angle with the back surface. The semiconductor laser device according to item 1.
JP7247181U 1981-05-19 1981-05-19 Expired JPS6234472Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7247181U JPS6234472Y2 (en) 1981-05-19 1981-05-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7247181U JPS6234472Y2 (en) 1981-05-19 1981-05-19

Publications (2)

Publication Number Publication Date
JPS57186061U JPS57186061U (en) 1982-11-26
JPS6234472Y2 true JPS6234472Y2 (en) 1987-09-02

Family

ID=29868256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7247181U Expired JPS6234472Y2 (en) 1981-05-19 1981-05-19

Country Status (1)

Country Link
JP (1) JPS6234472Y2 (en)

Also Published As

Publication number Publication date
JPS57186061U (en) 1982-11-26

Similar Documents

Publication Publication Date Title
JP5436213B2 (en) Method and apparatus for coupling optical elements to a frame
JP3484414B2 (en) Apparatus and method for forming chip substrate joint
US5185613A (en) Hybrid structures
JPH10513610A (en) Method of bonding flexible substrate to chip
JP3346971B2 (en) Submount for optical semiconductor device and method of mounting the same
JPH05190973A (en) Submount for semiconductor laser
JPS6234472Y2 (en)
JPH05114800A (en) Electronic component mounting method and device
JP6623618B2 (en) Light source device and fluorescent plate assembly
JPS6052079A (en) Semiconductor laser device
JPH05323158A (en) Laser diode coupler and its assembling method
JP3368140B2 (en) Electronic component mounting method and structure
JPS6365411A (en) Fixing method for lens
JP2619523B2 (en) LD chip carrier fixing structure
JP3459286B2 (en) Lens fixing device
JP3908590B2 (en) Die bonding method
JPH02128486A (en) Joining layer of semiconductor laser element heat releasing body submount
RU2171520C2 (en) Semiconductor device assembling method
JP2004023039A (en) Thermoelectric device and its manufacturing method
JP2003234482A (en) Method for manufacturing optical semiconductor device
JPH03148192A (en) Manufacture of semiconductor device
JPS5931085A (en) Manufacture of semiconductor laser
JPS60219789A (en) Manufacture of semiconductor light emitting device
JPH02254780A (en) Soldering material for assembling semiconductor laser element
JPH11307821A (en) Internal structural parts for optical module